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CHALLENGE FOR THEQRY: INDIVISIBILITY

» Microeconomic theory works with divisible resources

» Practice: how to divide 3 apartments and 1 car between 2 people?

» Mathematical easiness
» Good approximation for supply-demand framework

» Fair & PO allocations exist (under some assumptions)

» Bad news: for indivisible items a fair allocation may fail to exist | o = @

» Example: 1 apartment, 2 agents
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» Microeconomics: let’'s make them divisible
» Randomization: 0.5 of a bicycle = getting the whole bicycle with probability 1/2

» Time-sharing / co-ownership: 0.5 of a bicycle = using the bicycle 1/2 of a time

» Computer science: approximate fairness notions

» Envy-freeness up to one good* / MaxMinShare**: Fair & PO allocations exist

*Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang (2016)
The Unreasonable Fairness of Maximum Nash Welfare. EC-16

**Procaccia, Wang (2014)
Fair enough: Guaranteeing approximate maximin shares. EC-14

Question: Will you be satisfied by an allocation that is envy-free up
to one apartment? Gives you an apartment with probability 1/2?
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OUR APPROACH: MINIMAL SHARING similarideat alow
Minimize the number of shared goods under ’ '

them under Fairness & PO
the constraint of Fairness & Pareto Optimality
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*Halpern, Shah (2019)
Fair division with subsidy

TODAY: ALGORITHMIC RESULTS, SURPRISING DICHOTOMY

» The problem is computationally hard (NP-hard) for 2 agents with
identical additive utilities.

» However, for any fixed number of agents n, a random problem is
simple with probability 1.
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THE MODEL

» 1 agents with and m divisible goods

» agents report their values V

» additive utilities over bundles:

f

1
$Alice = O' +5' '+

-V

<Bob — 1'

1

2

1

LIKE ON 1 1 1 1
5 spliddit VAlice(O°' +5' '+§ ') =0-5+ 5 - 10 + g -3 =06

» allocation 7 = collection of bundles: all goods are distributed

3 Y

2

3

A4
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Fairness
Envy-Freeness (E-F) Equal-Split Lower Bound (ELB) aka Fair Share
Vatice(Zatice) 2 Valice(ZBob) Vatice(Zalice) = ;VAlice(au goods)

Pareto Optimality (PO) aka economic efficiency
/
< is PO & thereisno 7 :nobody is worse off and somebody is strictly better off.

: The Problem h
For a given matrix }/ , find Fair & PO Z
with minimal number of shared goods
. shared(z) =#{g=1..m | 1z, € (O,l)})
A good room for optimization:
min #shared(z) <n-T* *Bogomolnaia, Moulin, Sandomirskiy, Yanovskaya (2016)
z€Fair& PO Dividing goods or bads under additive utilities. arXiv preprint

**Dickerson, Goldman, Karp, Procaccia, Sandholm (2014)

The computational rise and fall of fairness. AAAI'14

P < min #shared(z) = O> — 1,**m — 0
z€Fair&PO
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Two agents, Alice and Bob with identical preferences

Question: does there exist a Fair & PO allocation with 0 shared goods?
» Any allocation is PO

Remark:
» Allocation is Fair <=> Alice and Bob get the same utility of — Z W,

Equivalent question: g
can we partition {Wl, Woy oo Wm} into two subsets of equal sum?
Bad news: this is NP-Complete problem PARTITION.

f [ ) [ ] [ ] [ ] \
Pessimistic conclusion*

Checking existence of Fair & PO allocations with no sharing is hard even
for 2 agents with identical preferences. *e keijzer, Bouveret, Kios, zhang (2009)

On the complexity of efficiency and envy-freeness in fair
L division of indivisible goods with additive preferences y
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MOTIVATING EXAMPLE

Our simple observation: the problem is hard only for degenerate
preferences (when the set of PO allocations is exponential)

Indeed:

v

consider Alice and Bob  with

v

generic values:

v

Vak VA k+1

Alice | Va,1| Va2 VA VA.m — >
Bob | VB,1| VB2 | ...... VBg | ...... VB,m VB.k VB k+1

Any PO allocation has the following form for some good £ andx € [0,1]
Alice | 1 1 1 X 0 0 —> m + 1 PO allocations
Bob | O 0 0 Il —x| 1 1 with no sharing

-

Optimistic conclusion

For almost all 1 with 2 agents, Fair & PO allocation with no sharing

can be found (if exists) using O(m log(m)) operations.

-
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MAIN RESULI: 72 AGENTS

Degree of degeneracy:
Vi g
D(v) = max max #{goodsg D — = r} -1

agents i#j r>0 Vj, 9

Remark: ForarandomV, D(v) = (0 with probability 1

( )

Theorem
Fix the number of agents 71, the number of goods 1 is large.

» If D(v) = O(log(m)), then finding Fair & PO allocation with
minimal sharing takes polynomial time in 177

» If D(v) > C-m® forsome C,a > 0 ,then checking
existence of Fair & PO allocation with no sharing is NP-hard

-
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Consumption graph (G of an allocation 7 : bipartite graph
on (agents—goods), where 7 and g are connected it Z; p > 0

» will see in two slides

solving LP with at most 7 -

-

r OBSERVATIONS )

» All allocations with given (G are either PO/not PO altogether

» For a given (7, finding a Fair allocation I <=

shared(z) < n(n — 1) variables.

Takes constant time since 71 is fixed!

Remains to check: all PO consumption graphs can be
enumerated in polynomial time for fixed 71.
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*Branzei, Sandomirskiy (2019)
» n=2: we alrea dy know the answer Algorithms for competitive division of chores

m + 1 graph with 0 shared goods 771 graphs with 1 shared good

» n>2: any PO allocation has PO 2-agent projections

F|x PO allocation Z. For any pair of agents 1, ] their bundlele, Z-
can be completed to a PO allocation of all goods between L] .

J

Corollary: G of any PO allocation can be obtained by
» Picking a PO graph for each pair of agents

nn—1)

) (Zm T+ 1) ’ possibilities (polynomial number)

» Tracing an edge between an agent | and a good g if this
edge is traced in all 2-agent graphs with .
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CHECKING PARETO OPTIMALITY

The computed set of graphs may contain some non-PO graphs. How to detect them?

Origin of non-optimality =

profltable cyclical exchanges: Directed weighted consumption graph (5 :

CA' > edge (l —> g) is traced if Zi,g > 0, weight log(vi,g)

> all opposite edges (g — Z) are traced; weight _log(vi,g)
gAB'l /

E
BCY( Criterion of Pareto-optimality: )

Bob ' , ’ : :
Z is PO <= (5 has no cycles of negative weight
\_ ,
Corollary: PO can be checked in O(nm(m + n)) (multiplicative Bellman-Ford)
Remark: an allocation is integral-PO if it is not * de Keijzer, Bouveret, Klos, Zhang (2009)
dominated by an allocation with no sharing. On the complexity of efficiency and envy-
) . ] freeness in fair division of indivisible goods
Checkmg mtegraI-PO is co-NP-hard.* with additive preferences
Usual (fractional) PO is a better notion** **Barman, Krishnamurthy, Vaish (2018).

Finding fair and efficient allocations.
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Technical

» Typical problems are better-behaved than worst-cases
» (fractional)-PO is a good notion even for indivisibilities

» Enumeration of PO consumption graphs is a useful tool for
various problems

Thank you!



