NATIONAL RESEARCH
UNIVERSITY
SAINT PETERSBURG

SIMINA BRANZEI (PURDUE UNIVERSITY)
 FEDOR SANDOMIRSKIY (TECHNION / HSE ST.PETERSBURG)

ALGORITHMS FOR COMPETITVE DIVIIION OF CHORES

PROBLEM OF FAIR DIVISION

- n agents with different tastes over m resources
- The goal: find «Fair» and Pareto optimal allocation, no money transfers

- Applications: dissolving partnership (e.g., divorce), seats at overdemanded courses, CPU and RAM in a cloud, charity

PROBLEM OF FAIR DIVISION

- n agents with different tastes over m resources
- The goal: find «Fair» and Pareto optimal allocation, no money transfers
- Applications: dissolving partnership (e.g., divorce), seats at overdemanded courses, CPU and RAM in a cloud, charity
- Classic results are about goods. But we often divide bads:
- chores (dish-washing, cooking), tasks within organization (paperwork, teaching loads), liabilities

PROBLEM OF FAIR DIVISION

- n agents with different tastes over m resources
- The goal: find «Fair» and Pareto optimal allocation, no money transfers
- Applications: dissolving partnership (e.g., divorce), seats at overdemanded courses, CPU and RAM in a cloud, charity
- Classic results are about goods. But we often divide bads:
- chores (dish-washing, cooking), tasks within organization (paperwork, teaching loads), liabilities

Goods / bads problems are surprisingly different!
[Peterson, Su. (2002, 2009)], [Bogomolnaia, Moulin, Sandomirskiy, Yanovskaya (2017,2018)], [Segal-Halevi 2017]

PLAN FOR TODAY

- Known results: divisible items (goods or bads), additive utilities
- Competitive Rule* = best mechanism for additive agents
- goods: a convex optimization problem (Eisenberg- Gale)
- bads: non-convexity, multiplicity
- Computing all competitive allocations of bads in polynomial time for fixed n or m
- Enumerating demand structures of all Pareto optimal allocations
- Finding competitive allocation with given demand structure
- Extensions: indivisibile bads, constrained economies

KNOWN RESULTS

THE MODEL

n agents, m divisible items*, $v_{i, j}$ is the value of agent i for item j

- goods: $v_{i, j}>0$ bads: $v_{i, j}<0$
- utility of agent i for a bundle $x=\left(x_{1}, x_{2}, \ldots x_{m}\right) \in \mathbb{R}_{+}^{m}$

$$
V_{i}(x)=\sum_{j \in[m]} v_{i, j} x_{j}
$$

- allocation z is a collection of bundles $\left(z_{i}\right)_{i \in[n]}$ with the condition

$$
\sum_{i \in[n]} z_{i, j}=1 \forall j \in[\mathrm{~m}]
$$

THE MODEL

n agents, m divisible items*, $v_{i, j}$ is the value of agent i for item j
, goods: $v_{i, j}>0$ bads: $v_{i, j}<0$

- utility of agent i for a bundle $x=\left(x_{1}, x_{2}, \ldots x_{m}\right) \in \mathbb{R}_{+}^{m} \quad$ LIKE ON

$$
V_{i}(x)=\sum_{j \in[m]} v_{i, j} x_{j}
$$

- allocation z is a collection of bundles $\left(z_{i}\right)_{i \in[n]}$ with the condition

$$
\sum_{i \in[n]} z_{i, j}=1 \forall j \in[m]
$$

THE MODEL

n agents, m divisible items*, $v_{i, j}$ is the value of agent i for item j

- goods: $v_{i, j}>0$ bads: $v_{i, j}<0$
(utility of agent i for a bundle $x=\left(x_{1}, x_{2}, \ldots x_{m}\right) \in \mathbb{R}_{+}^{m} \quad$ LIKEON

$$
V_{i}(x)=\sum_{j \in[m]} v_{i, j} x_{j}
$$

- allocation z is a collection of bundles $\left(z_{i}\right)_{i \in[n]}$ with the condition

$$
\sum_{i \in[n]} z_{i, j}=1 \forall j \in[m]
$$

DESIRED PROPERTIES
Fairness (envy-freeness): $\quad V_{i}\left(z_{i}\right) \geq V_{i}\left(z_{k}\right) \forall i, k \in[n]$
Efficiency (Pareto optimality): there is no allocation y such that $V_{i}\left(y_{i}\right) \geq V_{i}\left(z_{i}\right) \forall i$ and $\exists i V_{i}\left(y_{i}\right)>V_{i}\left(z_{i}\right)$.

COMPETITIVE ALLOCATIONS

- Equal choice opportunities lead to fairness: Alice and Bob love different candies. Alice has $100 \$$ and Bob has 100\$. Both go to a supermarket and spend their money. Do they envy each other?

COMPETITIVE ALLOCATIONS

- Equal choice opportunities lead to fairness: Alice and Bob love different candies. Alice has $100 \$$ and Bob has 100\$. Both go to a supermarket and spend their money. Do they envy each other?
- No. Both select the best bundle from the same choice set.

COMPETITIVE ALLOCATIONS

- Equal choice opportunities lead to fairness: Alice and Bob love different candies. Alice has $100 \$$ and Bob has 100\$. Both go to a supermarket and spend their money. Do they envy each other?
- No. Both select the best bundle from the same choice set.
- Competitive approach to fair division [Varian 1972]: Give each agent a unit amount of virtual money and find such prices that the «demand» equals «supply» (all money are spent, all items are sold)*.

COMPETITIVE ALLOCATIONS

- Equal choice opportunities lead to fairness: Alice and Bob love different candies. Alice has $100 \$$ and Bob has 100\$. Both go to a supermarket and spend their money. Do they envy each other?
- No. Both select the best bundle from the same choice set.
- Competitive approach to fair division [Varian 1972]: Give each agent a unit amount of virtual money and find such prices that the «demand» equals «supply» (all money are spent, all items are sold)*.

DEFINITIION

An allocation Z is competitive if there exists a vector of prices $p \in \mathbb{R}_{-}^{m}$ such that for any agent i his bundle Z_{i} maximizes $V_{i}\left(z_{i}\right)$ on the budget constraint $\left\langle p, z_{i}\right\rangle \leq-1$

PROPERTIES OF COMPETITIVE ALLOCATIONS

- Existence, envy-freeness, Pareto optimality (the First Welfare Theorem)
- Link to Nash Social Welfare $N(z)=\prod\left|V_{i}\left(z_{i}\right)\right|$ $i \in n$

Competitive allocation is the global maximum of NSW
[Eisenberg Gale (1959)]

- Convex problem => uniqness (in the space of utilities)

ALGORITHMS

- approximate by gradient decent
- exact by primal dual-schema
- [Devanur, Papadimitriou, Saberi, Vazirani 2002],
- [Orlin 2010], polynomial in n+m

NSW is used as a potential to ensure finiteness of price-adjustment procedure. Relies on convexity!

NEW RESULTS: COMPUTING COMPEITIIVE ALLOCATIONS OF BADS

THE MAIN RESULT

For fixed n or m

- all competitive utility profiles
- a set of competitive allocations, one per utility profile
can be computed in strongly polynomial time* as a function of matrix of values v.
*The number of elementary operations (addition, multiplication etc) is bounded by a polynomial of the free parameter (n or m); the memory used is bounded by polynomial of the input length.

THE MAIN RESULT

For fixed n or m

- all competitive utility profiles
- a set of competitive allocations, one per utility profile
can be computed in strongly polynomial time* as a function of matrix of values v.
- For degenerate problems (e.g., all agents and items are identical), there is a continuum of competitive allocations. However for almost-all \mathcal{V} there is at most one competitive allocation per utility profile.
*The number of elementary operations (addition, multiplication etc) is bounded by a polynomial of the free parameter (n or m); the memory used is bounded by polynomial of the input length.

THE MAIN RESULT

For fixed \mathbf{n} or m

- all competitive utility profiles
- a set of competitive allocations, one per utillity profile
can be computed in strongly polynomial time* as a function of matrix of values v.
- For degenerate problems (e.g., all agents and items are identical), there is a continuum of competitive allocations. However for almost-all \mathcal{V} there is at most one competitive allocation per utility profile.
- We cannot drop the condition of fixed \mathbf{n} or \mathbf{m} :
- there are examples with $2^{\min (n, m)}$ competitive utility profiles
[Bogomolnaia, Moulin, Sandomirskiy, Yanovskaya (2017)]
*The number of elementary operations (addition, multiplication etc) is bounded by a polynomial of the free parameter (n or m); the memory used is bounded by polynomial of the input length.

THE MAIN RESULT

For fixed \mathbf{n} or m

- all competitive utility profiles
- a set of competitive allocations, one per utillity profile
can be computed in strongly polynomial time* as a function of matrix of values V.
- For degenerate problems (e.g., all agents and items are identical), there is a continuum of competitive allocations. However for almost-all \mathcal{V} there is at most one competitive allocation per utility profile.
- We cannot drop the condition of fixed \mathbf{n} or \mathbf{m} :
- there are examples with $2^{\min (n, m)}$ competitive utility profiles
[Bogomolnaia, Moulin, Sandomirskiy, Yanovskaya (2017)]
- The algorithm gives an upper bound for the number of competitive profiles

$$
\min \left\{(2 m+1)^{\frac{n(n-1)}{2}},(2 n+1)^{\frac{m(m-1)}{2}}\right\}
$$

*The number of elementary operations (addition, multiplication etc) is bounded by a polynomial of the free parameter (n or m); the memory used is bounded by polynomial of the input length.

IDEAS

Consumption graph $G(z)$: bipartite graph on (agentsbads), where i and j are connected if $z_{i, j}>0$

OBSERVATION

Finding a competitive allocation (if exists) for a given consumption graph G is easy*.
*Intuition from constrained optimization: finding active constraints is hard, the rest is easy

IDEAS

Consumption graph $G(z)$: bipartite graph on (agentsbads), where i and j are connected if $z_{i, j}>0$

OBSERVATION

Finding a competitive allocation (if exists) for a given consumption graph G is easy*.
*Intuition from constrained optimization: finding active constraints is hard, the rest is easy

- Fixing $G=$ fixing a face of the Pareto frontier
- For a given face, FOCs of criticality of NSW give exact formula for $V=\left(V_{i}\left(z_{i}\right)\right)_{i \in[n]}$ if there is a competitive allocation z with $G(z)=G$
- For a given vector V, existence of competitive z can be checked using the auxiliary MaxFlow problem of [Devanur, Papadimitriou, Saberi, Vazirani 2002]

THE ALGORITHM

for $G \in$ the set of all (n, m)-bipartite graphs \{ compute a competitive allocation $\quad Z$ with $\quad G(z)=G$
 compute a competitive allocation $\quad Z$ with $\quad G(z)=G$


```
    compute a competitive allocation }\quadZ\mathrm{ with }\quadG(z)=
```

A set of graphs is rich if it contains consumption graphs of all competitive allocations.

- Example: the set of all graphs, the set of all efficient consumption graphs


```
    compute a competitive allocation }z\mathrm{ with }G(z)=
```

A set of graphs is rich if it contains consumption graphs of all competitive allocations.

- Example: the set of all graphs, the set of all efficient consumption graphs

THE ALGORITHM

a rich set of
for $G \in$ themotmof al-l ($n, m)$-bipartite graphs \{ compute a competitive allocation $\quad Z$ with $\quad G(z)=G$
\}

A set of graphs is rich if it contains consumption graphs of all competitive allocations.

- Example: the set of all graphs, the set of all efficient consumption graphs

find rich polynomial set of graphs

FINDING A RICH SET

The set EFFG of all efficient consumption graphs is polynomial and rich.

FINDING A RICH SET

The set EFFG of all efficient consumption graphs is polynomial and rich.
$\mathbf{n}=2$: any efficient allocation has the following structure:

- reorder bads by decreasing of $\frac{\left|v_{2, j}\right|}{\left|v_{1, j}\right|}$. Fix a bad $j \in[m]$,
- give $1,2 \ldots, j-1$ to agent $1, j+1, j+2$..m to agent 2 and split j arbitrarily
- $2 m+1$ consumption graphs

FINDING A RICH SET

The set EFFG of all efficient consumption graphs is polynomial and rich.

- $\mathbf{n = 2}$: any efficient allocation has the following structure:
, reorder bads by decreasing of $\frac{\left|v_{2, j}\right|}{\left|v_{1, j}\right|}$. Fix a bad $j \in[m]$,
- give $1,2 \ldots, j-1$ to agent $1, j+1, j+2$..m to agent 2 and split j arbitrarily
- $2 m+1$ consumption graphs
($n>2$, fixed:

Fix an efficient allocation Z. For any pair of agents i, k their bundles Z_{i}, Z_{k} can be completed to an efficient allocation of all bads between i, k.

FINDING A RICH SET

The set EFFG of all efficient consumption graphs is polynomial and rich.

- $\mathbf{n = 2}$: any efficient allocation has the following structure:
, reorder bads by decreasing of $\frac{\left|v_{2, j}\right|}{\left|v_{1, j}\right|}$. Fix a bad $j \in[m]$,
- give $1,2 . ., j-1$ to agent $1, j+1, j+2$..m to agent 2 and split j arbitrarily
- $2 m+1$ consumption graphs
- $\mathrm{n}>2$, fixed:

 can be completed to an efficient allocation of all bads between i, k.
- Corollary: any graph from EFFG can be obtained using the following procedure
- pick an efficient consumption graph for each pair of agents: $(2 m+1)^{\frac{n(n-1)}{2}}$ possibilities
- trace an edge between agent i and a bad k if this edge is traced in all 2-agent graphs with i

FINDING A RICH SET

The set EFFG of all efficient consumption graphs is polynomial and rich.

- $\mathbf{n = 2}$: any efficient allocation has the following structure:
- reorder bads by decreasing of $\frac{\left|v_{2, j}\right|}{\left|v_{1, j}\right|}$. Fix a bad $j \in[m]$,
- give $1,2 \ldots, j-1$ to agent $1, j+1, j+2$..m to agent 2 and split j arbitrarily
- $2 m+1$ consumption graphs
($n>2$, fixed:

Fix an efficient allocation Z. For any pair of agents i, k their bundles Z_{i}, Z_{k} can be completed to an efficient allocation of all bads between i, k.

- Corollary: any graph from EFFG can be obtained using the following procedure
- pick an efficient consumption graph for each pair of agents: $(2 m+1)^{\frac{n(n-1)}{2}}$ possibilities
- trace an edge between agent i and a bad k if this edge is traced in all 2-agent graphs with i
fixed $\mathrm{m}_{\text {, llarge }}$ n: use the duality (corollary of the 2nd Welfare Th):
EFFG is invariant w.r.t. to changing the roles of agents and items

EXTENSIONS

INDIVISIBLE BADS

- For indivisible items envy-free allocations may fail to exist => approximately fair allocations

INDIVISIBLE BASS

- For indivisible items envy-free allocations may fail to exist => approximately fair allocations
- Barman-Krishnamurthy rounding:
[Barman, Krishnamurthy On the Proximity of Markets with Integral Equilibria, arXiv 2018]
For a given «divisible» competitive allocation Z, there is a competitive allocation with unequal budgets such that:
- Z^{\prime} is integral (no items are shared).
- budgets are close $\left|\left|b_{i}^{\prime}\right|-1\right| \leq \max _{j \in[m]}\left|p_{j}\right|$ for all agents i

INDIVISIBLE BADS

- For indivisible items envy-free allocations may fail to exist => approximately fair allocations
- Barman-Krishnamurthy rounding:
[Barman, Krishnamurthy On the Proximity of Markets with Integral Equilibria, arXiv 2018]
For a given «divisible» competitive allocation Z, there is a competitive allocation with unequal budgets such that:
- Z^{\prime} is integral (no items are shared).
, budgets are close $\left|\left|b_{i}^{\prime}\right|-1\right| \leq \max _{j \in[m]}\left|p_{j}\right|$ for all agents i
- An integral allocation is Envy-Free-(1,1) if for any pair of agents i, k

$$
V_{i}\left(z_{i} \backslash\{j\}\right) \geq V_{i}\left(z_{k} \cup\left\{j^{\prime}\right\}\right) \text { for some } j, j^{\prime} \in[m]
$$

INDIVISIBLE BADS

- For indivisible items envy-free allocations may fail to exist => approximately fair allocations
- Barman-Krishnamurthy rounding:
[Barman, Krishnamurthy On the Proximity of Markets with Integral Equilibria, arXiv 2018]
For a given «divisible» competitive allocation Z, there is a competitive allocation with unequal budgets such that:
- Z^{\prime} is integral (no items are shared).
- budgets are close $\left|\left|b_{i}^{\prime}\right|-1\right| \leq \max _{j \in[m]}\left|p_{j}\right|$ for all agents i

First result on existence of approx fair allocation o bads

- An integral allocation is Envy-Free-(1,1) if for any pair of agents i, k

$$
V_{i}\left(z_{i} \backslash\{j\}\right) \geq V_{i}\left(z_{k} \cup\left\{j^{\prime}\right\}\right) \text { for some } j, j^{\prime} \in[m]
$$

COROLLARY

For fixed n or m, a Pareto-Optimal Envy-Free-(1,1) allocation of indivisible bads can be computed in strongly polynomial time.

CONSTRAINED ECONOMIES (OPEN PROBLEM)

economy with bads <=> constrained economy with goods:
[Bogomolnaia, Moulin, Sandomirskiy, Yanovskaya (2017)]

- For each chore j introduce an auxiliary good \bar{j}, «not doing j »
, n-1 units of \bar{j} but each agent can consume at most 1 unit.

CONSTRAINED ECONOMIES (OPEN PROBLEM)

economy with bads <=> constrained economy with goods:

> [Bogomolnaia, Moulin, Sandomirskiy, Yanovskaya (2017)]

- For each chore j introduce an auxiliary good \bar{j}, «not doing j »
- n-1 units of \bar{j} but each agent can consume at most 1 unit.

Does our approach work for other constrained economies?

CONSTRAINED ECONOMIES (OPEN PROBLEM)

economy with bads <=> constrained economy with goods:

> [Bogomolnaia, Moulin, Sandomirskiy, Yanovskaya (2017)]

- For each chore j introduce an auxiliary good \bar{j}, «not doing j »
- n-1 units of \bar{j} but each agent can consume at most 1 unit.

?

Does our approach work for other constrained economies?

- mixture of goods and bads
- assignment problems [Hylland, Zeckhauser 1979]: $\sum_{j \in[m]} z_{i j}=\frac{m}{n}$
- Upper and lower bounds on consumption of a subset of items

COMPUTING ONE COMPETITIVE ALLOCATION (OPEN PROBLEM)

If \mathbf{n} and \mathbf{m} are both large, no hope to compute ALL competitive allocations (may have exponential number of them even in the utility space)

Can we compute ONE competitive allocation of bads when n and m are both large, in polynomial time?

COMPUTING ONE COMPETITIVE ALLOCATION (OPEN PROBLEM)

If \mathbf{n} and \mathbf{m} are both large, no hope to compute ALL competitive allocations (may have exponential number of them even in the utility space)

Can we compute ONE competitive allocation of bads when n and m are both large, in polynomial time?

Thank you! (open) questions? (closing) remarks?

BIBLIOGRAPHY

- S. Branzei, F. Sandomirskiy Algorithms for Competitive Division of Chores. To appear on arXiv and at EC 2019 (hopefully)
- E. Peterson, F. Su. 2009. N-person envy-free chore division. arXiv:0909.0303
- Erel Segal-Halevi Fairly Dividing a Cake after Some Parts Were Burnt in the Oven arXiv:1704.00726 [math.CO]
- Anna Bogomolnaia, Herve Moulin, Fedor Sandomirskiy, and Elena Yanovskaya. Com- petitive division of a mixed manna. Econometrica, 85:1847-1871, 2017.
- H. Varian. 1974. Equity, envy and efficiency. Journal of Economic Theory 9, 63-91.
- E. Eisenberg. 1961. Aggregation of utility functions, Management Science, 7, 337-350.
- Siddharth Barman, Sanath Kumar Krishnamurthy On the Proximity of Markets with Integral Equilibria, arXiv:1811.08673 [cs.GT]
- Saeed Alaei, Pooya Jalaly Khalilabadi, and Eva Tardos. Computing equilibrium in matching markets. In Proceedings of the 2017 ACM Conference on Economics and Computation, EC '17, pages 245-261, New York, NY, USA, 2017. ACM.
- Aanund Hylland and Richard Zeckhauser. The efficient allocation of individuals to positions. Journal of Political economy, 87(2):293-314, 1979.

