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Social learning

• each agent is going to make a single decision

• Android/iPhone, Private/Public kindergartens, restaurant A/B

• gets individual noisy signal about the best alternative & observes

choices made by predecessors

• usually: failure of information aggregation (herding)

• first agents take the wrong action ⇒ others repeat it & ignore their

private signals ⇒ information cascade (Banerjee [1992],

Bikhchandani et al. [1992])

• mitigation measures

• signals of unbounded quality (Smith and Sorensen [2000])

• restricted observation: actions of friends on a social network (Smith

[1991], Sgroi [2002], Acemoglu et al. [2010])

2



Social learning

• each agent is going to make a single decision

• Android/iPhone, Private/Public kindergartens, restaurant A/B

• gets individual noisy signal about the best alternative & observes

choices made by predecessors

• usually: failure of information aggregation (herding)

• first agents take the wrong action ⇒ others repeat it & ignore their

private signals ⇒ information cascade (Banerjee [1992],

Bikhchandani et al. [1992])

• mitigation measures

• signals of unbounded quality (Smith and Sorensen [2000])

• restricted observation: actions of friends on a social network (Smith

[1991], Sgroi [2002], Acemoglu et al. [2010])

2



Social learning

• each agent is going to make a single decision

• Android/iPhone, Private/Public kindergartens, restaurant A/B

• gets individual noisy signal about the best alternative & observes

choices made by predecessors

• usually: failure of information aggregation (herding)

• first agents take the wrong action ⇒ others repeat it & ignore their

private signals ⇒ information cascade (Banerjee [1992],

Bikhchandani et al. [1992])

• mitigation measures

• signals of unbounded quality (Smith and Sorensen [2000])

• restricted observation: actions of friends on a social network (Smith

[1991], Sgroi [2002], Acemoglu et al. [2010])

2



Our question

• Agents are Bayesian-rational, sit on a network, act only once

• Signals have bounded quality

• cannot stop the information cascade

The big puzzle

Which properties of the network are responsible for information

aggregation?

• Are we the first to study this question?

• NO
• topological conditions for a given ordering of agents Smith [1991],

Sgroi [2002], Acemoglu et al. [2010]

• the timing of decisions determines social connections

• reasonable for life-long decisions (doctor/teacher) but not for

(Android/iPhone)

• YES if the social structure and the timing of decisions are unrelated

• Our model: the network is given and the order is random

• the network must aggregate information for most orders (very

demanding!)

• an example of such a network (Bahar et al. [2020])
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What will we see?

• Localization phenomenon: agent’s decision is almost independent

from those who are far away

• no global information cascades

• quality of agent’s decision is determined by his small neighborhood

• Local learning requirement: the condition on agent’s

neighborhood for high-quality decision

• Applications: constructing networks where learning is robust to

disruptions
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The model and examples

5



The model

The model

• undirected finite network G = (V ,E ), vertices = agents

• unobservable state θ ∈ {blue, red} equally likely

• agent v ∈ V arrives at tv , i.i.d. uniform on [0, 1]

• v takes an action av ∈ {blue, red} depending on his information

• a binary signal that matches θ w.p. p > 1
2

(i.i.d. conditional on θ)

• the set of friends who arrived earlier

• their actions

• the utility is 1 if av = θ and 0, otherwise.

• A finite Bayesian game ⇒ an equilibrium exists

• Learning qualities of an agent / of the network:

P(av = θ)
/

L(G ) =
1

|V |
∑
v∈V

P(av = θ)

• the network supports learning if L(G ) ≈ 1

6
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Example: information cascade on a clique

Kn

• 1st and 2nd agents get the

same blue signals

• 3rd agent repeats their

action and ignores his signal

• and so on

The 1st two agents got wrong signals w.p. (1− p)2 ⇒

L(Kn) ≤ 1− (1− p)2
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Example: celebrity graphs (Bahar et al. [2020])

n commoners and m celebrities observing each other: n� m� 1.

Theorem (Bahar et al. [2020])

∀δ > 0 there is a celebrity graph with L ≥ 1− δ.

m celebrities

n commoners

• ' n
m � 1 commoners

arrive before the 1st

celebrity

• follow their signals

• 1st celebrity

aggregates these i.i.d.

inputs

• learning propagates

8
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Remarks:

• the only known family of graphs with L close to 1

• non-robustness: minority of celebrities is critical for learning
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Our results
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Localization phenomenon

Question: When can the action of u affect the action of v?

• v observes u, i.e., vu ∈ E and tv > tu
• v observes v1 who observes u

• v observes v1 who observes v2 who observes u

• . . .
• ∃ a path (v = v0, v1, . . . , vn−1, vn = u) such that tvi > tvi+1 ∀i
• call such a path realized

Definition: Realized component

Nreal(v) = {u : ∃ a realized path (v → u)}

Proposition

P
(
Nreal(v) ⊂ r -neighborhood of v

)
≥ 1− 2

(
e · D
r

)r

,

where D is the maximal degree.

Implications:

• d(v , u)� e · D =⇒ P(av and au are dependent) is exp. small

• impossibility of global information cascades

• the quality of v ’s decision is determined by the local structure of the

network around v
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Local Learning Requirement

LLR with parameters (d , r ,D):

• v has a subset of ≥ d friends s.t.

• each of them has degree ≥ d

• their r -neighborhoods in G \ v
are disjoint

• the max degree in these

neighborhoods ≤ D

(d , r ,D) = (3, 2, 7)

Theorem

P(av = θ) ≥ 1−
(
ψ + 18√

d−1 (2p−1−ψ)

)
, where ψ = r ·

(
e·D
r

)r

11



Local Learning Requirement

LLR with parameters (d , r ,D):

• v has a subset of ≥ d friends s.t.

• each of them has degree ≥ d

• their r -neighborhoods in G \ v
are disjoint

• the max degree in these

neighborhoods ≤ D

(d , r ,D) = (3, 2, 7)

Theorem

P(av = θ) ≥ 1−
(
ψ + 18√

d−1 (2p−1−ψ)

)
, where ψ = r ·

(
e·D
r

)r

11



Local Learning Requirement

LLR with parameters (d , r ,D):

• v has a subset of ≥ d friends s.t.

• each of them has degree ≥ d

• their r -neighborhoods in G \ v
are disjoint

• the max degree in these

neighborhoods ≤ D

(d , r ,D) = (3, 2, 7)

Theorem

P(av = θ) ≥ 1−
(
ψ + 18√

d−1 (2p−1−ψ)

)
, where ψ = r ·

(
e·D
r

)r
Proof:

• localization ⇒ realized components of v ’s friends are disjoint with

probability ≥ 1− ψ ⇒ independence

• each friend takes correct action with prob. ≥ p ⇒ informativeness

• v observes O(d) independent sources ⇒ use Chernoff’s bound.
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Global implications of LLR: apply to each agent in the network
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Applications: egalitarian societies and robust learning

Symmetry: G = (V ,E ) is symmetric if for any v , v ′ ∈ V , there is an

automorphism f such that f (v) = v ′.

Proposition

For any δ > 0 there exists a symmetric network G = (V ,E ) with

L(G ) ≥ 1− δ. (F)

Moreover, for any U ⊂ V , the sub-network satisfies

L
(
G |U

)
≥ 1− δ

α3
, where α =

|U|
|V |

. (FF)
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• theory of the two-step information flow (Katz and Lazarsfeld

[1955]): ∃ a minority critical for information-aggregation and

predetermined by the network structure (opinion leaders)

• e.g., celebrities in Bahar et al. [2020]: if eliminated ⇒ no aggregation

• Bayesian social learning is fragile Frick et al. [2020], Mueller-Frank
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Proof:

• Apply LLR to each agent in G

• (F): G is symmetric, high degrees, no short cycles

• (FF): additionally, most u ∈ U have high degrees in G |U for U ⊂ V

• existence of such G ⇐= theory of expanders more details
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|U|
|V |

. (FF)

Proof:

• Apply LLR to each agent in G

• (F): G is symmetric, high degrees, no short cycles

• (FF): additionally, most u ∈ U have high degrees in G |U for U ⊂ V

• existence of such G ⇐= theory of expanders more details
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Summary

• Decoupling the network and the order of actions

• long paths of information transmission & global cascades are unlikely

• learning quality of an agent is determined by the local structure

• LLR: a necessary condition for high quality & no local cascades

• Bayesian models do not have explicit solutions

• Our approach is indirect. No insights in how equilibria look like.

• Future:

• How do equilibria look like? a simple open problem

• Other necessary and sufficient conditions for high learning quality

Thank you!
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Why expander graphs? back to applications

We need G = (V ,E ) such that:

• (F) symmetric & minimal degree is high & no short cycles

• (FF) most u ∈ U have high degrees in G |U , ∀U ⊂ V big enough

Definition: d-regular graph G is an expander if λ2(G )� λ1(G ) = d .

• the simple random walk forgets the origin fast

• ⇒ best expanders have no short cycles and are highly connected

Ramanujan expanders (Lubotzky et al. [1988], Dahan [2014])

∀d ≥ 11 and ∀g ≥ 0 ∃ symmetric G with cycles≥ g and λ2 ≤ 2
√
d − 1

For U,U ′ ⊂ V , denote E (U,U ′) = {e ∈ E : e connects U and U ′}.

Mixing lemma (Alon and Chung [1988])∣∣E (U,U ′)
∣∣ = d

|V | · |U| · |U
′|+ τ, where |τ | ≤ λ2

√
|U||U ′|.

(FF): if |U| = α|V |, the average degree in G |U is |E(U,U)|
|U| ≈ α · d .
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Open problem: puzzling unanimity back to summary

For any agent v , P(θ = red | av = red) ≥ p

Difficulty:

non-monotonicity of the posterior: more red actions observed may signal

about herding ⇒ weaker evidence.

time

U • Strong evidence for θ = red?

NO

• What if one observation was blue?

then YES

Example with fixed arrival order
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Robustness to random-subset elimination

Proposition

Arbitrary G = (V ,E ) with learning quality L(G ) = 1− δ.

For uniformly random U ⊂ V such that |U| = α · |V |, the subnetwork

satisfies

E
[
L
(
G |U

)]
≥ 1− δ

α
.

Proof sketch

• Coupling between learning on G and the choice of U:

U = {the set of α · |V | earliest arrivals}.

• Learning on G |U becomes a part of learning on G ⇒

L(G ) ≤ α ·E
[
L
(
G |U

)]
+(1−α) ·1.

Example: celebrity graph, α = 50% ⇒ ' 50% celebrities remain.
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