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▸ Objects arrive sequentially and to be allocated on the spot 

allocating profitable jobs (Uber), resources in cloud computing, food 
in a foodbank, tasks within a firm, refugees to localities

OUR QUESTION: 
A. optimal rules: Welfare maximization under the condition 

of Fairness on average   

B. dependence on the information available to the rule

Why dynamic nature is important? Because fairness 
«on average» is less demanding             efficiency gain
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▸ Introduce a new model, simple but nontrivial: 

▸ vectors of values are IID across periods (but values can be depended across agents)  

▸ Consider extreme cases: Prior-Independent Rules and Prior-Dependent Rules 

▸ both ignore the history (no learning!) => the problem reduces to allocation 
of one random good

▸ Identify the most efficient fair rules: new Top-Heavy rule and famous Nash rule

▸ Find exact values for Price of Fairness 

▸ Conclude that   

▸ PIR are almost as efficient as PDR 

▸ history-dependent rules can only give a tiny gain compared to PIR 

      a by -product:           
first exact values of PoF 
for offline cake-cutting 
and bargaining 
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THE MODEL: FAIR DIVISION OF ONE RANDOM GOOD

A Prior-Dependent division rule       allocates      by 
lottery              φ(v, P) ∈ Δn

φ g

OBJECTIVES: 
maximize ex-ante relative Utilitarian Welfare:

while ensuring ex-ante Equal-Split-Lower bound:

∑
i

Vi, Vi = 𝔼viφi(v)

Vi ≥
1
n

∀i, ∀P

A Prior-Independent rule       does not depend* on                  Pφ

𝔼 vi = 1, ∀i

*note that prior free rule «knows» the expected value of   vi
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THE UTILITARIAN RULE

▸ Maximizes welfare

▸ Can be very unfair

▸ allocates g to an agent with highest     : 

∑
i

Vi, Vi = 𝔼viφi(v)

vi
φi(v) = 1 if vi = max

j
vj and 0 otherwise

Example: p=0.99 p=0.01

1 1

1.01 0.01

Agent 1 receives        with probability          and his  

expected value
v1
v2

V1 = 𝔼v1φ1(v) = 0.01 ⋅ 1 = 0.01

g 0.01
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FAIRNESS
FAIR SHARE GUARANTEE AKA EQUAL SPLIT LOWER BOUND 

For any  distribution P and any agent i 

𝔼viφi(v) ≥
1
nExample: 

‣ The Utilitarian: not fair 

‣ The Equal-split                       : fair(φi(v) ≡
1
n )

THEOREM 

The proportional rule is fair 

φi(v) =
vi

∑n
j=1 vj

THE PROPORTIONAL RULE
Idea of the proof (n=2):

𝔼
v2

1

v1 + v2
≥

1
2

𝔼v1 = 𝔼v2 = 1‣ want to prove                          and know that  
v2

1

v1 + v2
≥

3
4

v1 −
1
4

v2‣ there is a linear lower bound

‣ take expectation from both sides. 

Question:  
Any more efficient fair rules?
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STRONG CONDITION. 
RULES ARE USUALLY 

INCOMPARABLE

FOR 2 AGENTS                    IFF
∀v (v1 < v2) ⇒ (φ1(v) < ψ1(v))

φ ≽ ψ

'1(v1, v2) = 1� '2(v1, v2) =
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▸ The Top-Heavy (TH) rule (n=2):

THEOREM 
For two agents, there exists a fair symmetric rule             that 

dominates any other symmetric fair rule.

φ

φ ≽ ψ ⇔ ∀v ∑
i

viφi(v) ≥ ∑
i

viψi(v)

▸ Ex-post welfare domination:
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BY THE CONSTRUCTION 
TH gives less to the low-
value agent than any other 
fair rule          domination ⇒

Indeed                                       .                       inf
ξ:𝔼ξ=0

𝔼f(ξ) = vex[ f ](0)

vex[ f ](x) ≥ vex[ f ](0) + αxBy convexity vex[ f ](0)
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▸ generalised TH rule:

▸ Unexpected obstacle: Proportional is not dominated by TH

φi(v) =
1
n

+
1

(n − 1)
1 −

∑j vj

n ⋅ vi
+φi(v) = 1 − ∑

j≠i

φj(v)

vi ≠ max
j

vj ⇒

vi = max
j

vj ⇒ φi(v) = 1 − ∑
j≠i

φj(v)

THEOREM 
Any symmetric fair rule is dominated by TH(  ) for some  

Example: for Proportional rule                    θ =
n − 1

n

θ θ ∈ (0,1]

Remark: for bads, the dominating Bottom-Heavy rule is unique.                    

θ
rules
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painful finite-dimensional optimisation
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Thank you! Questions?


