Nash Social Welfare for Fair Division of Bads: Normative and Algorithmic Issues

Anna Bogomolnaia, Hervé Moulin, Fedor Sandomirskiy, Elena Yanovskaya
November 26, 2017
Computation and Economics Seminar, HUJI
e-mail: fsandomirskiy@hse.ru

Based on three papers with

Anna Bogomolnaia, Hervé Moulin, and Elena Yanovskaya

- "Competitive division of a mixed manna", Econometrica, forthcoming
- "Dividing goods and bads under additive utilities" arXiv:1610.03745 [cs.GT]
- Dividing goods or bads under additive utilities arXiv:1608.01540 [cs.GT]

Motivation

Fair Division without monetary transfers:

how to allocate resources among agents with different preferences in a fair and efficient way?

- Examples: division of a common property (partners dissolving their partnership, divorce, inheritance), seats in overdemanded courses, computational resources, office space

Motivation

Fair Division without monetary transfers:

how to allocate resources among agents with different preferences in a fair and efficient way?

- Examples: division of a common property (partners dissolving their partnership, divorce, inheritance), seats in overdemanded courses, computational resources, office space
- Most of the results in fair division are about goods
- Exception: E. Peterson, F. Su. (2002, 2009), E. Segal-Halevi (2017) burnt cake cutting
- But many
- e.g., house chores, teaching loads, noxious facilities
- O.. bouds and luds at the same tinne

Motivation

Fair Division without monetary transfers:

how to allocate resources among agents with different preferences in a fair and efficient way?

- Examples: division of a common property (partners dissolving their partnership, divorce, inheritance), seats in overdemanded courses, computational resources, office space
- Most of the results in fair division are about goods
- Exception: E. Peterson, F. Su. (2002, 2009), E. Segal-Halevi (2017) burnt cake cutting
- But many real problems involve bads
- e.g., house chores, teaching loads, noxious facilities
- Or goods and bads at the same time

Motivation

Fair Division without monetary transfers:

how to allocate resources among agents with different preferences in a fair and efficient way?

- Examples: division of a common property (partners dissolving their partnership, divorce, inheritance), seats in overdemanded courses, computational resources, office space
- Most of the results in fair division are about goods
- Exception: E. Peterson, F. Su. (2002, 2009), E. Segal-Halevi (2017) burnt cake cutting
- But many real problems involve bads
- e.g., house chores, teaching loads, noxious facilities
- Or goods and bads at the same time

In this talk

We consider:

- divisible items: bads or mixture of goods and bads (mixed manna)
- The goal: to extend the MaxNashProduct rule ${ }^{1}$ to mixed manna.

We will see:

- structural difference between goods and bads problems
- extension of MaxNashProduct is surprising
- algorithmic and economic onen quections

[^0]
In this talk

We consider:

- divisible items: bads or mixture of goods and bads (mixed manna)
- The goal: to extend the MaxNashProduct rule ${ }^{1}$ to mixed manna.

We will see:

- structural difference between goods and bads problems
- extension of MaxNashProduct is surprising
- algorithmic and economic open questions

[^1]
Outline

- Fair division of divisible goods (known results)
- MaxNashProduct and its properties
- MaxNashProduct as Competitive Equilibrium for a Fisher market
- Mixture of divisible goods and bads
- Competitive Equilibrium for mixed manna and extension of MaxNashProduct rule
- All-bads problems with additive utilities
- Multiplicity issues
- Algorithms
- Indivisibilities

Fair division of divisible goods (known results)

How it works on Spliddit.org?

Spliddit.org is launched by the team of Ariel Procaccia (Carnegie Mellon)

How it works on Spliddit.org?

Spliddit.org is launched by the team of Ariel Procaccia (Carnegie Mellon)

How it works on Spliddit.org?

Spliddit.org is launched by the team of Ariel Procaccia (Carnegie Mellon)

- It is assumed that agents have additive utilities

How it works on Spliddit.org?

Spliddit.org is launched by the team of Ariel Procaccia (Carnegie Mellon)

- Spliddit.org uses the MaxNashProduct rule for indivisible items
- Let us look on a simpler divisible case

Divisible goods: the model

A fair division problem

- A set of divisible items $M=\{1,2, . . m\}$, each in the unit amount, is to be distributed among a set of agents $N=\{1,2,3 . ., n\}$
- $z_{i}=\left(z_{i 1}, z_{i 2}, z_{i 3} ..\right) \in R_{+}^{M}$ is a bundle received by agent i
- an allocation $z=\left(z_{i}\right)_{i \in N}$ is a collection of bundles $z_{i} \in \mathbb{R}_{+}^{M}$ with the condition that all goods are distributed: $\forall a \in M \sum_{i \in N} z_{i a}=1$
- preferences of agent i are given by his utility functions u_{i}
- We will focus on additive utilities

Divisible goods: the model

A fair division problem

- A set of divisible items $M=\{1,2, . . m\}$, each in the unit amount, is to be distributed among a set of agents $N=\{1,2,3 . ., n\}$
- $z_{i}=\left(z_{i 1}, z_{i 2}, z_{i 3} ..\right) \in R_{+}^{M}$ is a bundle received by agent i
- an allocation $z=\left(z_{i}\right)_{i \in N}$ is a collection of bundles $z_{i} \in \mathbb{R}_{+}^{M}$ with the condition that all goods are distributed: $\forall a \in M \sum_{i \in N} z_{i a}=1$
- preferences of agent i are given by his utility functions u_{i}
- We will focus on additive utilities

Divisible goods: the model

A fair division problem

- A set of divisible items $M=\{1,2, . . m\}$, each in the unit amount, is to be distributed among a set of agents $N=\{1,2,3 . ., n\}$
- $z_{i}=\left(z_{i 1}, z_{i 2}, z_{i 3} ..\right) \in R_{+}^{M}$ is a bundle received by agent i
- an allocation $z=\left(z_{i}\right)_{i \in N}$ is a collection of bundles $z_{i} \in \mathbb{R}_{+}^{M}$ with the condition that all goods are distributed: $\forall a \in M \sum_{i \in N} z_{i a}=1$
- We will focus on additive utilities

Divisible goods: the model

A fair division problem

- A set of divisible items $M=\{1,2, . . m\}$, each in the unit amount, is to be distributed among a set of agents $N=\{1,2,3 . ., n\}$
- $z_{i}=\left(z_{i 1}, z_{i 2}, z_{i 3} ..\right) \in R_{+}^{M}$ is a bundle received by agent i
- an allocation $z=\left(z_{i}\right)_{i \in N}$ is a collection of bundles $z_{i} \in \mathbb{R}_{+}^{M}$ with the condition that all goods are distributed: $\forall a \in M \sum_{i \in N} z_{i a}=1$
- preferences of agent i are given by his utility functions u_{i}
- We will focus on additive utilities

$$
u_{i}\left(z_{i}\right)=\sum_{a \in M} u_{i a} z_{i a}
$$

Divisible goods: the model

A fair division problem

- A set of divisible items $M=\{1,2, . . m\}$, each in the unit amount, is to be distributed among a set of agents $N=\{1,2,3 . ., n\}$
- $z_{i}=\left(z_{i 1}, z_{i 2}, z_{i 3} ..\right) \in R_{+}^{M}$ is a bundle received by agent i
- an allocation $z=\left(z_{i}\right)_{i \in N}$ is a collection of bundles $z_{i} \in \mathbb{R}_{+}^{M}$ with the condition that all goods are distributed: $\forall a \in M \sum_{i \in N} z_{i a}=1$
- preferences of agent i are given by his utility functions u_{i}
- We will focus on additive utilities

$$
u_{i}\left(z_{i}\right)=\sum_{a \in M} u_{i a} z_{i a}
$$

Remark: Most of the results remain valid for general monotone, homogeneous, and concave utilities, e.g., Leontief, CES, Cobb-Douglas, etc

Desired properties: Fairness and Efficiency

Envy-Freeness

z is envy-free iff every agent prefers his allocation to the allocation of any other agent:

$$
u_{i}\left(z_{i}\right) \geq u_{i}\left(z_{j}\right) \text { for all } i, j \in N .
$$

Efficiency

z is efficient iff there is no z^{\prime} weakly preferred by all agents and by at least one strictly

NashMaxProduct rule

picks an allocation z that maximizes the Nash Social Welfare

$$
\mathcal{N}(z)=\prod_{i \in N} u_{i}\left(z_{i}\right)
$$

a similar rule was introduced by J. Nash (1950) in axiomatic bargaining
Properties:

NashMaxProduct rule

picks an allocation z that maximizes the Nash Social Welfare

$$
\mathcal{N}(z)=\prod_{i \in N} u_{i}\left(z_{i}\right)
$$

a similar rule was introduced by J. Nash (1950) in axiomatic bargaining Properties:

- Efficient
- Envy-Free
- Can be efficintly computed
- convex problem \Rightarrow approximate solution by gradient methods
- Vazirani (2006): exact solution in $O($ poly $(|N|+|M|))$

NashMaxProduct rule

picks an allocation z that maximizes the Nash Social Welfare

$$
\mathcal{N}(z)=\prod_{i \in N} u_{i}\left(z_{i}\right)
$$

a similar rule was introduced by J. Nash (1950) in axiomatic bargaining Properties:

- Efficient
- Envy-Free
- Can be efficintly computed
- convex problem \Rightarrow approximate solution by gradient methods
- Vazirani (2006): exact solution in $O(\operatorname{polv}(|N|+|M|))$

NashMaxProduct rule

picks an allocation z that maximizes the Nash Social Welfare

$$
\mathcal{N}(z)=\prod_{i \in N} u_{i}\left(z_{i}\right)
$$

a similar rule was introduced by J. Nash (1950) in axiomatic bargaining

Properties:

- Efficient
- Envy-Free

Proof for $|N|=2$ with additive utilities:
Consider an allocation x such that $x_{1}=z_{1}+\varepsilon z_{2}$ and $x_{2}=(1-\varepsilon) z_{2}$. The Nash product can only decrease: $\left.\frac{d}{d \varepsilon} \mathcal{N}(x)\right|_{\varepsilon=0} \leq 0$. By additivity $\mathcal{N}(x)=\left(u_{1}\left(z_{1}\right)+\varepsilon u_{1}\left(z_{2}\right)\right)(1-\varepsilon) u_{2}\left(z_{2}\right)$, and inequality implies $u_{1}\left(z_{1}\right) \geq u_{1}\left(z_{2}\right)$.

- Can be efficintly computed
- convex problem \Rightarrow approximate solution by gradient methods
- Vazirani (2006): exact solution in $O(\operatorname{poly}(|N|+|M|))$

NashMaxProduct rule

picks an allocation z that maximizes the Nash Social Welfare

$$
\mathcal{N}(z)=\prod_{i \in N} u_{i}\left(z_{i}\right)
$$

a similar rule was introduced by J. Nash (1950) in axiomatic bargaining

Properties:

- Efficient
- Envy-Free
- Can be efficintly computed
- convex problem \Rightarrow approximate solution by gradient methods
- Vazirani (2006): exact solution in $O($ poly $(|N|+|M|))$

NashMaxProduct rule

picks an allocation z that maximizes the Nash Social Welfare

$$
\mathcal{N}(z)=\prod_{i \in N} u_{i}\left(z_{i}\right)
$$

a similar rule was introduced by J. Nash (1950) in axiomatic bargaining

Properties:

- Efficient
- Envy-Free
- Can be efficintly computed
- convex problem \Rightarrow approximate solution by gradient methods
- Vazirani (2006): exact solution in $O($ poly $(|N|+|M|))$

There are many confirmations that the Nash rule is the best rule to divide goods under additive utilities.

NashMaxProduct rule

picks an allocation z that maximizes the Nash Social Welfare

$$
\mathcal{N}(z)=\prod_{i \in N} u_{i}\left(z_{i}\right)
$$

a similar rule was introduced by J. Nash (1950) in axiomatic bargaining

Properties:

- Efficient
- Envy-Free
- Can be efficintly computed
- convex problem \Rightarrow approximate solution by gradient methods
- Vazirani (2006): exact solution in $O($ poly $(|N|+|M|))$

There are many confirmations that the Nash rule is the best rule to divide goods under additive utilities.

Let us try to guess what could be an extension to problems with bads.

Why goods \neq bads? MaxNashProduct for bads, failed attempts

Bads instead of goods: $u_{i a} \leq 0$ for all agents and items.

Why goods \neq bads? MaxNashProduct for bads, failed attempts

Bads instead of goods: $u_{i a} \leq 0$ for all agents and items.

Ideas:

- Minimize the product of disutilities $\mathcal{N}(z)=\prod_{i \in N}\left|u_{i}\left(z_{i}\right)\right|$ Very unfair: picks an allocation with $\mathcal{N}(z)=0$ that gives no bads to one of agents
- Maximize the product of disutilities
is dominated by equal division $z_{i a}=\frac{1}{|N|}$

Why goods \neq bads? MaxNashProduct for bads, failed attempts

Bads instead of goods: $u_{i a} \leq 0$ for all agents and items.

Ideas:

- Minimize the product of disutilities $\mathcal{N}(z)=\prod_{i \in N}\left|u_{i}\left(z_{i}\right)\right|$ Very unfair: picks an allocation with $\mathcal{N}(z)=0$ that gives no bads to one of agents
- Maximize the product of disutilities

Inefficient: is dominated by equal division $z_{i a}=\frac{1}{|N|}$

Why goods \neq bads? MaxNashProduct for bads, failed attempts

Bads instead of goods: $u_{i a} \leq 0$ for all agents and items.

Ideas:

- Minimize the product of disutilities $\mathcal{N}(z)=\prod_{i \in N}\left|u_{i}\left(z_{i}\right)\right|$

Very unfair: picks an allocation with $\mathcal{N}(z)=0$ that gives no bads to one of agents

- Maximize the product of disutilities

Inefficient: is dominated by equal division $z_{i a}=\frac{1}{|N|}$

To extend MaxNashProduct to bads we will use its connection with
Competitive Equilibrium for a Fisher market

Back to goods: Fisher Market and its equilibrium

Fisher Market aka Arrow-Debreu exchange economy

- A set M of divisible goods
- A set N of buyers endowed with budgets b_{i} and utility-functions u_{i}. Buyers have no value for money.

> Allocation z is a Competitive Equilibrium if there is a vector $p \in \mathbb{R}_{+}^{M}$
> of prices such that every agent buys the best bundle he/she can afford,
> and the market clears. Formally,

Back to goods: Fisher Market and its equilibrium

Fisher Market aka Arrow-Debreu exchange economy

- A set M of divisible goods
- A set N of buyers endowed with budgets b_{i} and utility-functions u_{i}. Buyers have no value for money.

Allocation z is a Competitive Equilibrium if there is a vector $p \in \mathbb{R}_{+}^{M}$ of prices such that every agent buys the best bundle he/she can afford, and the market clears. Formally,

$$
\forall i \in N: \quad z_{i}=\operatorname{argmax}_{y \in \mathbb{R}_{+}^{M}:\langle y, p\rangle \leq 1} u_{i}(y) .
$$

The Competitive Rule and the MaxNashProduct

The Competitive Rule (CR) (Varian 1974) aka CEEI, pseudo-market mechanism
 Picks a Competitive Equilibrium in a corresponding Fisher Market with equal budgets: $b_{i}=1 \quad \forall i \in N$.

Properties:

- envy-free \longleftarrow equal choice opportunities
- efficient \Longleftarrow "invisible hand" of Adam Smith

Theorem (Eisenberg (1961), Gale (1960))
Competitive Rule $=$ MaxNashProduct for general homogeneous
monotone concave preferences

The Competitive Rule and the MaxNashProduct

The Competitive Rule (CR) (Varian 1974)

aka CEEI, pseudo-market mechanism
Picks a Competitive Equilibrium in a corresponding Fisher Market with equal budgets: $b_{i}=1 \quad \forall i \in N$.

Properties:

- envy-free \Longleftarrow equal choice opportunities
- efficient \Longleftarrow "invisible hand" of Adam Smith

> Theorem (Eisenberg (1961), Gale (1960))
> Competitive Rule $=$ MaxNashProduct for general homogeneous

monotone concave preferences

The Competitive Rule and the MaxNashProduct

The Competitive Rule (CR) (Varian 1974)

aka CEEI, pseudo-market mechanism
Picks a Competitive Equilibrium in a corresponding Fisher Market with equal budgets: $b_{i}=1 \quad \forall i \in N$.

Properties:

- envy-free \Longleftarrow equal choice opportunities
- efficient \Longleftarrow "invisible hand" of Adam Smith

Theorem (Eisenberg (1961), Gale (1960))

Competitive Rule $=$ MaxNashProduct for general homogeneous monotone concave preferences

Why goods \neq bads? 2

Example:

- 4 agents divide 1 hour of a bad "washing the dishes"
- introduce auxiliary good: "not washing"
- 3 hours of "not washing" to distribute, but no agent can consume more than one hour

Corollary: A problem with bads \Longrightarrow a constrained problem with goods.

Why goods \neq bads? 2

Example:

- 4 agents divide 1 hour of a bad "washing the dishes"
- introduce auxiliary good: "not washing"
- 3 hours of "not washing" to distribute, but no agent can consume more than one hour

Corollary: A problem with bads \Longrightarrow a constrained problem with goods.

Mixture of divisible goods and bads (our results)

The Competitive Rule for mixed manna

Mixture of goods and bads:

- additive utilities: $u_{i a}$ of arbitrary sign
- or concave monotone homogeneous

How to define the Competitive Rule? Allow prices and budgets of both signs.

Basic properties of CR:

- Existence \Leftarrow fixed point arguments from Mas-Colel (1982)
- Envy-Freeness \& Efficiency (from standard arguments)

Question: Is it still related to the Nash Social Welfare?

The Competitive Rule for mixed manna

Mixture of goods and bads:

- additive utilities: $u_{i a}$ of arbitrary sign
- or concave monotone homogeneous

How to define the Competitive Rule?
Allow prices and budgets of both signs.
Basic properties of CR:

- Existence \Leftarrow fixed point arguments from Mas-Colel (1982)
- Envy-Freeness \& Efficiency (from standard arguments)

Question: Is it still related to the Nash Social Welfare?

The Competitive Rule for mixed manna

Mixture of goods and bads:

- additive utilities: $u_{i a}$ of arbitrary sign
- or concave monotone homogeneous

How to define the Competitive Rule?
Allow prices and budgets of both signs.
Basic properties of CR:

- Existence \Leftarrow fixed point arguments from Mas-Colel (1982)
- Envy-Freeness \& Efficiency (from standard arguments)

Question: Is it still related to the Nash Social Welfare?

The Competitive Rule for mixed manna

Mixture of goods and bads:

- additive utilities: $u_{i a}$ of arbitrary sign
- or concave monotone homogeneous

How to define the Competitive Rule?
Allow prices and budgets of both signs.
Basic properties of CR:

- Existence \Leftarrow fixed point arguments from Mas-Colel (1982)
- Envy-Freeness \& Efficiency (from standard arguments)

Question: Is it still related to the Nash Social Welfare?

Relation to the Nash Social Welfare

Main theorem (CR and Nash Social Welfare for mixed manna)

A version of Eisenberg-Gale theorem still holds but now there are three types of problems

- positive, negative, and null
with different behavior of the Competitive Rule.
- The theorem is for general concave homogeneous utilities and arbitrary finite sets N and M.
- Illustration: additive utilities, 2 agents and 3 items.

Relation to the Nash Social Welfare

Three items a, b, c, two agents with utilities given by

$$
\begin{aligned}
& U_{1}\left(z_{1}\right)=-z_{1 a}-3 z_{1 b}+\lambda z_{1 c} \\
& U_{2}\left(z_{2}\right)=-2 z_{2 a}-z_{2 b}+\lambda z_{2 c}
\end{aligned}
$$

Parameter $\lambda \geq 0$. Items a, b are bads and c is a good.

Relation to the Nash Social Welfare

$$
\begin{aligned}
& U_{1}\left(z_{1}\right)=-z_{1 a}-3 z_{1 b}+\lambda z_{1 c} \\
& U_{2}\left(z_{2}\right)=-2 z_{2 a}-z_{2 b}+\lambda z_{2 c}
\end{aligned}
$$

Main theorem (CR and Nash Social Welfare for mixed manna)

- Positive problems: the set of feasible utilities intersects positive orthant $(\lambda=4)$.

CR maximizes the Nash product (similar to all-goods case).

- Null problems: knife-edge case. CR picks zero.

Relation to the Nash Social Welfare

$$
\begin{aligned}
& U_{1}\left(z_{1}\right)=-z_{1 a}-3 z_{1 b}+\lambda z_{1 c} \\
& U_{2}\left(z_{2}\right)=-2 z_{2 a}-z_{2 b}+\lambda z_{2 c}
\end{aligned}
$$

Main theorem (CR and Nash Social Welfare for mixed manna)

- Positive problems: CR maximizes the Nash product

utilitv of acent 1
- Negative problems:

Relation to the Nash Social Welfare

Main theorem (CR and Nash Social Welfare for mixed manna)

- Positive problems: CR maximizes the Nash product
- Null problems: knife-edge case. CR picks zero.
- Negative problems: the set of feasible utilities doesn't intersect positive orthant $(\lambda=1)$.

Feasible set and competitive allocations

CR picks all critical points of the Nash product on efficient frontier. Critical point $=$ local minima, local maxima or sadle-point of Nash Social Welfare on the boundary.

Relation to the Nash Social Welfare

Main theorem (CR and Nash Social Welfare for mixed manna)

- Positive problems: CR maximizes the Nash product
- Null problems: knife-edge case. CR picks zero.
- Negative problems: the set of feasible utilities doesn't intersect positive orthant $(\lambda=0)$.

CR picks all critical points of the Nash product on efficient frontier. Critical point = local minima, local maxima or sadle-point of Nash Social Welfare on the boundary.

Relation to the Nash Social Welfare

Main theorem (CR and Nash Social Welfare for mixed manna)

- Positive problems: CR maximizes the Nash product
- Null problems: knife-edge case. CR picks zero.
- Negative problems: the set of feasible utilities doesn't intersect positive orthant CR picks all critical points of the Nash product on efficient frontier.
Critical point $=$ local minima, local maxima or saddle-point of Nash Social Welfare on the boundary.

How to prove? Use an extension of demand-aggregation ideas for homogeneous economies ${ }^{2}$.

[^2]
Corollary

Analog of MaxNashProduct for all-bads problems
picks all the allocations corresponding to local minima, local maxima, and saddle points of the Nash Social Welfare on the Pareto frontier

- Envy-Free and Efficient
- Does not solve any convex-optimization problem \Rightarrow
- multiplicity issues
- algorithmic questions

Corollary

Analog of MaxNashProduct for all-bads problems

picks all the allocations corresponding to local minima, local maxima, and saddle points of the Nash Social Welfare on the Pareto frontier

- Envy-Free and Efficient
- Does not solve any convex-optimization problem \Rightarrow
- multiplicity issues
- algorithmic questions

All-bads problems with additive utilities

Multiplicity issues \& Algorithms \& Extension to indivisibilities

Multiplicity issues

Proposition (The number of CR outcomes)

The number of distinct competitive allocations can be as large as $2^{\min \{|M|,|N|\}}-1$, (exponential growth).

Open question: Any good single-valued selection?
A selection: MaxMinNashProduct rule

1. Min: restrict the Nash Social Welfare to the Pareto frontier

2 Mav. output the alloeation that mavimizes the restricted product

Open problems: Normative justification? Better selectors?

Multiplicity issues

Proposition (The number of CR outcomes)

The number of distinct competitive allocations can be as large as $2^{\min \{|M|,|N|\}}-1$, (exponential growth).

Open question: Any good single-valued selection?

A selection: MaxMinNashProduct rule

1. Min: restrict the Nash Social Welfare to the Pareto frontier
2. Max: output the allocation that maximizes the restricted product

Open problems: Normative justification? Better selectors?

Multiplicity issues

Proposition (The number of CR outcomes)

The number of distinct competitive allocations can be as large as $2^{\min \{|M|,|N|\}}-1$, (exponential growth).

Open question: Any good single-valued selection?

A selection: MaxMinNashProduct rule

1. Min: restrict the Nash Social Welfare to the Pareto frontier
2. Max: output the allocation that maximizes the restricted product

Open problems: Normative justification? Better selectors?

Impossibilities

Proposition

For all-bads problems no single-valued rule is:

- Efficient + Envy-Free + Continuous
- Efficient + Fair Share Guaranteed + Resource Monotonic

Remark: in all-goods problems MaxNashProduct satisfies all these axioms. See Megiddo, Vazirani (2007) for Continuity; Segal-Halevi, Sziklai (2015) for Resource Monotonicity.

Corollary:

- All-bads problems are structurally different from the all-goods
- No hope for good enough single-valued selectors

Impossibilities

Proposition

For all-bads problems no single-valued rule is:

- Efficient + Envy-Free + Continuous
- Efficient + Fair Share Guaranteed + Resource Monotonic

Remark: in all-goods problems MaxNashProduct satisfies all these axioms. See Megiddo, Vazirani (2007) for Continuity; Segal-Halevi, Sziklai (2015) for Resource Monotonicity.

Corollary:

- All-bads problems are structurally different from the all-goods
- No hone for good enough single-valued selectors

Impossibilities

Proposition

For all-bads problems no single-valued rule is:

- Efficient + Envy-Free + Continuous
- Efficient + Fair Share Guaranteed + Resource Monotonic

Remark: in all-goods problems MaxNashProduct satisfies all these axioms. See Megiddo, Vazirani (2007) for Continuity; Segal-Halevi, Sziklai (2015) for Resource Monotonicity.

Corollary:

- All-bads problems are structurally different from the all-goods
- No hope for good enough single-valued selectors

Multiplicity becomes degenerate for large problems

- $u_{i a}$ are i.i.d. random variables uniformly distributed on $\left[-\frac{1}{m}, 0\right]$.

Proposition

Two agents divide m bads, $m \rightarrow \infty$. Fix $\varepsilon>0$. Utility vectors of all competitive allocations are concentrated in ε-neighbourhood of $\left(-\frac{1}{3},-\frac{1}{3}\right)$ with probability $p_{m} \rightarrow 1$.

Example with 15 bads.

Algorithmic questions

Theorem (Vazirani (2006))

The outcome of the MaxNashProduct can be computed in $O($ poly $(|N|+|M|)))$.

Question: Is this true for all-bads problem?
New features:

- critical points (local extrema and saddle points) on the boundary instead of global extremum
- multiplicity

Computing all outcomes

Observation: if M and N are both large \Rightarrow no polynomial algorithm, since the number of outcomes can be exponential

The case of $|N|=2$
Pareto frontier has simple structure \Rightarrow simple polynomial algorithm

- Rearrange bads in such a way that $\frac{U_{1 a}}{U_{2 a}}$ is increasing
- Then any Pareto allocation z has the form
- For any allocation of this form we can check FOC of criticality

Corollary: there are most $2|M|-1$ outcomes
Conjecture
The same idea works for arbitrary fixed N : compute Pareto frontier and

Computing all outcomes

Observation: if M and N are both large \Rightarrow no polynomial algorithm, since the number of outcomes can be exponential

The case of $|N|=2$

Pareto frontier has simple structure \Rightarrow simple polynomial algorithm.

- Rearrange bads in such a way that $\frac{u_{1 a}}{U_{2 a}}$ is increasing
- Then any Pareto allocation z has the form

$$
z=\left(\begin{array}{ccccccccc}
1 & 1 & \ldots & 1 & x & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 1-x & 1 & 1 & \ldots & 1
\end{array}\right)
$$

- For any allocation of this form we can check FOC of criticality

Corollary: there are most $2|M|-1$ outcomes
Conjecture
The same idea works for arbitrary fixed N : compute Pareto frontier and

Computing all outcomes

Observation: if M and N are both large \Rightarrow no polynomial algorithm, since the number of outcomes can be exponential

The case of $|N|=2$

Pareto frontier has simple structure \Rightarrow simple polynomial algorithm.

- Rearrange bads in such a way that $\frac{u_{12}}{u_{2 a}}$ is increasing
- Then any Pareto allocation z has the form

$$
z=\left(\begin{array}{ccccccccc}
1 & 1 & \ldots & 1 & x & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 1-x & 1 & 1 & \ldots & 1
\end{array}\right)
$$

- For any allocation of this form we can check FOC of criticality

Corollary: there are most $2|M|-1$ outcomes

Conjecture

The same idea works for arbitrary fixed N : compute Pareto frontier and check every face using FOC.

Computing at least one outcome

Open question: When N and M are both large, can a particular outcome of the Competitive Rule be computed in polynomial time (i.e., a selection, e.g. MaxMinNashProduct)?

Indivisibilities

For indivisible items the notion of envy-freeness should be relaxed to guarantee existence.

Envy-Free-1 allocations for goods (Budish 2011)

Allocation z of indivisible items is Envy-Free-1 iff

$$
\forall i, j \in N \quad \exists a \in z_{j}: \quad u_{i}\left(z_{i}\right) \geq u_{i}\left(z_{j} \backslash\{a\}\right) .
$$

Theorem (Caragiannis et al. (2016)) For goods, maximization of Nash Social Welfare over indivisible allocations leads to Efficient Envy-Free-1 allocation.

Open question: Do Efficient Envy-Free-1 allocations exist for bads?

Indivisibilities

For indivisible items the notion of envy-freeness should be relaxed to guarantee existence.

Envy-Free-1 allocations for goods (Budish 2011)

Allocation z of indivisible items is Envy-Free-1 iff

$$
\forall i, j \in N \quad \exists a \in z_{j}: \quad u_{i}\left(z_{i}\right) \geq u_{i}\left(z_{j} \backslash\{a\}\right) .
$$

Theorem (Caragiannis et al. (2016))
For goods, maximization of Nash Social Welfare over indivisible allocations leads to Efficient Envy-Free-1 allocation.

Open question: Do Efficient Envy-Free-1 allocations exist for bads?

Indivisibilities

For indivisible items the notion of envy-freeness should be relaxed to guarantee existence.

Envy-Free-1 allocations for goods (Budish 2011)

Allocation z of indivisible items is Envy-Free-1 iff

$$
\forall i, j \in N \quad \exists a \in z_{j}: \quad u_{i}\left(z_{i}\right) \geq u_{i}\left(z_{j} \backslash\{a\}\right) .
$$

Theorem (Caragiannis et al. (2016))

For goods, maximization of Nash Social Welfare over indivisible allocations leads to Efficient Envy-Free-1 allocation.

Open question: Do Efficient Envy-Free-1 allocations exist for bads?

Conclusions

Concluding remarks:

- First results on mixed problem (goods + bads)
- All-bads problem differs from all-goods
- The MaxNashProduct rule can be extended to mixed problems; it is still appealing but becomes multivalued for all-bads case
- Computing the outcome of MaxNashProduct for bads is no longer a convex optimization problem

Future research:

- Algorithms
- Selectors
- Indivisibilities

Thank you!

References：

A．Bogomolnaia，H．Moulin，F．Sandomirskiy，E．Yanovskaya． 2017. Competitive division of a mixed manna．arXiv：1702．00616
围 E．Peterson，F．Su．2002．Four－Person Envy－Free Chore Division． Math．Mag．，75（2）：117－122
E．Peterson，F．Su．2009．N－person envy－free chore division． arXiv：0909．0303
圊 E．Segal－Halevi 2017．Fairly Dividing a Cake after Some Parts Were Burnt in the Oven．arXiv：1704．00726
國 H．Varian．1974．Equity，envy and efficiency．Journal of Economic Theory 9，63－91．
（ A．Hylland，and R．Zeckhauser．1979．The Efficient Allocation of Individuals to Positions，Journal of Political Economy，87（2）， 293－314．
E．Budish．2011．The combinatorial assignment problem： Approximate competitive equilibrium from equal incomes．Journal of Political Economv 119．6．1061－1103．

References:

目 J. Ortega. 2017. Random multi-unit assignment with endogenous quotas. arXiv:1703.10897
D. Weller. 1985. Fair division of a measurable space. Journal of Mathematical Economics. 14, 5.
E. Segal-Halevi and B. Sziklai. 2015. Resource-monotonicity and Population- monotonicity in Cake-cutting, arXiv:1510.05229 [cs.GT].
S. Bouveret, M. Lemaitre. 2016. Efficiency and Sequenceability in Fair Division of Indivisible Goods with Additive Preferences. Proceedings of the Sixth International Workshop on Computational Social Choice (COMSOC2016)
I. Caragiannis, D. Kurokawa, H. Moulin, A. Procaccia, N. Shah, J. Wang. 2016. The Unreasonable Fairness of Maximum Nash Welfare, Proceedings of the 17th ACM Conference on Electronic Commerce

References：

围 Moshe Babaioff，Noam Nisan，Inbal Talgam－Cohen＂Competitive Equilibria with Indivisible Goods and Generic Budgets＂ arXiv：1703．08150v1［cs．GT］ 23 Mar 2017
囲 V．Vazirani．2005，Combinatorial Algorithms for Market Equilibria， Chapter 5 in Algorithmic Game Theory，N．Nisan，T．Roughgarden， E．Tardos and V．Vazirani，Eds．，Cambridge University Press．
Kamal Jain and Vijay V．Vazirani．Eisenberg－Gale markets： Algorithms and game－theoretic properties．Games and Economic Behavior，70（1）：84－106，September 2010.
Richard Cole and Vasilis Gkatzelis．Approximating the Nash social welfare with indivisible items．In Proceedings of the Forty－Seventh Annual ACM on Symposium on Theory of Computing，pages 371－380， 2015.
围 Richard Cole，Nikhil R．Devanur，Vasilis Gkatzelis，Kamal Jain，Tung Mai，Vijay V．Vazirani，Sadra Yazdanbod（2016）＂Convex Program Duality，Fisher Markets，and Nash Social Welfare＂arXiv：1609．06654

References:

國 Saeed Alaei, Pooya Jalaly, Eva Tardos (2017) "Computing Equilibrium in Matching Markets" arXiv:1703.10689 [cs.GT]
E. Eisenberg. 1961. Aggregation of utility functions, Management Science, 7, 337-350.
圆 D. Gale. 1960. Linear Economic Models. McGraw Hill.
(Mas-Colell, A., 1982, Equilibrium theory with possibly satiated preferences, in Equilibrium and Dynamics: Essays in honor of David Gale, M. Majumdar Editor, Macmillan Press.
N. Megiddo and V. Vazirani. 2007. Continuity Properties of Equilibrium Prices and Allocations in Linear Fisher Markets. Internet and Network Economics, vol 4858 in Lecture Notes in Computer Science, 362-367, Springer.
E. Segal-Halevi and B. Sziklai. 2015. Resource-monotonicity and Population-monotonicity in Cake-cutting, arXiv:1510.05229 [cs.GT].

$(\text { Thank you! })^{2}$

[^0]: ${ }^{1}$ the best rule to allocate goods

[^1]: ${ }^{1}$ the best rule to allocate goods

[^2]: ${ }^{2}$ J. S. Chipman. 1974. Homothetic preferences and aggregation, Journal of Economic Theory, 8, 26-38.

