

ITAI ARIELI (TECHNION)

FEASIBLE JOINT POSTERIOR BELIEFS

arXiv:2002.11362

*can be induced by some signalling policy $(S_1...S_N, \mathbb{P}(s_1...s_N \mid \theta))$

are feasible*?

*can be induced by some signalling policy $(S_1...S_N, \mathbb{P}(s_1...s_N \mid \theta))$

*can be induced by some signalling policy $(S_1...S_N, \mathbb{P}(s_1...s_N \mid \theta))$

WHY IMPORTANT?

• Learning theory: which distributions can be the outcome of a learning process?

*can be induced by some signalling policy $(S_1...S_N, \mathbb{P}(s_1...s_N \mid \theta))$

WHY IMPORTANT?

- Learning theory: which distributions can be the outcome of a learning process?
- Decision theory: which distributions can be rationalised within the Bayesian framework?

*can be induced by some signalling policy $(S_1...S_N, \mathbb{P}(s_1...s_N \mid \theta))$

WHY IMPORTANT?

- Learning theory: which distributions can be the outcome of a learning process?
- **Decision theory:** which distributions can be rationalised within the Bayesian framework?
- **Bayesian persuasion:** which distributions can be induced by the designer?

N=1 RECEIVER:

The Martingale Property: $\mathbb{E}[p_1] = p$

On average, the belief does not change

N=1 RECEIVER:

The Martingale Property: $\mathbb{E}[p_1] = p$

On average, the belief does not change

SPLITTING LEMMA (R.AUMANN & M.MASCHLER / D.BLACKWELL)

 μ on [0,1] is feasible \iff satisfies MP: $\int_{[0,1]} p_1 d\mu(p_1) = p$

N=1 RECEIVER:

The Martingale Property: $\mathbb{E}[p_1] = p$

On average, the belief does not change

SPLITTING LEMMA (R.AUMANN & M.MASCHLER / D.BLACKWELL)

 μ on [0,1] is feasible \iff satisfies MP: $\int_{r_0 r_1} p_1 d\mu(p_1) = p$

SEVERAL RECEIVERS:

NO ANALOG OF Splitting Lemma Was Known

N=1 RECEIVER:

The Martingale Property:
$$\mathbb{E}[p_1] = p$$

On average, the belief does not change

SPLITTING LEMMA (R.AUMANN & M.MASCHLER / D.BLACKWELL)

 μ on [0,1] is feasible \iff satisfies MP: $\int p_1 d\mu(p_1) = p$

SEVERAL RECEIVERS:

NO ANALOG OF Splitting Lemma Was known

N=1 RECEIVER:

The Martingale Property:
$$\mathbb{E}[p_1] = p$$

On average, the belief does not change

SPLITTING LEMMA (R.AUMANN & M.MASCHLER / D.BLACKWELL)

 μ on [0,1] is feasible

 \iff satisfies MP:

$$p_1 \, d\mu(p_1) = p$$

SEVERAL RECEIVERS: NO ANALOG OF SPLITING LEMMA WAS NNW

- Dawid, DeGroot, Mortera (1995)
 - Mysterious characterisation for N=2

N=1 RECEIVER:

The Martingale Property: $\mathbb{E}[p_1] = p$

On average, the belief does not change

SPLITTING LEMMA (R.AUMANN & M.MASCHLER / D.BLACKWELL)

 μ on [0,1] is feasible

 \iff satisfies MP:

$$p_1 d\mu(p_1) = p_1^{0,11}$$

SEVERAL RECEIVERS:

SPLITTING LEMMA

NO ANALOG O

WAS KNOWN

Dawid, DeGroot, Mortera (1995)

- Mysterious characterisation for N=2
- Burdzy, Pitman (2020)
 - Bounds on how different the beliefs can be for N=2

N=1 RECEIVER:

The Martingale Property: $\mathbb{E}[p_1] = p$

On average, the belief does not change

SPLITTING LEMMA (R.AUMANN & M.MASCHLER / D.BLACKWELL)

 μ on [0,1] is feasible

 \iff satisfies MP:

$$p_1 d\mu(p_1) = p_1$$

SEVERAL RECEIVERS:

NO ANALOG OF Splitting Lemma Was known

- Dawid, DeGroot, Mortera (1995)
 - Mysterious characterisation for N=2
- Burdzy, Pitman (2020)
 - Bounds on how different the beliefs can be for N=2
- Ziegler (2020), Levy, de Barreda, Razin (2020)
 - Necessary conditions

N=1 RECEIVER:

The Martingale Property: $\mathbb{E}[p_1] = p$

On average, the belief does not change

SPLITTING LEMMA (R.AUMANN & M.MASCHLER / D.BLACKWELL)

 μ on [0,1] is feasible

 \iff satisfies MP:

$$p_1 d\mu(p_1) = p_1$$

SEVERAL RECEIVERS:

NO ANALOG OF Splitting Lemma Was Nown

- Dawid, DeGroot, Mortera (1995)
 - Mysterious characterisation for N=2
- Burdzy, Pitman (2020)
 - Bounds on how different the beliefs can be for N=2
- Ziegler (2020), Levy, de Barreda, Razin (2020)
 - Necessary conditions

Morris (2020)

Characterisation of feasibility <= No-trade characterisation of Common Prior</p>

N=1 RECEIVER:

The Martingale Property: $\mathbb{E}[p_1] = p$

On average, the belief does not change

SPLITTING LEMMA (R.AUMANN & M.MASCHLER / D.BLACKWELL)

 μ on [0,1] is feasible

 \iff satisfies MP: $\int p_1 d\mu(p_1) = p$

SEVERAL RECEIVERS:

NO ANALOG OF SPLITTING LEMMA WAS KNOWN FOR N>2

- Dawid, DeGroot, Mortera (1995)
 - Mysterious characterisation for N=2
- Burdzy, Pitman (2020)
 - Bounds on how different the beliefs can be for N=2
- Ziegler (2020), Levy, de Barreda, Razin (2020)
 - Necessary conditions

Morris (2020)

Characterisation of feasibility <= No-trade</p> characterisation of Common Prior

PLAN FOR TODAY

Characterisations of feasibility

N=2: Agreement Theorem & Theorem of Dawid et al. (1995)

Independent beliefs

N>2: Characterisation via no-trade

Bayesian Persuasion

• Optimal policies as extreme points of feasible distributions

Example: inducing a conflict via Hilbert-space geometry.

CHARACTERISATIONS OF FEASIBILITY

N=2: IS MARTINGALE PROPERTY ENOUGH FOR FEASIBILITY?

N=2: IS MARTINGALE PROPERTY ENOUGH FOR FEASIBILITY? • the MP $p = \int_{[0,1]^2} p_1 d\mu(p_1, p_2) = \int_{[0,1]^2} p_2 d\mu(p_1, p_2)$ is necessary

N=2: IS MARTINGALE PROPERTY ENOUGH FOR FEASIBILITY? • the MP $p = \int_{[0,1]^2} p_1 d\mu(p_1, p_2) = \int_{[0,1]^2} p_2 d\mu(p_1, p_2)$ is necessary • but not sufficient

N=2: IS MARTINGALE PROPERTY ENOUGH FOR FEASIBILITY? • the MP $p = \int_{[0,1]^2} p_1 d\mu(p_1, p_2) = \int_{[0,1]^2} p_2 d\mu(p_1, p_2)$ is necessary • but not sufficient

- Posteriors are common knowledge
- Bayesian-rationals cannot agree to disagree Aumann (1976)

FEASIBILITY FOR N=2

THEOREM (DAWID, DEGROOT, MORTERA (1995))

A distribution is feasible \iff satisfies

- Martingale Property
- Quantitative bound on disagreement

$$\mu(A \times \overline{B}) \ge \int_{A \times [0,1]} p_1 d\mu - \int_{[0,1] \times B} p_2 d\mu \ge -\mu(\overline{A} \times B)$$

FEASIBILITY FOR N=2

THEOREM (DAWID, DEGROOT, MORTERA (1995))

A distribution is feasible \iff satisfies

- Martingale Property
- Quantitative bound on disagreement

$$\mu(A \times \overline{B}) \ge \int_{A \times [0,1]} p_1 d\mu - \int_{[0,1] \times B} p_2 d\mu \ge -\mu(\overline{A} \times B)$$

Let's see this result in action

- Can posteriors be independent?
 - R1's belief tells her nothing about the belief of R2

- Can posteriors be independent?
 - R1's belief tells her nothing about the belief of R2

- Can posteriors be independent?
 - R1's belief tells her nothing about the belief of R2
 - S Uniform

- Can posteriors be independent?
 - R1's belief tells her nothing about the belief of R2

CRITERION OF FEASIBILITY FOR PRODUCT DISTRIBUTIONS

Measure ϕ on [0,1], symmetric around $\frac{1}{2}$.

Yes!

 $\phi \times \phi$ is feasible \iff 2nd-order dominates the Uniform

Uniform feasible?

S

Can posteriors be independent?

feasible?

R1's belief tells her nothing about the belief of R2

CRITERION OF FEASIBILITY FOR PRODUCT DISTRIBUTIONS

Measure ϕ on [0,1], symmetric around $\frac{1}{2}$.

 $\phi \times \phi$ is feasible \iff 2nd-order dominates the Uniform

Yes!

S

Uniform

Can posteriors be independent?

S

Uniform

feasible?

R1's belief tells her nothing about the belief of R2

CRITERION OF FEASIBILITY FOR PRODUCT DISTRIBUTIONS

Measure ϕ on [0,1], symmetric around $\frac{1}{2}$.

 $\phi \times \phi$ is feasible \iff 2nd-order dominates the Uniform

Yes!

Can posteriors be independent?

S

Uniform

feasible?

R1's belief tells her nothing about the belief of R2

CRITERION OF FEASIBILITY FOR PRODUCT DISTRIBUTIONS

Measure ϕ on [0,1], symmetric around $\frac{1}{2}$.

Yes!

 $\phi \times \phi$ is feasible \iff 2nd-order dominates the Uniform

IS INFEASIBLE

Uniform

IF IT WAS FEASIBLE WE COULD CONSTRUCT MONEY PUMP:
IS INFEASIBLE

IF IT WAS FEASIBLE WE COULD CONSTRUCT MONEY PUMP:

Promise to transfer $t(p_i)$ euros to **Receiver** *i* if $\theta = 1$:

$$t(p_i) = \begin{cases} 1, & p_i \ge 2/3 \\ -1, & p_i \le 1/3 \end{cases}$$

IS INFEASIBLE

IF IT WAS FEASIBLE WE COULD CONSTRUCT MONEY PUMP:

Promise to transfer $t(p_i)$ euros to **Receiver** *i* if $\theta = 1$:

$$t(p_i) = \begin{cases} 1, & p_i \ge 2/3 \\ -1, & p_i \le 1/3 \end{cases}$$

Ask to pay her fair price $\mathbb{E}[t(p_i) \cdot p_i] \Rightarrow$ her profit is **(**

IS INFEASIBLE

IF IT WAS FEASIBLE WE COULD CONSTRUCT MONEY PUMP:

Promise to transfer $t(p_i)$ euros to **Receiver** *i* if $\theta = 1$:

$$t(p_i) = \begin{cases} 1, & p_i \ge 2/3 \\ -1, & p_i \le 1/3 \end{cases}$$

Ask to pay her fair price $\mathbb{E}[t(p_i) \cdot p_i] \Rightarrow$ her profit is **(**)

Our profit must also be
$$\mathbf{0} = \mathbb{E}\left[\sum_{i=1}^{3} p_i \cdot t(p_i) - 1_{\theta=1} \cdot \sum_{i=1}^{3} t(p_i)\right] \ge$$

IS INFEASIBLE

IF IT WAS FEASIBLE WE COULD CONSTRUCT MONEY PUMP:

Promise to transfer $t(p_i)$ euros to **Receiver** *i* if $\theta = 1$:

$$t(p_i) = \begin{cases} 1, & p_i \ge 2/3 \\ -1, & p_i \le 1/3 \end{cases}$$

Ask to pay her fair price $\mathbb{E}[t(p_i) \cdot p_i] \Rightarrow$ her profit is **0**

• Our profit must also be $\mathbf{0} = \mathbb{E}\left[\sum_{i=1}^{3} p_i \cdot t(p_i) - 1_{\theta=1} \cdot \sum_{i=1}^{3} t(p_i)\right] \ge$ $\ge \mathbb{E}\left[\sum_{i=1}^{3} p_i \cdot t(p_i) - \max\left\{0, \sum_{i=1}^{3} t(p_i)\right\}\right] =$

IS INFEASIBLE

IF IT WAS FEASIBLE WE COULD CONSTRUCT MONEY PUMP:

Promise to transfer $t(p_i)$ euros to **Receiver** *i* if $\theta = 1$:

$$t(p_i) = \begin{cases} 1, & p_i \ge 2/3 \\ -1, & p_i \le 1/3 \end{cases}$$

Ask to pay her fair price $\mathbb{E}[t(p_i) \cdot p_i] \Rightarrow$ her profit is **0**

• Our profit must also be $\mathbf{0} = \mathbb{E}\left[\sum_{i=1}^{3} p_i \cdot t(p_i) - 1_{\theta=1} \cdot \sum_{i=1}^{3} t(p_i)\right] \ge$ $\ge \mathbb{E}\left[\sum_{i=1}^{3} p_i \cdot t(p_i) - \max\left\{0, \sum_{i=1}^{3} t(p_i)\right\}\right] =$ $= \int_{[0,1]^3}\left[\sum_{i=1}^{3} p_i \cdot t(p_i) - \max\left\{0, \sum_{i=1}^{3} t(p_i)\right\}\right] dp_1 dp_2 dp_3$

IS INFEASIBLE

IF IT WAS FEASIBLE WE COULD CONSTRUCT MONEY PUMP:

Promise to transfer $t(p_i)$ euros to **Receiver** *i* if $\theta = 1$:

$$t(p_i) = \begin{cases} 1, & p_i \ge 2/3 \\ -1, & p_i \le 1/3 \end{cases}$$

Ask to pay her fair price $\mathbb{E}[t(p_i) \cdot p_i] \Rightarrow$ her profit is **(**)

 $\text{Our profit must also be} \quad \mathbf{0} = \mathbb{E} \left[\sum_{i=1}^{3} p_i \cdot t(p_i) - 1_{\theta=1} \cdot \sum_{i=1}^{3} t(p_i) \right] \ge \\ \geq \mathbb{E} \left[\sum_{i=1}^{3} p_i \cdot t(p_i) - \max\left\{ 0, \sum_{i=1}^{3} t(p_i) \right\} \right] = \\ = \int_{[0,1]^3} \left[\sum_{i=1}^{3} p_i \cdot t(p_i) - \max\left\{ 0, \sum_{i=1}^{3} t(p_i) \right\} \right] dp_1 dp_2 dp_3 = \frac{1}{9}?!?$

IS INFEASIBLE

IF IT WAS FEASIBLE WE COULD CONSTRUCT MONEY PUMP:

Promise to transfer $t(p_i)$ euros to **Receiver** *i* if $\theta = 1$:

$$t(p_i) = \begin{cases} 1, & p_i \ge 2/3 \\ -1, & p_i \le 1/3 \end{cases}$$

Ask to pay her fair price $\mathbb{E}[t(p_i) \cdot p_i] \Rightarrow$ her profit is **(**)

$$\begin{array}{l} \text{Our profit must also be} \quad \mathbf{0} = \mathbb{E} \left[\sum_{i=1}^{3} p_i \cdot t(p_i) - 1_{\theta=1} \cdot \sum_{i=1}^{3} t(p_i) \right] \geq \\ \\ \geq \mathbb{E} \left[\sum_{i=1}^{3} p_i \cdot t(p_i) - \max\left\{ 0, \sum_{i=1}^{3} t(p_i) \right\} \right] = \\ \\ = \int_{[0,1]^3} \left[\sum_{i=1}^{3} p_i \cdot t(p_i) - \max\left\{ 0, \sum_{i=1}^{3} t(p_i) \right\} \right] dp_1 dp_2 dp_3 = \frac{1}{9}?!? \end{array}$$

CONCLUSION uniform on $[0,1]^3$ is not feasible

Set of states Θ can be finite vs. countable vs. continuous

Set of states \(\Omega\) can be finite vs. countable vs. continuous
 Prior and posteriors p, p_i \(\epsilon \Delta(\Omega)\)

- Set of states Θ can be finite vs. countable vs. continuous
- Prior and posteriors $p, p_i \in \Delta(\Theta)$
- Joint distribution of posteriors $\mu \in \Delta(\Delta(\Theta) \times ... \times \Delta(\Theta))$

- Set of states Θ can be finite vs. countable vs. continuous
- Prior and posteriors $p, p_i \in \Delta(\Theta)$
- Joint distribution of posteriors $\mu \in \Delta(\Delta(\Theta) \times ... \times \Delta(\Theta))$
- Fransfers $t_i(p_i, \theta)$

- \blacktriangleright Set of states Θ can be finite vs. countable vs. continuous
- ▶ Prior and posteriors $p, p_i \in \Delta(\Theta)$
- ▶ Joint distribution of posteriors $\mu \in \Delta \left(\Delta(\Theta) \times ... \times \Delta(\Theta) \right)$
- Fransfers $t_i(p_i, \theta)$

THEOREM

$$\mu \text{ is feasible for some prior } \Leftrightarrow \text{no money pump}$$
$$\int_{\Delta(\Theta)} \left[\sum_{i=1}^{N} \left(\int_{\Theta} t_i(p_i, \theta) \, dp_i \right) - \sup_{\theta \in \Theta} \left\{ \sum_{i=1}^{N} t_i(p_i, \theta) \right\} \right] \, d\mu(p_1, \dots, dp_N) \leq \mathbf{0}$$

- \blacktriangleright Set of states Θ can be finite vs. countable vs. continuous
- Prior and posteriors $p, p_i \in \Delta(\Theta)$
- ▶ Joint distribution of posteriors $\mu \in \Delta \left(\Delta(\Theta) \times ... \times \Delta(\Theta) \right)$
- Fransfers $t_i(p_i, \theta)$

THEOREM

$$\mu \text{ is feasible for some prior } \Leftrightarrow \text{no money pump}$$

$$\int_{\Delta(\Theta)} \left[\sum_{i=1}^{N} \left(\int_{\Theta} t_i(p_i, \theta) \, dp_i \right) - \sup_{\theta \in \Theta} \left\{ \sum_{i=1}^{N} t_i(p_i, \theta) \right\} \right] \, d\mu(p_1, \dots, dp_N) \leq \mathbf{0}$$

PROOF Necessity obvious
 Sufficiency the Farkas lemma (finite support),
 Kellerer's theorem (1984) (general case)

- Set of states Θ can be finite vs. countable vs. continuous
- Prior and posteriors $p, p_i \in \Delta(\Theta)$
- ▶ Joint distribution of posteriors $\mu \in \Delta(\Delta(\Theta) \times ... \times \Delta(\Theta))$
- Fransfers $t_i(p_i, \theta)$

THEOREM

$$\begin{aligned} & \mu \text{ is feasible for some prior } \Longleftrightarrow \text{ no money pump} \\ & \int_{\Delta(\Theta)} \left[\sum_{i=1}^{N} \left(\int_{\Theta} t_i(p_i, \theta) \, dp_i \right) - \sup_{\theta \in \Theta} \left\{ \sum_{i=1}^{N} t_i(p_i, \theta) \right\} \right] \, d\mu(p_1, \dots, dp_N) \leq \mathbf{0} \end{aligned}$$

PROOF
 Necessity obvious
 Sufficiency the Farkas lemma (finite support),

Kellerer's theorem (1984) (general case)

REMARK Theorem of Dawid et al. \iff binary Θ , N=2, t_i = indicators

- Set of states Θ can be finite vs. countable vs. continuous
- Prior and posteriors $p, p_i \in \Delta(\Theta)$
- ▶ Joint distribution of posteriors $\mu \in \Delta \left(\Delta(\Theta) \times ... \times \Delta(\Theta) \right)$
- Fransfers $t_i(p_i, \theta)$

THEOREM

$$\begin{aligned} & \mu \text{ is feasible for some prior } \Longleftrightarrow \text{ no money pump} \\ & \int_{\Delta(\Theta)} \left[\sum_{i=1}^{N} \left(\int_{\Theta} t_i(p_i, \theta) \, dp_i \right) - \sup_{\theta \in \Theta} \left\{ \sum_{i=1}^{N} t_i(p_i, \theta) \right\} \right] \, d\mu(p_1, \dots, dp_N) \leq \mathbf{0} \end{aligned}$$

PROOF
 Necessity obvious
 Sufficiency the Farkas lemma (finite support),

Kellerer's theorem (1984) (general case)

Theorem of Dawid et al. \iff binary Θ , N=2, t_i = indicators For N>2, indicators are not enough

- \blacktriangleright Set of states Θ can be finite vs. countable vs. continuous
- Prior and posteriors $p, p_i \in \Delta(\Theta)$
- ▶ Joint distribution of posteriors $\mu \in \Delta \left(\Delta(\Theta) \times ... \times \Delta(\Theta) \right)$
- Fransfers $t_i(p_i, \theta)$

THEOREM

$$\begin{aligned} & \mu \text{ is feasible for some prior } \Longleftrightarrow \text{ no money pump} \\ & \int_{\Delta(\Theta)} \left[\sum_{i=1}^{N} \left(\int_{\Theta} t_i(p_i, \theta) \, dp_i \right) - \sup_{\theta \in \Theta} \left\{ \sum_{i=1}^{N} t_i(p_i, \theta) \right\} \right] \, d\mu(p_1, \dots, dp_N) \leq \mathbf{0} \end{aligned}$$

PROOF
 Necessity obvious
 Sufficiency the Farkas lemma (finite support),

Kellerer's theorem (1984) (general case)

REMARKTheorem of Dawid et al. \iff binary Θ , N=2, t_i = indicatorsFor N>2, indicators are not enough**QUESTION**What is enough? Say, are combinations of N-1 indicators enough?

BAYESIAN PERSUASION

BAYESIAN PERSUASION WITH N=2 RECEIVERS

THE GOAL

Maximize $\mathbb{E}\left[u(p_1, p_2)\right]$

over feasible distributions

Optimal policies = extreme points of feasible distributions

Optimal policies = extreme points of feasible distributions

May have countable support infinite number of signals

- Optimal policies = extreme points of feasible distributions
- May have countable support infinite number of signals

Contrast with N=1, where 2 signals are enough
Kamenica, Gentzkow (2011)

Optimal policies = extreme points of feasible distributions

May have countable support infinite number of signals

- Contrast with N=1, where 2 signals are enough
 - Kamenica, Gentzkow (2011)

CONJECTURE No non-atomic extreme points

Optimal policies = extreme points of feasible distributions

May have countable support infinite number of signals

- Contrast with N=1, where 2 signals are enough
 - Kamenica, Gentzkow (2011)

CONJECTURE No non-atomic extreme points

We proved: any extreme point has 0-measure support

HOW TO SOLVE? HILBERT-SPACE APPROACH:

▶ posterior = conditional expectation $p_i = \mathbb{E}[1_{\theta=1} | s_i]$

- ▶ posterior = conditional expectation $p_i = \mathbb{E}[1_{\theta=1} | s_i]$
- $\xi \to \mathbb{E}[\xi \mid \mathscr{F}]$ is an orthogonal projection in L^2

- ▶ posterior = conditional expectation $p_i = \mathbb{E}[1_{\theta=1} | s_i]$
- $\xi \to \mathbb{E}[\xi \mid \mathscr{F}]$ is an orthogonal projection in L^2
- ► {all orthogonal projections of ξ }=sphere of radius $\|\xi\|/2$ centred at $\xi/2$

- ▶ posterior = conditional expectation $p_i = \mathbb{E}[1_{\theta=1} | s_i]$
- $\xi \to \mathbb{E}[\xi \mid \mathcal{F}]$ is an orthogonal projection in L^2
- ►{all orthogonal projections of ξ }=sphere of radius $\|\xi\|/2$ centred at $\xi/2$
- express the quadratic objective through scalar products

- ▶ posterior = conditional expectation $p_i = \mathbb{E}[1_{\theta=1} | s_i]$
- $\xi \to \mathbb{E}[\xi \mid \mathcal{F}]$ is an orthogonal projection in L^2
- ►{all orthogonal projections of ξ }=sphere of radius $\|\xi\|/2$ centred at $\xi/2$
- express the quadratic objective through scalar products
- simple optimisation problem on the sphere

HOW TO SOLVE? HILBERT-SPACE APPROACH:

- ▶ posterior = conditional expectation $p_i = \mathbb{E}[1_{\theta=1} | s_i]$
- $\xi \to \mathbb{E}[\xi \mid \mathcal{F}]$ is an orthogonal projection in L^2
- ►{all orthogonal projections of ξ }=sphere of radius $\|\xi\|/2$ centred at $\xi/2$
- express the quadratic objective through scalar products
- simple optimisation problem on the sphere

QUESTION Anything beyond quadratic objectives?
SUMMARY

N=1, N=2, N>2 differ significantly

Feasibility: Quantitative Agreement Theorem (N=2), No-trade (N>2)

Optimal persuasion may require **infinite number of signals**

•Open problems:

indicator trades, continuum of signals, non-quadratic objectives

SUMMARY

N=1, N=2, N>2 differ significantly

Feasibility: Quantitative Agreement Theorem (N=2), No-trade (N>2)

Optimal persuasion may require **infinite number of signals**

•Open problems:

indicator trades, continuum of signals, non-quadratic objectives

THANK YOU!

REFERENCES

- Aumann, Maschler Repeated games with incomplete information. *MIT Press*, 1995
- Blackwell Comparison of experiments. Second Berkeley Symposium on Mathematical Statistics and Probability, 1951
- Dawid, DeGroot, Mortera Coherent combination of experts' opinions. Test, 1995
- Burdzy and Pitman Bounds on the probability of radically different opinions. Elect. Commun. in Prob., 2020
- **Ziegler** Adversarial bilateral information design. Working Paper, 2020
- Levy, de Barreda, Razin Persuasion with correlation neglect. Working Paper, 2020
- Mathevet, Perego, Taneva On information design in games. JPE, 2019
- Morris No trade and feasible joint posterior beliefs. Working Paper, 2020
- Aumann Agreeing to disagree. The Annals of Statistics, 1976
- Kellerer Duality theorems for marginal problems. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 1984
- Kamenica, Gentzkow Bayesian persuasion. AER, 2011