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▸ Microeconomic theory works with divisible resources   

▸ Mathematical easiness 

▸ Good approximation for supply-demand framework 

▸ Fair & PO allocations exist (under some assumptions)

▸ Practice: how to divide 3 apartments and 1 car between 2 people? 

▸ Bad news: for indivisible items a fair allocation may fail to exist 
▸ Example: 1 apartment, 2 agents
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▸ Microeconomics: let’s make them divisible 

▸ Randomization: 0.5 of a bicycle = getting the whole bicycle with probability 1/2 

▸ Time-sharing / co-ownership: 0.5 of a bicycle = using the bicycle 1/2 of a time

Question: Will you be satisfied by an allocation that is envy-free up 
to one apartment? Gives you an apartment with probability 1/2?

*Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang (2016)  
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Minimize the number of shared goods  under 
the constraint of Fairness & Pareto Optimality

‣ Sharing is inevitable if we are dividing small 
number of very valuable goods 

‣ Sharing is usually unwanted (and costly)

Similar idea*: allow 
money transfers, minimize 
them under Fairness & PO

TODAY: ALGORITHMIC RESULTS, SURPRISING DICHOTOMY
‣ The problem is computationally hard (NP-hard) for 2 agents with 

identical additive utilities. 

‣ However, for any fixed number of agents n, a random problem is 
simple with probability 1.

*Halpern, Shah (2019) 
Fair division with subsidy

OUR APPROACH: MINIMAL SHARING
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▸     agents with and      divisible goods

▸ agents report their values           

▸ additive utilities over bundles:

‣ allocation             collection of bundles: all goods are distributed      
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For a given matrix       , find Fair & PO         

with minimal number of shared goods 
zv

#shared(z) = #{g = 1..m ∣ ∃zi,g ∈ (0,1)}

min
z∈Fair&PO

#shared(z) ≤ n − 1 *Bogomolnaia, Moulin, Sandomirskiy, Yanovskaya (2016) 
Dividing goods or bads under additive utilities. arXiv preprint

A good room for optimization: 

ℙ ( min
z∈Fair&PO

#shared(z) = 0) → 1, m → ∞ **Dickerson, Goldman, Karp, Procaccia, Sandholm (2014) 
The computational rise and fall of fairness. AAAI’14

*
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……
Alice ……
Bob ……

w1 w2 wm−1 wm
w1 w2 wm−1 wm

Question: does there exist a Fair & PO allocation with 0 shared goods?
‣ Any allocation is PO   
‣ Allocation is Fair  <=>  Alice and Bob get the same utility of 

Remark:    1
2 ∑

g

wg
Equivalent question:  
can we partition                                         into two subsets of equal sum? {w1, w2, . . , wm}
Bad news:  this is NP-Complete problem PARTITION.

Pessimistic conclusion* 
Checking existence of Fair & PO allocations with no sharing is hard even 
for 2 agents with identical preferences. *de Keijzer, Bouveret, Klos, Zhang (2009) 

On the complexity of efficiency and envy-freeness in fair 
division of indivisible goods with additive preferences
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Indeed:     consider Alice and Bob     with            generic values:
…… ……

Alice …… ……
Bob …… ……

vA,1 vA,2 vA,g vA,m
vB,1 vB,2 vB,g vB,m

Any PO allocation has the following form for some good      and  
Alice 1 1 1 0 0
Bob 0 0 0 1 1

x
1 − x

g x ∈ [0,1]
⟹ m + 1          PO allocations 

with no sharing

Optimistic conclusion 
For almost all       with 2 agents,  Fair & PO allocation with no sharing 
can be found (if exists) using                             operations.O(m log(m))

v
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Remark: For a random     ,                       with probability 1                v D(v) = 0

Theorem 
Fix the number of agents     , the number of goods        is large.n
‣ If                                      then finding Fair & PO allocation with 

minimal sharing takes polynomial time in

‣ If                              for some                    , then checking 
existence of Fair & PO allocation with no sharing is NP-hard

D(v) = O(log(m)),

D(v) ≥ C ⋅ mα C, α > 0

m

m

n
Degree of degeneracy:  

D(v) = max
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SKETCH OF THE PROOF FOR D(v) = 0

OBSERVATIONS 
‣ All allocations with given       are either PO/not PO altogether 

‣ will see in two slides 

‣ For a given      , finding a Fair allocation                 

solving LP with at most                                                          variables.

Takes constant time since      is fixed!

G

Consumption graph       of an allocation     : bipartite graph 
on (agents—goods), where   and      are connected if  

G
zi,g > 0

z
i g

G

G z ⟺
n ⋅ #shared(z) ≤ n(n − 1)
n

Remains to check: all PO consumption graphs can be 
enumerated in polynomial time for fixed     . n
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Corollary:          of any PO allocation can be obtained by 

▸ Picking  a PO graph for each pair of agents                                      

▸                              possibilities (polynomial number) 
▸ Tracing an edge between an agent       and a good      if this 

edge is traced in all 2-agent graphs with   . 
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Usual (fractional) PO is a better notion** **Barman, Krishnamurthy, Vaish (2018). 
Finding fair and efficient allocations. 
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▸ Minimize sharing in this case
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▸ Typical problems are better-behaved than worst-cases 

▸ (fractional)-PO is a good notion even for indivisibilities 

▸ Enumeration of PO consumption graphs is a useful tool for 
various problems
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