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PLAN FOR TODAY

▸Characterisations of feasibility 

▸N=2: Agreement Theorem & Theorem of Dawid et al. (1995) 

▸Independent beliefs 

▸N>2: Characterisation via no-trade 

▸Bayesian Persuasion 

▸Optimal policies as extreme points of feasible distributions 

▸Example: inducing a conflict via Hilbert-space geometry.
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‣ Let’s see this result in action
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‣ Is                    feasible?

COROLLARY: PRODUCT DISTRIBUTIONS WITH
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CRITERION OF FEASIBILITY FOR PRODUCT DISTRIBUTIONS
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ϕ 1

2
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⟺

p = 1/2

Yes!}

‣ Is                    feasible? No! Let’s understand why
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THEOREM

∫Δ(Θ)

N

∑
i=1 (∫Θ

ti(pi, θ) dpi) − sup
θ∈Θ {

N

∑
i=1

ti(pi, θ)} dμ(p1, …, dpN) ≤ 0

FEASIBILITY FOR N>2 AND ARBITRARY SET OF STATES
▸ Set of states  can be finite vs. countable vs. continuousΘ

▸ Joint distribution of posteriors μ ∈ Δ(Δ(Θ) × … × Δ(Θ))
▸ Transfers ti(pi, θ)

is feasible  for some prior             no money pump         

▸ Prior and posteriors p, pi ∈ Δ(Θ)

⟺μ

▸Necessity obvious 
▸Sufficiency the Farkas lemma (finite support),  
                         Kellerer’s theorem (1984) (general case)

PROOF

▸Theorem of Dawid et al.               binary , N=2, indicatorsΘ ti =REMARK ⟺
QUESTION ▸What is enough? Say, are combinations of N-1 indicators enough?

▸For N>2, indicators are not enough
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THE GOAL
BAYESIAN PERSUASION WITH N=2 RECEIVERS

u(p1, p2)utility

𝔼[u(p1, p2)]Maximize

over feasible distributions        

‣Optimal policies = extreme points of feasible distributions 

‣May have countable support                 infinite number of signals⟹
‣ Contrast with N=1, where 2 signals are enough 
‣ Kamenica, Gentzkow (2011)

Receivers:

p2

p′�N = P(θ = 1 ∣ s1)

Informed sender: p1

No non-atomic extreme pointsCONJECTURE 
‣ We proved: any extreme point has 0-measure support
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value   = −
1
32

𝔼 |p1 − p2 |2Maximize cov[p1, p2] = 𝔼[(p1 − 0.5)(p2 − 0.5)]Minimize

HOW TO SOLVE?      HILBERT-SPACE APPROACH:
▸posterior = conditional expectation  pi = 𝔼[1θ=1 ∣ si]
▸  is an orthogonal projection in ξ → 𝔼[ξ ∣ ℱ] L2

▸{all orthogonal projections of }=sphere of radius  centred at ξ ∥ξ∥/2 ξ/2

▸express the quadratic objective through scalar products
▸simple optimisation problem on the sphere

Anything beyond quadratic objectives?QUESTION
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SUMMARY 

▸N=1, N=2, N>2 differ significantly 

▸Feasibility:  Quantitative Agreement Theorem (N=2), No-trade (N>2) 

▸Optimal persuasion may require infinite number of signals 

▸Open problems:  

▸indicator trades, continuum of signals, non-quadratic objectives

THANK YOU!
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