

FEDOR SANDOMIRSKIY (TECHNION / HSE ST.PETERSBURG)
EREL SEGAL-HALEVI (ARIEL UNIVERSITY)

FAIR DIVISION WITH MINIMAL SHARING

PROBLEM OF FAIR DIVISION

- > n agents with different preferences over m goods
- ▶ The goal: find «Fair» & Pareto Optimal (PO) allocation, no money transfers
 - ▶ **Applications:** dissolving partnership (e.g., divorce), tasks or offices space to workers, seats at over-demanded courses, public housing, charity

PROBLEM OF FAIR DIVISION

- > n agents with different preferences over m goods
- ▶ The goal: find «Fair» & Pareto Optimal (PO) allocation, no money transfers
 - ▶ **Applications:** dissolving partnership (e.g., divorce), tasks or offices space to workers, seats at over-demanded courses, public housing, charity

CHALLENGE FOR THEORY: INDIVISIBILITY

- Microeconomic theory works with divisible resources
 - Mathematical easiness
 - Good approximation for supply-demand framework
 - Fair & PO allocations exist (under some assumptions)

PROBLEM OF FAIR DIVISION

- > n agents with different preferences over m goods
- ▶ The goal: find «Fair» & Pareto Optimal (PO) allocation, no money transfers
 - ▶ **Applications:** dissolving partnership (e.g., divorce), tasks or offices space to workers, seats at over-demanded courses, public housing, charity

CHALLENGE FOR THEORY: INDIVISIBILITY

- ▶ Microeconomic theory works with divisible resources
 - Mathematical easiness
 - Good approximation for supply-demand framework
 - Fair & PO allocations exist (under some assumptions)
- ▶ Practice: how to divide 3 apartments and 1 car between 2 people?
 - ▶ Bad news: for indivisible items a fair allocation may fail to exist
 - **Example:** 1 apartment, 2 agents

HOW TO DEAL WITH INDIVISIBILITIES? EXISTING APPROACHES

- Microeconomics: let's make them divisible
 - ▶ Randomization: 0.5 of a bicycle = getting the whole bicycle with probability 1/2
 - ▶ Time-sharing / co-ownership: 0.5 of a bicycle = using the bicycle 1/2 of a time

HOW TO DEAL WITH INDIVISIBILITIES? EXISTING APPROACHES

- Microeconomics: let's make them divisible
 - ▶ Randomization: 0.5 of a bicycle = getting the whole bicycle with probability 1/2
 - Time-sharing / co-ownership: 0.5 of a bicycle = using the bicycle 1/2 of a time
- Computer science: approximate fairness notions
 - ► Envy-freeness up to one good* / MaxMinShare**: Fair & PO allocations exist
 - *Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang (2016)
 The Unreasonable Fairness of Maximum Nash Welfare. EC-16
 - **Procaccia, Wang (2014)

Fair enough: Guaranteeing approximate maximin shares. EC-14

HOW TO DEAL WITH INDIVISIBILITIES? EXISTING APPROACHES

- Microeconomics: let's make them divisible
 - ▶ Randomization: 0.5 of a bicycle = getting the whole bicycle with probability 1/2
 - Time-sharing / co-ownership: 0.5 of a bicycle = using the bicycle 1/2 of a time
- Computer science: approximate fairness notions
 - ► Envy-freeness up to one good* / MaxMinShare**: Fair & PO allocations exist

*Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang (2016)
The Unreasonable Fairness of Maximum Nash Welfare. EC-16

**Procaccia, Wang (2014)

Fair enough: Guaranteeing approximate maximin shares. EC-14

Question: Will you be satisfied by an allocation that is envy-free up to one apartment? Gives you an apartment with probability 1/2?

- Sharing is inevitable if we are dividing small number of very valuable goods
- ▶ Sharing is usually unwanted (and costly)

- Sharing is inevitable if we are dividing small number of very valuable goods
- Sharing is usually unwanted (and costly)

OUR APPROACH: MINIMAL SHARING

Minimize the number of shared goods under the constraint of Fairness & Pareto Optimality

- Sharing is inevitable if we are dividing small number of very valuable goods
- Sharing is usually unwanted (and costly)

OUR APPROACH: MINIMAL SHARING Minimize the number of shared goods under the constraint of Fairness & Pareto Optimality

Similar idea*: allow money transfers, minimize them under Fairness & PO

*Halpern, Shah (2019)
Fair division with subsidy

- Sharing is inevitable if we are dividing small number of very valuable goods
- Sharing is usually unwanted (and costly)

OUR APPROACH: MINIMAL SHARING Minimize the number of shared goods under the constraint of Fairness & Pareto Optimality

Similar idea*: allow money transfers, minimize them under Fairness & PO

*Halpern, Shah (2019)
Fair division with subsidy

TODAY: ALGORITHMIC RESULTS, SURPRISING DICHOTOMY

The problem is computationally hard (NP-hard) for 2 agents with identical additive utilities.

- Sharing is inevitable if we are dividing small number of very valuable goods
- Sharing is usually unwanted (and costly)

OUR APPROACH: MINIMAL SHARING Minimize the number of shared goods under the constraint of Fairness & Pareto Optimality

Similar idea*: allow money transfers, minimize them under Fairness & PO

*Halpern, Shah (2019)
Fair division with subsidy

TODAY: ALGORITHMIC RESULTS, SURPRISING DICHOTOMY

- The problem is computationally hard (NP-hard) for 2 agents with identical additive utilities.
- However, for any fixed number of agents n, a random problem is simple with probability 1.

lacktriangleright n agents with and m divisible goods

n agents with and m divisible goods

agents report their values

e Ĉ	goods				
V	=	Alice	5	10	3
		Bob	3	8	1

n agents with and m divisible goods

Alice 5 10 3 Bob 3 8 1

agents report their values

additive utilities over bundles:

$$V_{\text{Alice}}(0.70 + \frac{1}{2}.70 + \frac{1}{3}.70) = 0.5 + \frac{1}{2}.10 + \frac{1}{3}.3 = 6$$

n agents with and m divisible goods

agents report their values

additive utilities over bundles:

$$V_{\text{Alice}}(0 \cdot \heartsuit + \frac{1}{2} \cdot \heartsuit + \frac{1}{3} \cdot \heartsuit) = 0 \cdot 5 + \frac{1}{2} \cdot 10 + \frac{1}{3} \cdot 3 = 6$$

 \triangleright n agents with and m divisible goods

agents report their values

spliddit
$$V_{\text{Alice}}(0 \cdot \nabla + \frac{1}{2} \cdot \nabla + \frac{1}{3} \cdot \nabla) = 0 \cdot 5 + \frac{1}{2} \cdot 10 + \frac{1}{3} \cdot 3 = 6$$

• allocation z = collection of bundles: all goods are distributed

$$z_{\text{Alice}} = 0 \cdot \heartsuit + \frac{1}{2} \cdot \heartsuit + \frac{1}{3} \cdot \heartsuit$$

$$z_{\text{Bob}} = 1 \cdot \heartsuit + \frac{1}{2} \cdot \heartsuit + \frac{2}{3} \cdot \heartsuit$$

Fairness

$$V_{\text{Alice}}(z_{\text{Alice}}) \ge V_{\text{Alice}}(z_{\text{Bob}})$$

Envy-Freeness (E-F) Equal-Split Lower Bound (ELB) aka Fair Share
$$V_{\text{Alice}}(z_{\text{Alice}}) \geq V_{\text{Alice}}(z_{\text{Bob}})$$
 $V_{\text{Alice}}(z_{\text{Alice}}) \geq \frac{1}{n} V_{\text{Alice}}(\text{all goods})$

Pareto Optimality (PO) aka economic efficiency

$$\mathcal{Z}$$
 is PO \iff there is no \mathcal{Z}' : nobody is worse off and somebody is strictly better off.

Fairness

$$V_{\text{Alice}}(z_{\text{Alice}}) \ge V_{\text{Alice}}(z_{\text{Bob}})$$

Envy-Freeness (E-F) Equal-Split Lower Bound (ELB) aka Fair Share
$$V_{\text{Alice}}(z_{\text{Alice}}) \geq V_{\text{Alice}}(z_{\text{Bob}})$$
 $V_{\text{Alice}}(z_{\text{Alice}}) \geq \frac{1}{n} V_{\text{Alice}}(\text{all goods})$

Pareto Optimality (PO) aka economic efficiency

Z is PO \iff there is no Z': nobody is worse off and somebody is strictly better off.

The Problem

For a given matrix $\mathcal V$, find Fair & PO $\ \mathcal Z$ with minimal number of shared goods

$$\#\text{shared}(z) = \#\{g = 1..m \mid \exists z_{i,g} \in (0,1)\}\$$

Fairness

$$V_{\text{Alice}}(z_{\text{Alice}}) \ge V_{\text{Alice}}(z_{\text{Bob}})$$

Envy-Freeness (E-F) Equal-Split Lower Bound (ELB) aka Fair Share
$$V_{\text{Alice}}(z_{\text{Alice}}) \geq V_{\text{Alice}}(z_{\text{Bob}})$$
 $V_{\text{Alice}}(z_{\text{Alice}}) \geq \frac{1}{n} V_{\text{Alice}}(\text{all goods})$

Pareto Optimality (PO) aka economic efficiency

Z is PO \iff there is no Z': nobody is worse off and somebody is strictly better off.

The Problem

For a given matrix $\mathcal V$, find Fair & PO $\ \mathcal Z$. with minimal number of shared goods

$$\#\text{shared}(z) = \#\{g = 1..m \mid \exists z_{i,g} \in (0,1)\}\$$

A good room for optimization:

$$\min_{z \in \text{Fair} \& PO} \# \text{shared}(z) \le n - 1^*$$

*Bogomolnaia, Moulin, Sandomirskiy, Yanovskaya (2016) Dividing goods or bads under additive utilities. arXiv preprint

Fairness

$$V_{\text{Alice}}(z_{\text{Alice}}) \ge V_{\text{Alice}}(z_{\text{Bob}})$$

Envy-Freeness (E-F) Equal-Split Lower Bound (ELB) aka Fair Share
$$V_{\text{Alice}}(z_{\text{Alice}}) \geq V_{\text{Alice}}(z_{\text{Bob}})$$
 $V_{\text{Alice}}(z_{\text{Alice}}) \geq \frac{1}{n} V_{\text{Alice}}(\text{all goods})$

Pareto Optimality (PO) aka economic efficiency

Z is PO \iff there is no Z': nobody is worse off and somebody is strictly better off.

The Problem

For a given matrix $\mathcal V$, find Fair & PO $\mathcal I$ with minimal number of shared goods

$$\#\text{shared}(z) = \#\{g = 1..m \mid \exists z_{i,g} \in (0,1)\}\$$

A good room for optimization:

$$\min_{z \in \text{Fair\&PO}} \# \text{shared}(z) \le n - 1^*$$

*Bogomolnaia, Moulin, Sandomirskiy, Yanovskaya (2016) Dividing goods or bads under additive utilities. arXiv preprint

$$\mathbb{P}\left(\min_{z\in \text{Fair\&PO}} \# \text{shared}(z) = 0\right) \to 1, **m \to \infty \text{ **Dickerson, Goldman, Karp, Procaccia, Sandholm (2014)} \\ \text{The computational rise and fall of fairness. AAAI'14}$$

Two agents, Alice and Bob with identical preferences

Alice	w_1	W_2	W_{m-1}	W_m
Bob	\overline{w}_1	W_2	 $ W_{m-1} $	W_{m}

Two agents, Alice and Bob with identical preferences

Alice	w_1	W_2	 W_{m-1}	W_m
Bob	w_1	W_2	 $\left w_{m-1} \right $	W_m

Question: does there exist a Fair & PO allocation with 0 shared goods?

Two agents, Alice and Bob with identical preferences

Alice	w_1	W_2	 W_{m-1}	W_m
Bob	w_1	W_2	 $\left w_{m-1} \right $	W_m

Question: does there exist a Fair & PO allocation with 0 shared goods?

- Remark: Any allocation is PO
 - Allocation is Fair <=> Alice and Bob get the same utility of $\frac{1}{2}\sum w_g$

Two agents, Alice and Bob with identical preferences

Alice	w_1	W_2	$ W_{m-1} $	W_m
Bob	w_1	W_2	 $\left w_{m-1} \right $	W_m

Question: does there exist a Fair & PO allocation with 0 shared goods?

- Remark: Any allocation is PO
 - Allocation is Fair <=> Alice and Bob get the same utility of $\frac{1}{2}\sum w_g$

Equivalent question:

can we partition $\{w_1, w_2, \dots, w_m\}$ into two subsets of equal sum?

Two agents, Alice and Bob with identical preferences

Alice	w_1	W_2	 W_{m-1}	W_m
Bob	W_1	W_2	 $\left w_{m-1} \right $	W_m

Question: does there exist a Fair & PO allocation with 0 shared goods?

- Remark: Any allocation is PO
 - Allocation is Fair <=> Alice and Bob get the same utility of $\frac{1}{2}\sum w_g$

Equivalent question:

can we partition $\{w_1, w_2, \dots, w_m\}$ into two subsets of equal sum?

Bad news: this is NP-Complete problem PARTITION.

Two agents, Alice and Bob with identical preferences

Alice	w_1	W_2	W_{m-1}	W_m
Bob	$\overline{w_1}$	W_2	 W_{m-1}	W_m

Question: does there exist a Fair & PO allocation with 0 shared goods?

- **Remark:** Any allocation is PO Allocation is Fair <=> Alice and Bob get the same utility of $\frac{1}{2}\sum_{g}w_{g}$

Equivalent question:

can we partition $\{W_1, W_2, \dots, W_m\}$ into two subsets of equal sum?

Bad news: this is NP-Complete problem PARTITION.

Pessimistic conclusion*

Checking existence of Fair & PO allocations with no sharing is hard even

for 2 agents with identical preferences. *de Keijzer, Bouveret, Klos, Zhang (2009)

On the complexity of efficiency and envy-freeness in fair division of indivisible goods with additive preferences

Our simple observation: the problem is hard only for degenerate preferences (when the set of PO allocations is exponential)

Our simple observation: the problem is hard only for degenerate preferences (when the set of PO allocations is exponential)

Indeed: consider Alice and Bob with **generic values:**

Alice	$v_{A,1}$	$v_{A,2}$		$v_{A,g}$		$v_{\mathrm{A},m}$
Bob	$v_{\mathrm{B},1}$	$v_{\mathrm{B,2}}$	• • • • •	$v_{\mathrm{B},g}$	• • • • •	$v_{\mathrm{B},m}$

$$\frac{v_{A,k}}{v_{B,k}} > \frac{v_{A,k+1}}{v_{B,k+1}}$$

Our simple observation: the problem is hard only for degenerate preferences (when the set of PO allocations is exponential)

Indeed: consider Alice and Bob with **generic values:**

Alice	$v_{A,1}$	$v_{A,2}$		$v_{A,g}$		$v_{A,m}$
			• • • • •	4 9	• • • • •	$v_{\mathrm{B},m}$

$$\frac{v_{A,k}}{v_{B,k}} > \frac{v_{A,k+1}}{v_{B,k+1}}$$

Any PO allocation has the following form for some good g and $x \in [0,1]$

Alice	1	1	1	X	0	0	$\implies m + 1$ PO allocations
Bob	0	0	0	1-x	1	1	with no sharing

Our simple observation: the problem is hard only for degenerate preferences (when the set of PO allocations is exponential)

Indeed: consider Alice and Bob with generic values:

Alice	$v_{A,1}$	$v_{A,2}$	$v_{A,g}$		$v_{\mathrm{A},m}$
Bob	$v_{\mathrm{B},1}$	$v_{\mathrm{B,2}}$	 $v_{\mathrm{B},g}$	• • • • •	$v_{\mathrm{B},m}$

$$\frac{v_{A,k}}{v_{B,k}} > \frac{v_{A,k+1}}{v_{B,k+1}}$$

Any PO allocation has the following form for some good g and $x \in [0,1]$

Alice	1	1	1	X	0	0	$\implies m + 1$ PO allocations
Bob	0	0	0	1-x	1	1	with no sharing

Optimistic conclusion

For almost all $\,\mathcal{V}\,$ with 2 agents, Fair & PO allocation with no sharing can be found (if exists) using $O(m \log(m))$ operations.

Degree of degeneracy:

$$D(v) = \max_{\text{agents } i \neq j} \max_{r>0} \# \left\{ \text{goods } g : \frac{v_{i,g}}{v_{j,g}} = r \right\} - 1$$

Degree of degeneracy:

$$D(v) = \max_{\text{agents } i \neq j} \max_{r>0} \# \left\{ \text{goods } g : \frac{v_{i,g}}{v_{j,g}} = r \right\} - 1$$

Remark: For a random V, D(v)=0 with probability 1

Degree of degeneracy:

$$D(v) = \max_{\text{agents } i \neq j} \max_{r>0} \# \left\{ \text{goods } g : \frac{v_{i,g}}{v_{j,g}} = r \right\} - 1$$

Remark: For a random V, D(v) = 0 with probability 1

Theorem

Fix the number of agents N, the number of goods M is large.

Degree of degeneracy:

$$D(v) = \max_{\text{agents } i \neq j} \max_{r>0} \# \left\{ \text{goods } g : \frac{v_{i,g}}{v_{j,g}} = r \right\} - 1$$

Remark: For a random V, D(v) = 0 with probability 1

Theorem

Fix the number of agents ${\it n}$, the number of goods ${\it m}$ is large.

If $D(v) = O(\log(m))$, then finding Fair & PO allocation with minimal sharing **takes polynomial time in** m

Degree of degeneracy:

$$D(v) = \max_{\text{agents } i \neq j} \max_{r>0} \# \left\{ \text{goods } g : \frac{v_{i,g}}{v_{j,g}} = r \right\} - 1$$

Remark: For a random V, D(v) = 0 with probability 1

Theorem

Fix the number of agents ${\it n}$, the number of goods ${\it m}$ is large.

- If $D(v) = O(\log(m))$, then finding Fair & PO allocation with minimal sharing **takes polynomial time in** m
- If $D(v) \ge C \cdot m^{\alpha}$ for some $C, \alpha > 0$, then checking existence of Fair & PO allocation with no sharing **is NP-hard**

Consumption graph G of an allocation z: bipartite graph on (agents–goods), where i and g are connected if $z_{i,g}>0$

Consumption graph G of an allocation z: bipartite graph on (agents–goods), where i and g are connected if $z_{i,g}>0$

OBSERVATIONS

- lacktriangle All allocations with given G are either PO/not PO altogether
 - will see in two slides

Consumption graph G of an allocation z: bipartite graph on (agents–goods), where i and g are connected if $z_{i,g}>0$

OBSERVATIONS

- lacktriangle All allocations with given G are either PO/not PO altogether
 - will see in two slides
- For a given G, finding a Fair allocation $Z \iff$
- solving LP with at most $n \cdot \# \operatorname{shared}(z) \leq n(n-1)$ variables.

Takes constant time since $oldsymbol{n}$ is fixed!

Consumption graph G of an allocation z: bipartite graph on (agents–goods), where i and g are connected if $z_{i,g}>0$

OBSERVATIONS

- lacksquare All allocations with given G are either PO/not PO altogether
 - will see in two slides
- For a given G, finding a Fair allocation $Z \iff$

solving LP with at most $n \cdot \# \operatorname{shared}(z) \leq n(n-1)$ variables.

Takes constant time since $oldsymbol{n}$ is fixed!

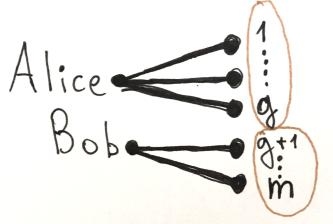
Remains to check: all PO consumption graphs can be enumerated in polynomial time for fixed $\it n$.

*Branzei, Sandomirskiy (2019)

Algorithms for competitive division of chores

n=2: we already know the answer

m+1 graph with 0 shared goods



*Branzei, Sandomirskiy (2019)

Algorithms for competitive division of chores

m graphs with 1 shared good

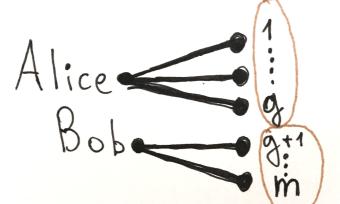
n=2: we already know the answer

*Branzei, Sandomirskiy (2019)

Algorithms for competitive division of chores

m+1 graph with 0 shared goods

m graphs with 1 shared good



> n>2: any PO allocation has PO 2-agent projections

Fix PO allocation \mathcal{Z} . For any pair of agents i,j their bundles $\mathcal{Z}_i,\mathcal{Z}_j$ can be completed to a PO allocation of all goods between i,j.

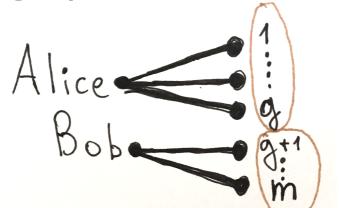
n=2: we already know the answer

*Branzei, Sandomirskiy (2019)

Algorithms for competitive division of chores

m+1 graph with 0 shared goods

m graphs with 1 shared good



n>2: any PO allocation has PO 2-agent projections

Fix PO allocation \mathcal{Z} . For any pair of agents i,j their bundles z_i,z_j can be completed to a PO allocation of all goods between i,j.

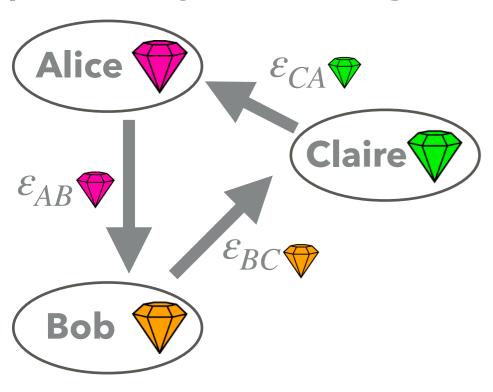
Corollary: G of any PO allocation can be obtained by

- Picking a PO graph for each pair of agents
 - $(2m+1)^{\frac{n(n-1)}{2}}$ possibilities (polynomial number)
- Tracing an edge between an agent $\it i$ and a good $\it g$ if this edge is traced in all 2-agent graphs with $\it i$.

The computed set of graphs may contain some **non-PO graphs**. How to detect them?

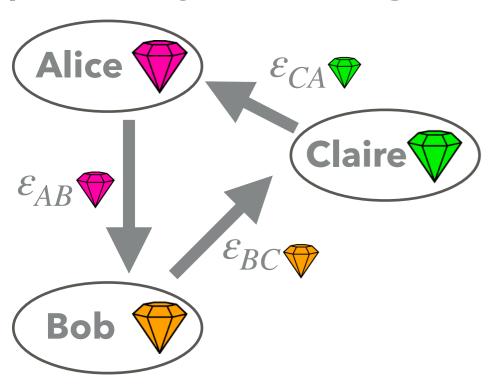
The computed set of graphs may contain some **non-PO graphs**. How to detect them?

Origin of non-optimality = profitable cyclical exchanges:



The computed set of graphs may contain some **non-PO graphs**. How to detect them?

Origin of non-optimality = profitable cyclical exchanges:



Directed weighted consumption graph \overrightarrow{G} :

- edge $(i \rightarrow g)$ is traced if $z_{i,g} > 0$, weight $\log(v_{i,g})$

Claire

The computed set of graphs may contain some **non-PO graphs**. How to detect them?

Origin of non-optimality = profitable cyclical exchanges:

Bob

Directed weighted consumption graph \overrightarrow{G} :



Criterion of Pareto-optimality:

 \overline{Z} is PO $\iff \overline{G}$ has no cycles of negative weight

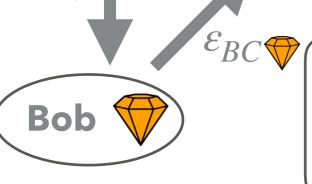
Claire⁴

The computed set of graphs may contain some **non-PO graphs**. How to detect them?

Origin of non-optimality = profitable cyclical exchanges:

Directed weighted consumption graph \overrightarrow{G} :

- edge $(i \to g)$ is traced if $z_{i,g} > 0$, weight $\log(v_{i,g})$
- $\,\,\,$ all opposite edges $(g \to i)$ are traced; weight $-\log(v_{i,g})$



Criterion of Pareto-optimality:

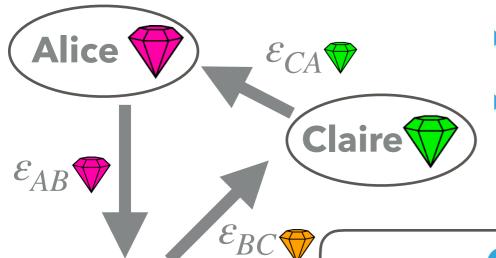
 \overline{Z} is PO $\iff \overline{G}$ has no cycles of negative weight

Corollary: PO can be checked in O(nm(m+n)) (multiplicative Bellman-Ford)

The computed set of graphs may contain some **non-PO graphs**. How to detect them?

Origin of non-optimality = profitable cyclical exchanges:

Directed weighted consumption graph \overrightarrow{G} :



- edge $(i \rightarrow g)$ is traced if $z_{i,g} > 0$, weight $\log(v_{i,g})$
- $\,\,\,$ all opposite edges $(g \, \rightarrow \, i)$ are traced; weight $-\log(v_{i,g})$

Criterion of Pareto-optimality:

 \overline{Z} is PO $\iff \overrightarrow{G}$ has no cycles of negative weight

Corollary: PO can be checked in O(nm(m+n)) (multiplicative Bellman-Ford)

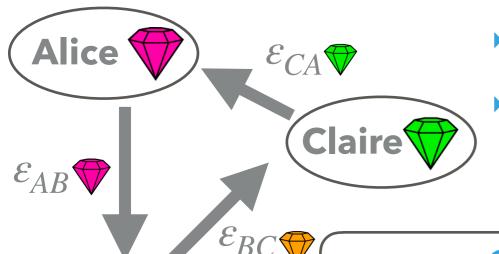
Remark: an allocation is **integral-PO** if it is not dominated by an allocation with no sharing. Checking **integral-PO** is **co-NP-hard.***

*de Keijzer, Bouveret, Klos, Zhang (2009)
On the complexity of efficiency and envyfreeness in fair division of indivisible goods
with additive preferences

The computed set of graphs may contain some **non-PO graphs**. How to detect them?

Origin of non-optimality = profitable cyclical exchanges:

Directed weighted consumption graph \overrightarrow{G} :



- edge $(i \rightarrow g)$ is traced if $z_{i,g} > 0$, weight $\log(v_{i,g})$
- $\,\,\,$ all opposite edges $(g \, \rightarrow \, i)$ are traced; weight $-\log(v_{i,g})$

Criterion of Pareto-optimality:

 \overline{Z} is PO $\iff \overline{G}$ has no cycles of negative weight

Corollary: PO can be checked in O(nm(m+n)) (multiplicative Bellman-Ford)

Remark: an allocation is **integral-PO** if it is not dominated by an allocation with no sharing. Checking **integral-PO** is **co-NP-hard.***

*de Keijzer, Bouveret, Klos, Zhang (2009)
On the complexity of efficiency and envyfreeness in fair division of indivisible goods
with additive preferences

Usual (fractional) PO is a better notion**

**Barman, Krishnamurthy, Vaish (2018). Finding fair and efficient allocations.

CONCLUSIONS:

Conceptual

- ▶ Failure of randomization and approximate fairness for valuable goods
- Minimize sharing in this case

Technical

- Typical problems are better-behaved than worst-cases
- (fractional)-PO is a good notion even for indivisibilities
- Enumeration of PO consumption graphs is a useful tool for various problems

CONCLUSIONS:

Conceptual

- ▶ Failure of randomization and approximate fairness for valuable goods
- Minimize sharing in this case

Technical

- Typical problems are better-behaved than worst-cases
- (fractional)-PO is a good notion even for indivisibilities
- Enumeration of PO consumption graphs is a useful tool for various problems

Thank you!