

NATIONAL RESEARCH UNIVERSITY SAINT PETERSBURG

SIMINA BRANZEI (PURDUE UNIVERSITY) Fedor Sandomirskiy (technion / hse st.petersburg)

ALGORITHMS FOR COMPETITIVE DIVISION OF CHORES

PROBLEM OF FAIR DIVISION

- > n agents with different tastes over m resources
- The goal: find «Fair» and Pareto optimal allocation, no money transfers
 - Applications: dissolving partnership (e.g., divorce), seats at overdemanded courses, CPU and RAM in a cloud, charity

PROBLEM OF FAIR DIVISION

- > n agents with different tastes over m resources
- The goal: find «Fair» and Pareto optimal allocation, no money transfers

- Classic results are about **goods**. But we often divide **bads**:
 - chores (dish-washing, cooking), tasks within organization (paperwork, teaching loads), liabilities

PROBLEM OF FAIR DIVISION

- > n agents with different tastes over m resources
- The goal: find «Fair» and Pareto optimal allocation, no money transfers
 - **Applications:** dissolving partnership (e.g., divorce), seats at overdemanded courses, CPU and RAM in a cloud, charity
- Classic results are about **goods**. But we often divide **bads**:
 - chores (dish-washing, cooking), tasks within organization (paperwork, teaching loads), liabilities

Goods / bads problems are surprisingly different!

[Peterson, Su. (2002, 2009)], [Bogomolnaia, Moulin, Sandomirskiy, Yanovskaya (2017,2018)], [Segal-Halevi 2017]

PLAN FOR TODAY

> Known results: divisible items (goods or bads), additive utilities

- Competitive Rule* = best mechanism for additive agents
 - goods: a convex optimization problem (Eisenberg- Gale)
 - bads: non-convexity, multiplicity

Computing all competitive allocations of bads in polynomial time for fixed n or m

- Enumerating demand structures of all Pareto optimal allocations
- Finding competitive allocation with given demand structure

> Extensions: indivisibile bads, constrained economies

*aka Competitive Equilibrium with Equal Incomes (CEEI), Virtual Market Mechanism, Fisher Market equilibrium, or equilibrium of Arrow-Debreu exchange economy

KNOWN RESULTS

THE MODEL

• n agents, m divisible items*, $v_{i,j}$ is the value of agent i for item j

b goods:
$$v_{i,j} > 0$$
 bads: $v_{i,j} < 0$

• utility of agent i for a bundle $x = (x_1, x_2, \dots, x_m) \in \mathbb{R}^m_+$

$$V_i(x) = \sum_{j \in [m]} v_{i,j} x_j$$

▶ allocation z is a collection of bundles $(z_i)_{i \in [n]}$ with the condition

$$\sum_{i \in [n]} z_{i,j} = 1 \ \forall j \in [m]$$

*divisibility can be achieved by randomization or time sharing

THE MODEL

• n agents, m divisible items*, $V_{i,j}$ is the value of agent i for item j

• goods:
$$v_{i,j} > 0$$
 bads: $v_{i,j} < 0$

• utility of agent i for a bundle $x = (x_1, x_2, \dots x_m) \in \mathbb{R}^m_+$ LIKE ON

$$V_i(x) = \sum_{j \in [m]} v_{i,j} x_j$$
 spliddit

• allocation \mathcal{Z} is a collection of bundles $(z_i)_{i \in [n]}$ with the condition

$$\sum_{i \in [n]} z_{i,j} = 1 \ \forall j \in [m]$$

*divisibility can be achieved by randomization or time sharing

THE MODEL

• n agents, m divisible items*, $V_{i,j}$ is the value of agent i for item j

b goods:
$$v_{i,j} > 0$$
 bads: $v_{i,j} < 0$

• utility of agent i for a bundle $x = (x_1, x_2, \dots, x_m) \in \mathbb{R}_+^m$

$$V_i(x) = \sum_{j \in [m]} v_{i,j} x_j$$
 spliddit

LIKE ON

▶ allocation \mathcal{I} is a collection of bundles $(z_i)_{i \in [n]}$ with the condition

$$\sum_{i \in [n]} z_{i,j} = 1 \ \forall j \in [m]$$

DESIRED PROPERTIES

Fairness (envy-freeness): $V_i(z_i) \ge V_i(z_k) \ \forall i, k \in [n]$

Efficiency (Pareto optimality): there is no allocation Y such that $V_i(y_i) \ge V_i(z_i) \ \forall i$ and $\exists i \ V_i(y_i) > V_i(z_i)$. *divisibility can be achieved by randomization or time sharing

• Equal choice opportunities lead to fairness: Alice and Bob love different candies. Alice has 100\$ and Bob has 100\$. Both go to a supermarket and spend their money. Do they envy each other?

- Equal choice opportunities lead to fairness: Alice and Bob love different candies. Alice has 100\$ and Bob has 100\$. Both go to a supermarket and spend their money. Do they envy each other?
 - No. Both select the best bundle from the same choice set.

- Equal choice opportunities lead to fairness: Alice and Bob love different candies. Alice has 100\$ and Bob has 100\$. Both go to a supermarket and spend their money. Do they envy each other?
 - No. Both select the best bundle from the same choice set.
- Competitive approach to fair division [Varian 1972]: Give each agent a unit amount of virtual money and find such prices that the «demand» equals «supply» (all money are spent, all items are sold)*.

* in general equilibrium theory such allocations are called competitive or Walrasian for the associated exchange economy (Fisher market)

- Equal choice opportunities lead to fairness: Alice and Bob love different candies. Alice has 100\$ and Bob has 100\$. Both go to a supermarket and spend their money. Do they envy each other?
 - No. Both select the best bundle from the same choice set.
- **Competitive approach to fair division** [Varian 1972]: Give each agent a unit amount of virtual money and find such prices that the «demand» equals «supply» (all money are spent, all items are sold)*.

DEFINITION

An allocation χ is competitive if there exists a vector of prices $p \in \mathbb{R}^m_-$ such that

for any agent i his bundle Z_i maximizes $V_i(z_i)$ on the budget constraint $\langle p, z_i \rangle \leq -1$

^{*} in general equilibrium theory such allocations are called competitive or Walrasian for the associated exchange economy (Fisher market)

PROPERTIES OF COMPETITIVE ALLOCATIONS

Existence, envy-freeness, Pareto optimality (the First Welfare Theorem)

NEW RESULTS: COMPUTING Competitive allocations of bads

For **fixed n or m**

- all competitive utility profiles
- a set of **competitive allocations, one per utility profile**

can be computed in **strongly polynomial time*** as a function of matrix of values V.

For **fixed n or m**

- all competitive utility profiles
- a set of **competitive allocations, one per utility profile**

can be computed in **strongly polynomial time*** as a function of matrix of values V.

For degenerate problems (e.g., all agents and items are identical), there is a continuum of competitive allocations. However for almost-all V there is at most one competitive allocation per utility profile.

For **fixed n or m**

- all competitive utility profiles
- a set of **competitive allocations, one per utility profile**

can be computed in **strongly polynomial time*** as a function of matrix of values V.

- For degenerate problems (e.g., all agents and items are identical), there is a continuum of competitive allocations. However for almost-all V there is at most one competitive allocation per utility profile.
- We **cannot drop** the condition of **fixed n or m**:
 - there are examples with $2^{\min(n,m)}$ competitive utility profiles

[Bogomolnaia, Moulin, Sandomirskiy, Yanovskaya (2017)]

For **fixed n or m**

- all competitive utility profiles
- a set of **competitive allocations, one per utility profile**

can be computed in **strongly polynomial time*** as a function of matrix of values V.

- For degenerate problems (e.g., all agents and items are identical), there is a continuum of competitive allocations. However for almost-all V there is at most one competitive allocation per utility profile.
- We **cannot drop** the condition of **fixed n or m**:
 - there are examples with $2^{\min(n,m)}$ competitive utility profiles

[Bogomolnaia, Moulin, Sandomirskiy, Yanovskaya (2017)]

The algorithm gives an upper bound for the **number of competitive profiles** $\min\left\{(2m+1)^{\frac{n(n-1)}{2}}, (2n+1)^{\frac{m(m-1)}{2}}\right\}$

IDEAS

Consumption graph G(z) : bipartite graph on (agents–bads), where i and j are connected if $z_{i,j} > 0$

OBSERVATION

Finding a competitive allocation (if exists) for a given consumption graph G is easy*.

*Intuition from constrained optimization: finding active constraints is hard, the rest is easy

IDEAS

Consumption graph G(z) : bipartite graph on (agents–bads), where i and j are connected if $z_{i,j} > 0$

OBSERVATION

Finding a competitive allocation (if exists) for a given consumption graph G is easy*.

*Intuition from constrained optimization: finding active constraints is hard, the rest is easy

- Fixing G = fixing a face of the Pareto frontier
- For a given face, FOCs of criticality of NSW give exact formula for $V = (V_i(z_i))_{i \in [n]}$ if there is a competitive allocation z with G(z) = G
- For a given vector V, existence of competitive \mathcal{Z} can be checked using the auxiliary MaxFlow problem of [Devanur, Papadimitriou, Saberi, Vazirani 2002]

THE ALGORITHM

for $G\in$ the set of all (n,m)-bipartite graphs { compute a competitive allocation Z with G(z)=G

A set of graphs is **rich** if it contains consumption graphs of all competitive allocations.

Example: the set of all graphs, the set of all efficient consumption graphs

A set of graphs is **rich** if it contains consumption graphs of all competitive allocations.

Example: the set of all graphs, the set of all efficient consumption graphs

A set of graphs is **rich** if it contains consumption graphs of all competitive allocations.

Example: the set of all graphs, the set of all efficient consumption graphs

The set **EFFG** of all **efficient consumption graphs** is **polynomial** and **rich**.

The set **EFFG** of all **efficient consumption graphs** is **polynomial** and **rich**.

- n=2: any efficient allocation has the following structure:
 - reorder bads by decreasing of $\frac{|v_{2,j}|}{|v_{1,j}|}$. Fix a bad $j \in [m]$, give 1, 2..., j - 1 to agent 1, j + 1, j + 2..m to agent 2 and split j arbitrarily 2m+1 consumption graphs

The set EFFG of all efficient consumption graphs is polynomial and rich.

n=2: any efficient allocation has the following structure:

Fix an efficient allocation Z. For any pair of agents i, k their bundles Z_i, Z_k can be completed to an efficient allocation of all bads between i, k.

The set EFFG of all efficient consumption graphs is polynomial and rich.

- n=2: any efficient allocation has the following structure:
 - reorder bads by decreasing of $\frac{|v_{2,j}|}{|v_{1,j}|}$. Fix a bad $j \in [m]$,
 give 1, 2..., j 1 to agent 1, j + 1, j + 2..m to agent 2 and split j arbitrarily
 2m+1 consumption graphs **n>2, fixed:**

Fix an efficient allocation Z. For any pair of agents i, k their bundles z_i, z_k can be completed to an efficient allocation of all bads between i, k.

- **Corollary:** any graph from **EFFG** can be obtained using the following procedure $\frac{n(n-1)}{2}$
 - pick an efficient consumption graph for each pair of agents: $(2m+1)^{\frac{n}{2}}$ possibilities
 - $lacksim trace an edge between agent <math>\dot{i}$ and a bad k if this edge is traced in all 2-agent graphs with \dot{i}

The set **EFFG** of all **efficient consumption graphs** is **polynomial** and **rich**.

- n=2: any efficient allocation has the following structure:
 - reorder bads by decreasing of $\frac{|v_{2,j}|}{|v_{1,j}|}$. Fix a bad $j \in [m]$,
 give 1, 2..., j 1 to agent 1, j + 1, j + 2..m to agent 2 and split j arbitrarily
 2m+1 consumption graphs **n>2, fixed:**

Fix an efficient allocation Z. For any pair of agents i, k their bundles z_i, z_k can be completed to an efficient allocation of all bads between i, k.

- **Corollary:** any graph from **EFFG** can be obtained using the following procedure $\frac{n(n-1)}{n}$
 - pick an efficient consumption graph for each pair of agents: $(2m+1)^{\frac{n}{2}}$ possibilities
 - $lacksim trace an edge between agent <math>\dot{l}$ and a bad k if this edge is traced in all 2-agent graphs with \dot{l}
- fixed m, large n: use the duality (corollary of the 2nd Welfare Th):

EFFG is invariant w.r.t. to changing the roles of agents and items

EXTENSIONS

For indivisible items envy-free allocations may fail to exist => approximately fair allocations

For indivisible items envy-free allocations may fail to exist => approximately fair allocations

Barman-Krishnamurthy rounding:

[Barman, Krishnamurthy On the Proximity of Markets with Integral Equilibria, arXiv 2018]

For a given «divisible» competitive allocation Z , there is a competitive allocation Z with **unequal budgets** such that:

- χ' is integral (no items are shared).
- **budgets are close** $||b'_i| 1| \le \max_{j \in [m]} |p_j|$ for all agents i

For indivisible items envy-free allocations may fail to exist => approximately fair allocations

Barman-Krishnamurthy rounding:

[Barman, Krishnamurthy On the Proximity of Markets with Integral Equilibria, arXiv 2018]

For a given «divisible» competitive allocation Z , there is a competitive allocation Z with **unequal budgets** such that:

- χ' is integral (no items are shared).
- budgets are close $||b'_i| 1| \le \max_{j \in [m]} |p_j|$ for all agents i
- An integral allocation is **Envy-Free-(1,1)** if for any pair of agents i, k $V_i(z_i \setminus \{j\}) \ge V_i(z_k \cup \{j'\})$ for some $j, j' \in [m]$

For indivisible items envy-free allocations may fail to exist => approximately fair allocations

Barman-Krishnamurthy rounding:

[Barman, Krishnamurthy On the Proximity of Markets with Integral Equilibria, arXiv 2018]

- χ' is integral (no items are shared).
- budgets are close $|b'_i| 1| \le \max_{j \in [m]} |p_j|$ for all agents i

First result on existence of approx fair allocation o bads

An integral allocation is **Envy-Free-(1,1)** if for any pair of agents *i*, *k*

 $V_i(z_i \setminus \{j\}) \ge V_i(z_k \cup \{j'\})$ for some $j, j' \in [m]$

COROLLARY

For fixed n or m, a **Pareto-Optimal Envy–Free-(1,1)** allocation of **indivisible bads** can be computed in **strongly polynomial time.**

CONSTRAINED ECONOMIES (OPEN PROBLEM)

economy with bads <=> constrained economy with goods:

[Bogomolnaia, Moulin, Sandomirskiy, Yanovskaya (2017)]

- For each chore j introduce an auxiliary good \overline{j} , «not doing j»
- n-1 units of \overline{j} but each agent can consume at most 1 unit.

CONSTRAINED ECONOMIES (OPEN PROBLEM)

economy with bads <=> constrained economy with goods: [Bogomolnaia, Moulin, Sandomirskiy, Yanovskaya (2017)]

- For each chore j introduce an auxiliary good \overline{j} , «not doing j»
- n-1 units of \overline{j} but each agent can consume at most 1 unit.

Does our approach work for other constrained economies?

CONSTRAINED ECONOMIES (OPEN PROBLEM)

economy with bads <=> constrained economy with goods: [Bogomolnaia, Moulin, Sandomirskiy, Yanovskaya (2017)]

- For each chore j introduce an auxiliary good \overline{j} , «not doing j»
- n-1 units of \overline{j} but each agent can consume at most 1 unit.

Does our approach work for other constrained economies?

 $i \in [m]$

- mixture of goods and bads
- assignment problems [Hylland, Zeckhauser 1979]: $\sum_{ij} z_{ij} = \frac{m}{m}$
 - Complicated algorithm: [Alaei, Khalilabadi, Tardos 2017]

Upper and lower bounds on consumption of a subset of items

COMPUTING ONE COMPETITIVE ALLOCATION (OPEN PROBLEM)

If **n** and **m** are both **large**, **no hope to compute ALL** competitive **allocations** (may have exponential number of them even in the utility space)

Can we compute ONE competitive allocation of bads when n and m are both large, in polynomial time?

COMPUTING ONE COMPETITIVE ALLOCATION (OPEN PROBLEM)

If **n** and **m** are both **large**, **no hope to compute ALL** competitive **allocations** (may have exponential number of them even in the utility space)

Can we compute ONE competitive allocation of bads when n and m are both large, in polynomial time?

Thank you! (open) questions? (closing) remarks?

BIBLIOGRAPHY

- S. Branzei, F. Sandomirskiy Algorithms for Competitive Division of Chores. To appear on arXiv and at EC 2019 (hopefully)
- E. Peterson, F. Su. 2009. N-person envy-free chore division. arXiv:0909.0303
- Erel Segal-Halevi Fairly Dividing a Cake after Some Parts Were Burnt in the Oven arXiv:1704.00726 [math.CO]
- Anna Bogomolnaia, Herve Moulin, Fedor Sandomirskiy, and Elena Yanovskaya. Com- petitive division of a mixed manna. Econometrica, 85:1847–1871, 2017.
- H. Varian. 1974. Equity, envy and efficiency. Journal of Economic Theory 9, 63–91.
- E. Eisenberg. 1961. Aggregation of utility functions, Management Science, 7, 337-350.
- Siddharth Barman, Sanath Kumar Krishnamurthy On the Proximity of Markets with Integral Equilibria, arXiv:1811.08673 [cs.GT]
- Saeed Alaei, Pooya Jalaly Khalilabadi, and Eva Tardos. Computing equilibrium in matching markets. In Proceedings of the 2017 ACM Conference on Economics and Computation, EC '17, pages 245-261, New York, NY, USA, 2017. ACM.
- Aanund Hylland and Richard Zeckhauser. The efficient allocation of individuals to positions. Journal of Political economy, 87(2):293-314, 1979.