ITAI ARIELI (TECHNION)

 YAKOV BABICHENKO (TECHNION) FEDOR SANDOMIRSKIY (TECHNION, HSE ST.PETERSBURG) OMER TAMUZ (CALTECH)

FEASIBLE JOINT POSTERIOR BELIEFS arXiv:2002.11362

BAYESIAN COMMUNICATION

BAYESIAN COMMUNICATION

BAYESIAN COMMUNICATION

What joint distributions

 of posteriors on $[0,1]^{N}$ are feasible*?*can be induced by some signalling policy

$$
\left(S_{1} \ldots S_{N}, \mathbb{P}\left(s_{1} \ldots s_{N} \mid \theta\right)\right)
$$

BAYESIAN COMMUNICATION

What joint distributions

 of posteriors on $[0,1]^{N}$ are feasible*?*can be induced by some signalling policy

$$
\left(S_{1} \ldots S_{N}, \mathbb{P}\left(s_{1} \ldots s_{N} \mid \theta\right)\right)
$$

WHY IMPORTANT?

- Learning theory: which distributions can be the outcome of a learning process?

BAYESIAN COMMUNICATION

What joint distributions

 of posteriors on $[0,1]^{N}$ are feasible*?*can be induced by some signalling policy

$$
\left(S_{1} \ldots S_{N}, \mathbb{P}\left(s_{1} \ldots s_{N} \mid \theta\right)\right)
$$

WHY IMPORTANT?

- Learning theory: which distributions can be the outcome of a learning process?
- Decision theory: which distributions can be rationalised within the Bayesian framework?

BAYESIAN COMMUNICATION

What joint distributions

 of posteriors on $[0,1]^{N}$ are feasible*?*can be induced by some signalling policy

$$
\left(S_{1} \ldots S_{N}, \mathbb{P}\left(s_{1} \ldots s_{N} \mid \theta\right)\right)
$$

WHY IMPORTANT?

N Receivers:

- Learning theory: which distributions can be the outcome of a learning process?
- Decision theory: which distributions can be rationalised within the Bayesian framework?
- Bayesian persuasion: which distributions can be induced by the designer?

KNOWN RESULTS

N=1 RECEIVER:

The Martingale Property: $\mathbb{E}\left[p_{1}\right]=p$

- On average, the belief does not change

KNOWN RESULTS

N=1 RECEIVER:

The Martingale Property: $\mathbb{E}\left[p_{1}\right]=p$

- On average, the belief does not change

SPLITTING LEMMA (R.AUMANN \& M.MASCHLER / D.BLACKWELL)
μ on $[0,1]$ is feasible
\Longleftrightarrow satisfies MP: $\int_{[0,1]} p_{1} d \mu\left(p_{1}\right)=p$

KNOWN RESULTS

$\mathrm{N}=1$ RECEIVER:

The Martingale Property: $\mathbb{E}\left[p_{1}\right]=p$

- On average, the belief does not change

SPLITTING LEMMA (R.AUMANN \& M.MASCHLER / D.BLACKWELL) μ on $[0,1]$ is feasible
\Longleftrightarrow satisfies MP: $\int_{[0,1]} p_{1} d \mu\left(p_{1}\right)=p$

SEVERAL RECEIVERS:

NO ANALOG OF SPLITIING LEMMA WAS KNOWN

KNOWN RESULTS

$\mathrm{N}=1$ RECEIVER:

The Martingale Property: $\mathbb{E}\left[p_{1}\right]=p$

- On average, the belief does not change

SPLITTING LEMMA (R.AUMANN \& M.MASCHLER / D.BLACKWELL) μ on $[0,1]$ is feasible
\Longleftrightarrow satisfies MP: $\int_{[0,1]} p_{1} d \mu\left(p_{1}\right)=p$

SEVERAL RECEIVERS:

NO ANALOG of SPLITTIM LEMMA WAS NOWN

KNOWN RESULTS

$\mathrm{N}=1$ RECEIVER:

The Martingale Property: $\mathbb{E}\left[p_{1}\right]=p$

- On average, the belief does not change

SPLITTING LEMMA (R.AUMANN \& M.MASCHLER / D.BLACKWELL)
μ on $[0,1]$ is feasible
\Longleftrightarrow satisfies MP: $\int_{[0,1]} p_{1} d \mu\left(p_{1}\right)=p$

SEVERAL RECEIVERS:

NO ANALOG of SPLITTI LEMMA WAS NOWN

- Dawid, DeGroot, Mortera (1995)
- Mysterious characterisation for $\mathrm{N}=2$

KNOWN RESULTS

$\mathrm{N}=1$ RECEIVER:

The Martingale Property: $\mathbb{E}\left[p_{1}\right]=p$

- On average, the belief does not change

SPLITTING LEMMA (R.AUMANN \& M.MASCHLER / D.BLACKWELL)
μ on $[0,1]$ is feasible
\Longleftrightarrow satisfies MP: $\int_{[0,1]} p_{1} d \mu\left(p_{1}\right)=p$

SEVERAL RECEIVERS:

NO ANALOG of SPLITTIM LEMMA WAS ANOWN

- Dawid, DeGroot, Mortera (1995)
- Mysterious characterisation for $\mathrm{N}=2$
- Burdzy, Pitman (2020)
- Bounds on how different the beliefs can be for $\mathrm{N}=2$

KNOWN RESULTS

$\mathrm{N}=1$ RECEIVER:

The Martingale Property: $\mathbb{E}\left[p_{1}\right]=p$

- On average, the belief does not change

SPLITTING LEMMA (R.AUMANN \& M.MASCHLER / D.BLACKWELL)
μ on $[0,1]$ is feasible
\Longleftrightarrow satisfies MP: $\int_{[0,1]} p_{1} d \mu\left(p_{1}\right)=p$

SEVERAL RECEIVERS:

 SPLITIM LEMMA WASANOWN

- Dawid, DeGroot, Mortera (1995)
- Mysterious characterisation for $\mathrm{N}=2$
- Burdzy, Pitman (2020)
- Bounds on how different the beliefs can be for $\mathrm{N}=2$

〉 Ziegler (2020), Levy, de Barreda, Razin (2020)

- Necessary conditions

KNOWN RESULTS

N=1 RECEIVER:

The Martingale Property: $\mathbb{E}\left[p_{1}\right]=p$

- On average, the belief does not change

SPLITTING LEMMA (R.AUMANN \& M.MASCHLER / D.BLACKWELL)
μ on $[0,1]$ is feasible
\Longleftrightarrow satisfies MP: $\int_{[0,1]} p_{1} d \mu\left(p_{1}\right)=p$

SEVERAL RECEIVERS:

 SPLITIM LEMMA WASANOWN

- Dawid, DeGroot, Mortera (1995)
- Mysterious characterisation for $\mathrm{N}=2$
- Burdzy, Pitman (2020)
- Bounds on how different the beliefs can be for $\mathrm{N}=2$

〉 Ziegler (2020), Levy, de Barreda, Razin (2020)

- Necessary conditions
- Morris (2020)
- Characterisation of feasibility <= No-trade characterisation of Common Prior

KNOWN RESULTS

$\mathrm{N}=1$ RECEIVER:

The Martingale Property: $\mathbb{E}\left[p_{1}\right]=p$

- On average, the belief does not change

SPLITTING LEMMA (R.AUMANN \& M.MASCHLER / D.BLACKWELL)
μ on $[0,1]$ is feasible
\Longleftrightarrow satisfies MP: $\int_{[0,1]} p_{1} d \mu\left(p_{1}\right)=p$

- Dawid, DeGroot, Mortera (1995)
- Mysterious characterisation for $\mathrm{N}=2$
- Burdzy, Pitman (2020)
- Bounds on how different the beliefs can be for $\mathrm{N}=2$

〉 Ziegler (2020), Levy, de Barreda, Razin (2020)

- Necessary conditions
- Morris (2020)
- Characterisation of feasibility <= No-trade characterisation of Common Prior

PLAN FOR TODAY

-Characterisations of feasibility

- $\mathbf{N}=\mathbf{2}$: Agreement Theorem \& Theorem of Dawid et al. (1995)
-Independent beliefs
- \mathbf{N} >2: Characterisation via no-trade
-Bayesian Persuasion
- Optimal policies as extreme points of feasible distributions

DExample: inducing a conflict via Hilbert-space geometry.

CHARACTERISATIONS OF FEASIBILITY

$\overline{\mathrm{N}=2 \text { : IS MARTINGALE PROPERTY ENOUGH FOR FEASIBILITY? }}$
$\overline{\mathrm{N}=2 \text { : IS MARTINGALE PROPERTY ENOUGH FOR FEASIBILITY? }}$
the MP $p=\int_{[0,1] 2} p_{1} d \mu\left(p_{1}, p_{2}\right)=\int_{[0,1]]_{2}} p_{2} d \mu\left(p_{1}, p_{2}\right)$ is necessary
$\overline{\mathrm{N}=2 \text { : IS MARTINGALE PROPERTY ENOUGH FOR FEASIBILITY? }}$
the MP $p=\int_{[0,1] 2} p_{1} d \mu\left(p_{1}, p_{2}\right)=\int_{[0,1]^{2}} p_{2} d \mu\left(p_{1}, p_{2}\right)$ is necessary
-but not sufficient

N=2: IS MARTINGALE PROPERTY ENOUGH FOR FEASIBILITY?

the MP $p=\int_{[0,1] 2} p_{1} d \mu\left(p_{1}, p_{2}\right)=\int_{[0,1]]^{2}} p_{2} d \mu\left(p_{1}, p_{2}\right)$ is necessary -but not sufficient

EXAMPLE WITH $p=1 / 2$

Infeasible:

- Posteriors are common knowledge
- Bayesian-rationals cannot agree to disagree Aumann (1976)

N=2: IS MARTINGALE PROPERTY ENOUGH FOR FEASIBILITY?

the MP $p=\int_{[0,1]^{2}} p_{1} d \mu\left(p_{1}, p_{2}\right)=\int_{[0,1]^{2}} p_{2} d \mu\left(p_{1}, p_{2}\right)$ is necessary Dbut not sufficient

EXAMPLE WITH $p=1 / 2$

QUANTITATIVE BOUND ON DISAGREEMENT

- Define $\delta(A, B)=$

$$
=\int_{A \times[0,1]} p_{1} d \mu-\int_{[0,1] \times B} p_{2} d \mu
$$

p_{2}

Infeasible:

- Posteriors are common knowledge
- Bayesian-rationals cannot agree to disagree Aumann (1976)

N=2: IS MARTINGALE PROPERTY ENOUGH FOR FEASIBILITY?

the MP $p=\int_{[0,1]^{2}} p_{1} d \mu\left(p_{1}, p_{2}\right)=\int_{[0,1]^{2}} p_{2} d \mu\left(p_{1}, p_{2}\right)$ is necessary Dbut not sufficient

EXAMPLE WITH $p=1 / 2$

Infeasible:

- Posteriors are common knowledge
- Bayesian-rationals cannot agree to disagree Aumann (1976)

QUANTITATIVE BOUND ON DISAGREEMENT

- Define $\delta(A, B)=$

$$
=\int_{A \times[0,1]} p_{1} d \mu-\int_{[0,1] \times B} p_{2} d \mu
$$

- Then

$\mu(A \times \bar{B}) \geq \delta(A, B) \geq-\mu(\bar{A} \times B)$
for any feasible μ and $A, B \subset[0,1]$.

N=2: IS MARTINGALE PROPERTY ENOUGH FOR FEASIBILITY?

the MP $p=\int_{[0,1]^{2}} p_{1} d \mu\left(p_{1}, p_{2}\right)=\int_{[0,1]^{2}} p_{2} d \mu\left(p_{1}, p_{2}\right)$ is necessary Dbut not sufficient

EXAMPLE WITH $p=1 / 2$

Infeasible:

- Posteriors are common knowledge
- Bayesian-rationals cannot agree to disagree Aumann (1976)

QUANTITATIVE BOUND ON DISAGREEMENT

- Define $\delta(A, B)=$
$=\int_{A \times[0,1]} p_{1} d \mu-\int_{[0,1] \times B} p_{2} d \mu$
- Then

$\mu(A \times \bar{B}) \geq \delta(A, B) \geq-\mu(\bar{A} \times B)$
for any feasible μ and $A, B \subset[0,1]$.
AUMANN'S AGREEMENT
THEOREM

$$
\Longleftrightarrow \mu(A \times \bar{B})=\mu(\bar{A} \times B)=0
$$

FEASIBILITY FOR N=2

THEOREM (DAWID, DEGROOT, MORTERA (1995))

A distribution is feasible
 satisfies

- Martingale Property
- Quantitative bound on disagreement

$$
\mu(A \times \bar{B}) \geq \int_{A \times[0,1]} p_{1} d \mu-\int_{[0,1] \times B} p_{2} d \mu \geq-\mu(\bar{A} \times B)
$$

FEASIBILITY FOR N=2

THEOREM (DAWID, DEGROOT, MORTERA (1995))

A distribution is feasible
 satisfies

- Martingale Property
- Quantitative bound on disagreement

$$
\mu(A \times \bar{B}) \geq \int_{A \times[0,1]} p_{1} d \mu-\int_{[0,1] \times B} p_{2} d \mu \geq-\mu(\bar{A} \times B)
$$

- Let's see this result in action

COROLLARY: PRODUCT DISTRIBUTIONS WITH $p=1 / 2$

COROLLARY: PRODUCT DISTRIBUTIONS WITH $p=1 / 2$

- Can posteriors be independent?
- R1's belief tells her nothing about the belief of R2

COROLLARY: PRODUCT DISTRIBUTIONS WITH $p=1 / 2$

- Can posteriors be independent?
- R1's belief tells her nothing about the belief of R2

Is \square feasible?

COROLLARY: PRODUCT DISTRIBUTIONS WITH $p=1 / 2$

- Can posteriors be independent?
- R1's belief tells her nothing about the belief of R2

Is

feasible?
Yes!

COROLLARY: PRODUCT DISTRIBUTIONS WITH $p=1 / 2$

- Can posteriors be independent?
- R1's belief tells her nothing about the belief of R2

Is

feasible?

Yes!

CRITERION OF FEASIBILITY FOR PRODUCT DISTRIBUTIONS

Measure ϕ on $[0,1]$, symmetric around $\frac{1}{2}$.
$\phi \times \phi$ is feasible \Longleftrightarrow 2nd-order dominates the Uniform

COROLLARY: PRODUCT DISTRIBUTIONS WITH $p=1 / 2$

- Can posteriors be independent?
- R1's belief tells her nothing about the belief of R2

Is \square feasible?

Yes!

CRITERION OF FEASIBILITY FOR PRODUCT DISTRIBUTIONS

Measure ϕ on $[0,1]$, symmetric around $\frac{1}{2}$.
$\phi \times \phi$ is feasible \Longleftrightarrow 2nd-order dominates the Uniform

- Is

feasible?

COROLLARY: PRODUCT DISTRIBUTIONS WITH $p=1 / 2$

- Can posteriors be independent?
- R1's belief tells her nothing about the belief of R2

Is \square feasible?

Yes!

CRITERION OF FEASIBILITY FOR PRODUCT DISTRIBUTIONS

Measure ϕ on $[0,1]$, symmetric around $\frac{1}{2}$.
$\phi \times \phi$ is feasible \Longleftrightarrow 2nd-order dominates the Uniform

- Is

feasible? No!

COROLLARY: PRODUCT DISTRIBUTIONS WITH $p=1 / 2$

- Can posteriors be independent?
- R1's belief tells her nothing about the belief of R2

Is \square feasible?

Yes!

CRITERION OF FEASIBLLITY FOR PRODUCT DISTRIBUTIONS

Measure ϕ on $[0,1]$, symmetric around $\frac{1}{2}$.
$\phi \times \phi$ is feasible \Longleftrightarrow 2nd-order dominates the Uniform

- Is

feasible? No!
Let's understand why
-Promise to transfer $t\left(p_{i}\right)$ euros to Receiver i if $\theta=1$:

$$
t\left(p_{i}\right)=\left\{\begin{array}{rr}
1, & p_{i} \geq 2 / 3 \\
-1, & p_{i} \leq 1 / 3
\end{array}\right.
$$

-Promise to transfer $t\left(p_{i}\right)$ euros to Receiver i if $\theta=1$:

$$
t\left(p_{i}\right)=\left\{\begin{array}{rr}
1, & p_{i} \geq 2 / 3 \\
-1, & p_{i} \leq 1 / 3
\end{array}\right.
$$

-Ask to pay her fair price $\mathbb{E}\left[t\left(p_{i}\right) \cdot p_{i}\right] \Rightarrow$ her profit is 0

IS INFEASIBLE
 Uniform
 IF IT WAS FEASIBLE WE COULD CONSTRUCT MONEY PUMP:

-Promise to transfer $t\left(p_{i}\right)$ euros to Receiver i if $\theta=1$:

$$
t\left(p_{i}\right)=\left\{\begin{array}{rr}
1, & p_{i} \geq 2 / 3 \\
-1, & p_{i} \leq 1 / 3
\end{array}\right.
$$

-Ask to pay her fair price $\mathbb{E}\left[t\left(p_{i}\right) \cdot p_{i}\right] \Rightarrow$ her profit is 0
Our profit must also be $0=\mathbb{E}\left[\sum_{i=1}^{3} p_{i} \cdot t\left(p_{i}\right)-1_{\theta=1} \cdot \sum_{i=1}^{3} t\left(p_{i}\right)\right] \geq$

IS INFEASIBLE
 Uniform
 IF IT WAS FEASIBLE WE COULD CONSTRUCT MONEY PUMP:

-Promise to transfer $t\left(p_{i}\right)$ euros to Receiver i if $\theta=1$:

$$
t\left(p_{i}\right)=\left\{\begin{array}{rr}
1, & p_{i} \geq 2 / 3 \\
-1, & p_{i} \leq 1 / 3
\end{array}\right.
$$

-Ask to pay her fair price $\mathbb{E}\left[t\left(p_{i}\right) \cdot p_{i}\right] \Rightarrow$ her profit is 0
-Our profit must also be $0=\mathbb{E}\left[\sum_{i=1}^{3} p_{i} \cdot t\left(p_{i}\right)-1_{\theta=1} \cdot \sum_{i=1}^{3} t\left(p_{i}\right)\right] \geq$

$$
\geq \mathbb{E}\left[\sum_{i=1}^{3} p_{i} \cdot t\left(p_{i}\right)-\max \left\{0, \sum_{i=1}^{3} t\left(p_{i}\right)\right\}\right]=
$$

IS INFEASIBLE
 Uniform
 IF IT WAS FEASIBLE WE COULD CONSTRUCT MONEY PUMP:

Promise to transfer $t\left(p_{i}\right)$ euros to Receiver i if $\theta=1$:

$$
t\left(p_{i}\right)=\left\{\begin{array}{rr}
1, & p_{i} \geq 2 / 3 \\
-1, & p_{i} \leq 1 / 3
\end{array}\right.
$$

-Ask to pay her fair price $\mathbb{E}\left[t\left(p_{i}\right) \cdot p_{i}\right] \Rightarrow$ her profit is 0
-Our profit must also be $0=\mathbb{E}\left[\sum_{i=1}^{3} p_{i} \cdot t\left(p_{i}\right)-1_{\theta=1} \cdot \sum_{i=1}^{3} t\left(p_{i}\right)\right] \geq$

$$
\begin{aligned}
& \geq \mathbb{E}\left[\sum_{i=1}^{3} p_{i} \cdot t\left(p_{i}\right)-\max \left\{0, \sum_{i=1}^{3} t\left(p_{i}\right)\right\}\right]= \\
&= \int_{[0,1]^{3}}\left[\sum_{i=1}^{3} p_{i} \cdot t\left(p_{i}\right)-\max \left\{0, \sum_{i=1}^{3} t\left(p_{i}\right)\right\}\right] d p_{1} d p_{2} d p_{3}
\end{aligned}
$$

IS INFEASIBLE
 Uniform
 IF IT WAS FEASIBLE WE COULD CONSTRUCT MONEY PUMP:

Promise to transfer $t\left(p_{i}\right)$ euros to Receiver i if $\theta=1$:

$$
t\left(p_{i}\right)=\left\{\begin{array}{rr}
1, & p_{i} \geq 2 / 3 \\
-1, & p_{i} \leq 1 / 3
\end{array}\right.
$$

-Ask to pay her fair price $\mathbb{E}\left[t\left(p_{i}\right) \cdot p_{i}\right] \Rightarrow$ her profit is 0
Our profit must also be $0=\mathbb{E}\left[\sum_{i=1}^{3} p_{i} \cdot t\left(p_{i}\right)-1_{\theta=1} \cdot \sum_{i=1}^{3} t\left(p_{i}\right)\right] \geq$

$$
\begin{gathered}
\geq \mathbb{E}\left[\sum_{i=1}^{3} p_{i} \cdot t\left(p_{i}\right)-\max \left\{0, \sum_{i=1}^{3} t\left(p_{i}\right)\right\}\right]= \\
=\int_{[0,1]^{3}}\left[\sum_{i=1}^{3} p_{i} \cdot t\left(p_{i}\right)-\max \left\{0, \sum_{i=1}^{3} t\left(p_{i}\right)\right\}\right] d p_{1} d p_{2} d p_{3}=\frac{1}{9} ?!?
\end{gathered}
$$

IS INFEASIBLE
 Uniform
 IF IT WAS FEASIBLE WE COULD CONSTRUCT MONEY PUMP:

Promise to transfer $t\left(p_{i}\right)$ euros to Receiver i if $\theta=1$:

$$
t\left(p_{i}\right)=\left\{\begin{array}{rr}
1, & p_{i} \geq 2 / 3 \\
-1, & p_{i} \leq 1 / 3
\end{array}\right.
$$

-Ask to pay her fair price $\mathbb{E}\left[t\left(p_{i}\right) \cdot p_{i}\right] \Rightarrow$ her profit is 0
-Our profit must also be $0=\mathbb{E}\left[\sum_{i=1}^{3} p_{i} \cdot t\left(p_{i}\right)-1_{\theta=1} \cdot \sum_{i=1}^{3} t\left(p_{i}\right)\right] \geq$

$$
\begin{gathered}
\geq \mathbb{E}\left[\sum_{i=1}^{3} p_{i} \cdot t\left(p_{i}\right)-\max \left\{0, \sum_{i=1}^{3} t\left(p_{i}\right)\right\}\right]= \\
=\int_{[0,1]^{3}}\left[\sum_{i=1}^{3} p_{i} \cdot t\left(p_{i}\right)-\max \left\{0, \sum_{i=1}^{3} t\left(p_{i}\right)\right\}\right] d p_{1} d p_{2} d p_{3}=\frac{1}{9} ?!?
\end{gathered}
$$

CONCLUSION uniform on $[0,1]^{3}$ is not feasible

FEASIBILITY FOR N>2 AND ARBITRARY SET OF STATES

FEASIBILITY FOR N>2 AND ARBITRARY SET OF STATES

- Set of states Θ can be finite vs. countable vs. continuous

FEASIBILITY FOR N>2 AND ARBITRARY SET OF STATES

- Set of states Θ can be finite vs. countable vs. continuous
- Prior and posteriors $p, p_{i} \in \Delta(\Theta)$

FEASIBLITY FOR N>2 AND ARBITRARY SET OF STATES

- Set of states Θ can be finite vs. countable vs. continuous
- Prior and posteriors $p, p_{i} \in \Delta(\Theta)$
, Joint distribution of posteriors $\mu \in \Delta(\Delta(\Theta) \times \ldots \times \Delta(\Theta))$

FEASIBLITY FOR N>2 AND ARBITRARY SET OF STATES

- Set of states Θ can be finite vs. countable vs. continuous
- Prior and posteriors $p, p_{i} \in \Delta(\Theta)$
, Joint distribution of posteriors $\mu \in \Delta(\Delta(\Theta) \times \ldots \times \Delta(\Theta))$
- Transfers $t_{i}\left(p_{i}, \theta\right)$

FEASIBLITY FOR N>2 AND ARBITRARY SET OF STATES

- Set of states Θ can be finite vs. countable vs. continuous
- Prior and posteriors $p, p_{i} \in \Delta(\Theta)$
- Joint distribution of posteriors $\mu \in \Delta(\Delta(\Theta) \times \ldots \times \Delta(\Theta))$
- Transfers $t_{i}\left(p_{i}, \theta\right)$

THEOREM

μ is feasible for some prior \Longleftrightarrow no money pump

$$
\int_{\Delta(\Theta)}\left[\sum_{i=1}^{N}\left(\int_{\Theta} t_{i}\left(p_{i}, \theta\right) d p_{i}\right)-\sup _{\theta \in \Theta}\left\{\sum_{i=1}^{N} t_{i}\left(p_{i}, \theta\right)\right\}\right] d \mu\left(p_{1}, \ldots, d p_{N}\right) \leq 0
$$

FEASIBLITY FOR N>2 AND ARBITRARY SET OF STATES

- Set of states Θ can be finite vs. countable vs. continuous
- Prior and posteriors $p, p_{i} \in \Delta(\Theta)$
- Joint distribution of posteriors $\mu \in \Delta(\Delta(\Theta) \times \ldots \times \Delta(\Theta))$
- Transfers $t_{i}\left(p_{i}, \theta\right)$

THEOREM

μ is feasible for some prior \Longleftrightarrow no money pump

$$
\int_{\Delta(\Theta)}\left[\sum_{i=1}^{N}\left(\int_{\Theta} t_{i}\left(p_{i}, \theta\right) d p_{i}\right)-\sup _{\theta \in \Theta}\left\{\sum_{i=1}^{N} t_{i}\left(p_{i}, \theta\right)\right\}\right] d \mu\left(p_{1}, \ldots, d p_{N}\right) \leq 0
$$

PROOF Necessity obvious
, Sufficiency the Farkas lemma (finite support),
Kellerer's theorem (1984) (general case)

FEASIBLITY FOR N>2 AND ARBITRARY SET OF STATES

- Set of states Θ can be finite vs. countable vs. continuous
- Prior and posteriors $p, p_{i} \in \Delta(\Theta)$
, Joint distribution of posteriors $\mu \in \Delta(\Delta(\Theta) \times \ldots \times \Delta(\Theta))$
- Transfers $t_{i}\left(p_{i}, \theta\right)$

THEOREM

μ is feasible for some prior \Longleftrightarrow no money pump

$$
\int_{\Delta(\Theta)}\left[\sum_{i=1}^{N}\left(\int_{\Theta} t_{i}\left(p_{i}, \theta\right) d p_{i}\right)-\sup _{\theta \in \Theta}\left\{\sum_{i=1}^{N} t_{i}\left(p_{i}, \theta\right)\right\}\right] d \mu\left(p_{1}, \ldots, d p_{N}\right) \leq 0
$$

PROOF Necessity obvious
-Sufficiency the Farkas lemma (finite support),
Kellerer's theorem (1984) (general case)
REMARK Theorem of Dawid et al. \Longleftrightarrow binary $\Theta, N=2, t_{i}=$ indicators

FEASIBLITY FOR N>2 AND ARBITRARY SET OF STATES

- Set of states Θ can be finite vs. countable vs. continuous
- Prior and posteriors $p, p_{i} \in \Delta(\Theta)$
- Joint distribution of posteriors $\mu \in \Delta(\Delta(\Theta) \times \ldots \times \Delta(\Theta))$
- Transfers $t_{i}\left(p_{i}, \theta\right)$

THEOREM

μ is feasible for some prior \Longleftrightarrow no money pump
$\int_{\Delta(\Theta)}\left[\sum_{i=1}^{N}\left(\int_{\Theta} t_{i}\left(p_{i}, \theta\right) d p_{i}\right)-\sup _{\theta \in \Theta}\left\{\sum_{i=1}^{N} t_{i}\left(p_{i}, \theta\right)\right\}\right] d \mu\left(p_{1}, \ldots, d p_{N}\right) \leq 0$
PROOF Necessity obvious
-Sufficiency the Farkas lemma (finite support),
Kellerer's theorem (1984) (general case)
REMARK \quad Theorem of Dawid et al. \Longleftrightarrow binary $\Theta, N=2, t_{i}=$ indicators -For $N>2$, indicators are not enough

FEASIBLITY FOR N >2 AND ARBITRARY SET OF STATES

- Set of states Θ can be finite vs. countable vs. continuous
- Prior and posteriors $p, p_{i} \in \Delta(\Theta)$
- Joint distribution of posteriors $\mu \in \Delta(\Delta(\Theta) \times \ldots \times \Delta(\Theta))$
- Transfers $t_{i}\left(p_{i}, \theta\right)$

THEOREM

μ is feasible for some prior \Longleftrightarrow no money pump

$$
\int_{\Delta(\Theta)}\left[\sum_{i=1}^{N}\left(\int_{\Theta} t_{i}\left(p_{i}, \theta\right) d p_{i}\right)-\sup _{\theta \in \Theta}\left\{\sum_{i=1}^{N} t_{i}\left(p_{i}, \theta\right)\right\}\right] d \mu\left(p_{1}, \ldots, d p_{N}\right) \leq 0
$$

PROOF Necessity obvious
-Sufficiency the Farkas lemma (finite support),
Kellerer's theorem (1984) (general case)
REMARK Theorem of Dawid et al. \Longleftrightarrow binary $\Theta, N=2, t_{i}=$ indicators -For $N>2$, indicators are not enough
QUESTION What is enough? Say, are combinations of $N-1$ indicators enough?

BAYESIAN PERSUASION

BAYESIAN PERSUASION WITH N=2 RECEIVERS

BAYESIAN PERSUASION WITH N=2 RECEIVERS

- Optimal policies = extreme points of feasible distributions

BAYESIAN PERSUASION WITH N=2 RECEIVERS

THE GOAL
Maximize $\mathbb{E}\left[u\left(p_{1}, p_{2}\right)\right]$
over feasible distributions

- Optimal policies = extreme points of feasible distributions
- May have countable support \Longrightarrow infinite number of signals

BAYESIAN PERSUASION WITH N=2 RECEIVERS

THE GOAL

Maximize $\mathbb{E}\left[u\left(p_{1}, p_{2}\right)\right]$
over feasible distributions

- Optimal policies = extreme points of feasible distributions
- May have countable support \Longrightarrow infinite number of signals

- Contrast with $\mathrm{N}=1$, where 2 signals are enough
- Kamenica, Gentzkow (2011)

BAYESIAN PERSUASION WITH N=2 RECEIVERS

THE GOAL

Maximize $\mathbb{E}\left[u\left(p_{1}, p_{2}\right)\right]$
over feasible distributions

- Optimal policies = extreme points of feasible distributions
- May have countable support \Longrightarrow infinite number of signals

- Contrast with $\mathrm{N}=1$, where 2 signals are enough
- Kamenica, Gentzkow (2011)

CONJECTURE No non-atomic extreme points

BAYESIAN PERSUASION WITH N=2 RECEIVERS

THE GOAL

Maximize $\mathbb{E}\left[u\left(p_{1}, p_{2}\right)\right]$
over feasible distributions

- Optimal policies = extreme points of feasible distributions
- May have countable support \Longrightarrow infinite number of signals

- Contrast with $\mathrm{N}=1$, where 2 signals are enough
- Kamenica, Gentzkow (2011)

CONJECTURE No non-atomic extreme points

- We proved: any extreme point has 0-measure support

EXAMPLES: INDUCING CONFLICT FOR $p=0.5$

EXAMPLES: INDUCING CONFLICT FOR $p=0.5$

Maximize $\mathbb{E}\left|p_{1}-p_{2}\right|^{2}$

EXAMPLES: INDUCING CONFLICT FOR $p=0.5$

Maximize $\mathbb{E}\left|p_{1}-p_{2}\right|^{2}$
$\underbrace{\frac{1}{2}} \quad \frac{1}{2}$
p_{1}

EXAMPLES: INDUCING CONFLICT FOR $p=0.5$

Maximize $\mathbb{E}\left|p_{1}-p_{2}\right|^{2}$ Minimize $\operatorname{cov}\left[p_{1}, p_{2}\right]=\mathbb{E}\left[\left(p_{1}-0.5\right)\left(p_{2}-0.5\right)\right]$

p_{1}

EXAMPLES: INDUCING CONFLICT FOR $p=0.5$

Maximize $\mathbb{E}\left|p_{1}-p_{2}\right|^{2}$ Minimize $\operatorname{cov}\left[p_{1}, p_{2}\right]=\mathbb{E}\left[\left(p_{1}-0.5\right)\left(p_{2}-0.5\right)\right]$

p_{2}

value $=-\frac{1}{32}$

EXAMPLES: INDUCING CONFLICT FOR $p=0.5$

Maximize $\mathbb{E}\left|p_{1}-p_{2}\right|^{2}$ Minimize $\operatorname{cov}\left[p_{1}, p_{2}\right]=\mathbb{E}\left[\left(p_{1}-0.5\right)\left(p_{2}-0.5\right)\right]$

p_{2}
value $=-\frac{1}{32}$

HOW TO SOLVE? HILBERT-SPACE APPROACH:

EXAMPLES: INDUCING CONFLICT FOR $p=0.5$

Maximize $\mathbb{E}\left|p_{1}-p_{2}\right|^{2}$ Minimize $\operatorname{cov}\left[p_{1}, p_{2}\right]=\mathbb{E}\left[\left(p_{1}-0.5\right)\left(p_{2}-0.5\right)\right]$

value $=-\frac{1}{32}$

HOW TO SOLVE? HILBERT-SPACE APPROACH:
posterior $=$ conditional expectation $p_{i}=\mathbb{E}\left[1_{\theta=1} \mid s_{i}\right]$

EXAMPLES: INDUCING CONFLICT FOR $p=0.5$

Maximize $\mathbb{E}\left|p_{1}-p_{2}\right|^{2}$ Minimize $\operatorname{cov}\left[p_{1}, p_{2}\right]=\mathbb{E}\left[\left(p_{1}-0.5\right)\left(p_{2}-0.5\right)\right]$

value $=-\frac{1}{32}$

HOW TO SOLVE? HILBERT-SPACE APPROACH:
vosterior $=$ conditional expectation $p_{i}=\mathbb{E}\left[1_{\theta=1} \mid s_{i}\right]$
$\checkmark \xi \rightarrow \mathbb{E}[\xi \mid \mathscr{F}]$ is an orthogonal projection in L^{2}

EXAMPLES: INDUCING CONFLICT FOR $p=0.5$

Maximize $\mathbb{E}\left|p_{1}-p_{2}\right|^{2} \quad$ Minimize $\operatorname{cov}\left[p_{1}, p_{2}\right]=\mathbb{E}\left[\left(p_{1}-0.5\right)\left(p_{2}-0.5\right)\right]$

p_{1}

HOW TO SOLVE? HILBERT-SPACE APPROACH:

-posterior $=$ conditional expectation $p_{i}=\mathbb{E}\left[1_{\theta=1} \mid s_{i}\right]$
$\checkmark \xi \rightarrow \mathbb{E}[\xi \mid \mathscr{F}]$ is an orthogonal projection in L^{2}
$\{$ all orthogonal projections of $\xi\}=$ sphere of radius $\|\xi\| / 2$ centred at $\xi / 2$

EXAMPLES: INDUCING CONFLICT FOR $p=0.5$

Maximize $\mathbb{E}\left|p_{1}-p_{2}\right|^{2}$ Minimize $\operatorname{cov}\left[p_{1}, p_{2}\right]=\mathbb{E}\left[\left(p_{1}-0.5\right)\left(p_{2}-0.5\right)\right]$

p_{1}

HOW TO SOLVE? HILBERT-SPACE APPROACH:

vosterior $=$ conditional expectation $p_{i}=\mathbb{E}\left[1_{\theta=1} \mid s_{i}\right]$
$\checkmark \xi \rightarrow \mathbb{E}[\xi \mid \mathscr{F}]$ is an orthogonal projection in L^{2}
, all orthogonal projections of $\xi\}=$ sphere of radius $\|\xi\| / 2$ centred at $\xi / 2$
-express the quadratic objective through scalar products

EXAMPLES: INDUCING CONFLICT FOR $p=0.5$

Maximize $\mathbb{E}\left|p_{1}-p_{2}\right|^{2}$ Minimize $\operatorname{cov}\left[p_{1}, p_{2}\right]=\mathbb{E}\left[\left(p_{1}-0.5\right)\left(p_{2}-0.5\right)\right]$
p_{2}

p_{1}

HOW TO SOLVE? HILBERT-SPACE APPROACH:

vosterior $=$ conditional expectation $p_{i}=\mathbb{E}\left[1_{\theta=1} \mid s_{i}\right]$
$\checkmark \xi \rightarrow \mathbb{E}[\xi \mid \mathscr{F}]$ is an orthogonal projection in L^{2}
, all orthogonal projections of $\xi\}=$ sphere of radius $\|\xi\| / 2$ centred at $\xi / 2$
-express the quadratic objective through scalar products ssimple optimisation problem on the sphere

EXAMPLES: INDUCING CONFLICT FOR $p=0.5$

Maximize $\mathbb{E}\left|p_{1}-p_{2}\right|^{2}$ Minimize $\operatorname{cov}\left[p_{1}, p_{2}\right]=\mathbb{E}\left[\left(p_{1}-0.5\right)\left(p_{2}-0.5\right)\right]$
p_{2}

p_{1}

HOW TO SOLVE? HLLBERT-SPACE APPROACH:

vosterior $=$ conditional expectation $p_{i}=\mathbb{E}\left[1_{\theta=1} \mid s_{i}\right]$
$\checkmark \xi \rightarrow \mathbb{E}[\xi \mid \mathscr{F}]$ is an orthogonal projection in L^{2}
$\{$ all orthogonal projections of $\xi\}=$ sphere of radius $\|\xi\| / 2$ centred at $\xi / 2$
-express the quadratic objective through scalar products ssimple optimisation problem on the sphere

QUESTION Anything beyond quadratic objectives?

SUMMARY

- $\mathrm{N}=1, \mathrm{~N}=2, \mathrm{~N}>2$ differ significantly
- Feasibility: Quantitative Agreement Theorem ($\mathrm{N}=2$), No-trade ($\mathrm{N}>2$)

Optimal persuasion may require infinite number of signals
„Open problems:
indicator trades, continuum of signals, non-quadratic objectives

SUMMARY

- $\mathrm{N}=1, \mathrm{~N}=2, \mathrm{~N}>2$ differ significantly
|Feasibility: Quantitative Agreement Theorem ($\mathrm{N}=2$), No-trade ($\mathrm{N}>2$)
Optimal persuasion may require infinite number of signals
-Open problems:
indicator trades, continuum of signals, non-quadratic objectives

THANK YOU!

REFERENCES

- Aumann, Maschler Repeated games with incomplete information. MIT Press, 1995
- Blackwell Comparison of experiments. Second Berkeley Symposium on Mathematical Statistics and Probability, 1951
- Dawid, DeGroot, Mortera Coherent combination of experts' opinions. Test, 1995
(Burdzy and Pitman Bounds on the probability of radically different opinions. Elect. Commun. in Prob., 2020
- Ziegler Adversarial bilateral information design. Working Paper, 2020
- Levy, de Barreda, Razin Persuasion with correlation neglect. Working Paper, 2020
- Mathevet, Perego, Taneva On information design in games. JPE, 2019
- Morris No trade and feasible joint posterior beliefs. Working Paper, 2020
- Aumann Agreeing to disagree. The Annals of Statistics, 1976
- Kellerer Duality theorems for marginal problems. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 1984
- Kamenica, Gentzkow Bayesian persuasion. AER, 2011

