

NATIONAL RESEARCH UNIVERSITY SAINT PETERSBURG

ANNA BOGOMOLNAIA (GLASGOW UNI / HSE ST.PETERSBURG) HERVE MOULIN (GLASGOW UNI / HSE ST.PETERSBURG) FEDOR SANDOMIRSKIY (TECHNION / HSE ST.PETERSBURG)

A SIMPLE ONLINE FAIR DIVISION PROBLEM arXiv:1903.10361

ONLINE FAIR DIVISION PROBLEMS

Objects arrive sequentially and to be allocated on the spot

allocating profitable jobs (Uber), resources in cloud computing, food in a foodbank, tasks within a firm, refugees to localities

ONLINE FAIR DIVISION PROBLEMS

Objects arrive sequentially and to be allocated on the spot

allocating profitable jobs (Uber), resources in cloud computing, food in a foodbank, tasks within a firm, refugees to localities

Why dynamic nature is important? Because fairness «on average» is less demanding — efficiency gain

ONLINE FAIR DIVISION PROBLEMS

Objects arrive sequentially and to be allocated on the spot

allocating profitable jobs (Uber), resources in cloud computing, food in a foodbank, tasks within a firm, refugees to localities

Why dynamic nature is important? Because fairness «on average» is less demanding — efficiency gain

OUR QUESTION:

A. optimal rules: **Welfare maximization** under the condition of **Fairness on average**

B. dependence on the information available to the rule

COMPARING TO THE LITERATURE

Economics. Welfare implications of congestion, signalling, and

strategizing on dynamic matching markets:

- Unver (2010) «Dynamic kidney exchange» RevEconStud,
- **Bloch, Cantala (2017)** «Dynamic Assignment of Objects to Queuing Agents» AmerEconJ
- Akbarpour, Li, Gharan (2014) «Dynamic Matching Market Design» arXiv
- Ashlagi, Braverman, Kanoria, Shi (2017) «Clearing matching markets efficiently: informative signals and match recommendations» *ManagementSci*
- Ashlagi, Burq, Jaillet, Saberi (2018) «Maximizing Efficiency in Dynamic Matching Markets» arXiv

Computer Science. Fairness without efficiency:

- Walsh (2011) «Online cake cutting» Lect. Notes in CS
- Aleksandrov, Aziz, Gaspers, Walsh (2015) «Online Fair Division: Analysing a Food Bank Problem» IJCAI
- **Kash, Procaccia, Shah (2014)** «No Agent Left Behind: Dynamic FD of Multiple Resources» J.Art.Intell
- Benade, Kazachkov, Procaccia, Psomas (2018) «How to Make Envy Vanish Over Time» EC-18

AGENTS ALSO ARRIVE ONLINE AND BRING GOODS

- Introduce a new model, simple but nontrivial:
 - vectors of values are IID across periods (but values can be depended across agents)

- Introduce a new model, simple but nontrivial:
 - vectors of values are IID across periods (but values can be depended across agents)
- Consider extreme cases: Prior-Independent Rules and Prior-Dependent Rules
 - both ignore the history (no learning!) => the problem reduces to allocation of one random good

- Introduce a new model, simple but nontrivial:
 - vectors of values are IID across periods (but values can be depended across agents)
- Consider extreme cases: Prior-Independent Rules and Prior-Dependent Rules
 - both ignore the history (no learning!) => the problem reduces to allocation of one random good
- Identify the most efficient fair rules: new Top-Heavy rule and famous Nash rule

- Introduce a new model, simple but nontrivial:
 - vectors of values are IID across periods (but values can be depended across agents)
- Consider extreme cases: Prior-Independent Rules and Prior-Dependent Rules
 - both ignore the history (no learning!) => the problem reduces to allocation of one random good
- Identify the most efficient fair rules: new Top-Heavy rule and famous Nash rule
- Find exact values for Price of Fairness

- Introduce a new model, simple but nontrivial:
 - vectors of values are IID across periods (but values can be depended across agents)
- Consider extreme cases: Prior-Independent Rules and Prior-Dependent Rules
 - both ignore the history (no learning!) => the problem reduces to allocation of one random good
- Identify the most efficient fair rules: new Top-Heavy rule and famous Nash rule
- Find exact values for Price of Fairness
- Conclude that
 - > PIR are almost as efficient as PDR
 - history-dependent rules can only give a tiny gain compared to PIR

- Introduce a new model, simple but nontrivial:
 - vectors of values are IID across periods (but values can be depended across agents)
- Consider extreme cases: Prior-Independent Rules and Prior-Dependent Rules
 - both ignore the history (no learning!) => the problem reduces to allocation of one random good
- Identify the most efficient fair rules: new Top-Heavy rule and famous Nash rule
- **Find** exact values for **Price of Fairness**
- Conclude that
 - PIR are almost as efficient as PDR

history-dependent rules can only give a tiny gain compared to PIR

a by -product: first exact values of PoF for offline cake-cutting and bargaining

One random good \mathscr{G} is to be allocated to agents i = 1, 2, ..., nVector of values $v = (v_i)_{i=1..n} \in \mathbb{R}^n_+$ has arbitrary distribution Pnormalization: $\mathbb{E} v_i = 1, \forall i$

One random good \mathscr{G} is to be allocated to agents i = 1, 2..., nVector of values $v = (v_i)_{i=1..n} \in \mathbb{R}^n_+$ has arbitrary distribution Pnormalization: $\mathbb{E} v_i = 1, \forall i$

A Prior-Dependent division rule φ allocates g by lottery $\varphi(v, P) \in \Delta_n$

One random good g is to be allocated to agents i = 1, 2, ..., n

Vector of values $v = (v_i)_{i=1..n} \in \mathbb{R}^n_+$ has arbitrary distribution Pnormalization: $\mathbb{E} v_i = 1, \forall i$

A Prior-Dependent division rule φ allocates g by lottery $\varphi(v, P) \in \Delta_n$

One random good g is to be allocated to agents i = 1, 2, ..., n

Vector of values $v = (v_i)_{i=1..n} \in \mathbb{R}^n_+$ has arbitrary distribution Pnormalization: $\mathbb{E} v_i = 1, \forall i$

A Prior-Dependent division rule φ allocates g by lottery $\varphi(v,P)\in \Delta_n$

A Prior-Independent rule ${\cal Q}$ does not depend* on P

*note that prior free rule «knows» the expected value of V_i

PRIOR-INDEPENDENT RULES

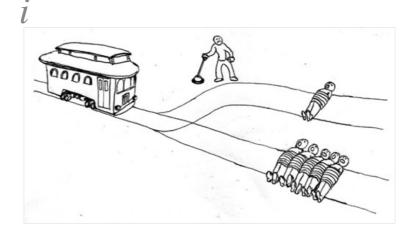
allocates g to an agent with highest V_i : $\varphi_i(v) = 1$ if $v_i = \max_i v_j$ and 0 otherwise

allocates g to an agent with highest V_i : $\varphi_i(v) = 1$ if $v_i = \max_i v_j$ and 0 otherwise

Maximizes welfare
$$\sum_{i} V_{i}$$
, $V_{i} = \mathbb{E}v_{i}\varphi_{i}(v)$

allocates g to an agent with highest V_i : $\varphi_i(v) = 1$ if $v_i = \max_i v_j$ and 0 otherwise

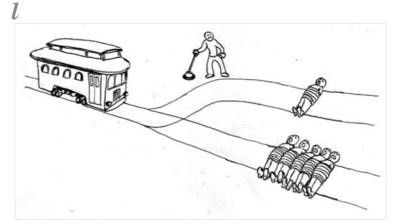
- Maximizes welfare $\sum V_i$, $V_i = \mathbb{E}v_i\varphi_i(v)$
- Can be very **unfair**



allocates g to an agent with highest V_i : $\varphi_i(v) = 1$ if $v_i = \max_i v_j$ and 0 otherwise

Maximizes welfare
$$\sum V_i$$
, $V_i = \mathbb{E}v_i\varphi_i(v)$

Can be very **unfair**



Example:
$$p=0.99$$
 $p=0.01$ V_1 11 V_2 1.010.01

Agent 1 receives g with probability 0.01 and his expected value $V_1 = \mathbb{E} v_1 \varphi_1(v) = 0.01 \cdot 1 = 0.01$

FAIR SHARE GUARANTEE AKA EQUAL SPLIT LOWER BOUND

For any distribution *P* and any agent *i* $\mathbb{E}v_i\varphi_i(v) \ge \frac{1}{n}$

Example:

The Utilitarian: not fair

• The Equal-split
$$\left(\varphi_i(v) \equiv \frac{1}{n}\right)$$
 : fair

FAIR SHARE GUARANTEE AKA EQUAL SPLIT LOWER BOUND

For any distribution *P* and any agent *i*

 $\mathbb{E}v_i\varphi_i(v) \geq \frac{1}{n}$

Example:

The Utilitarian: not fair • The Equal-split $\left(\varphi_i(v) \equiv \frac{1}{n}\right)$: fair Any more efficient fair rules?

Question:

For any distribution P and any agent i $\mathbb{E}v_i\varphi_i(v) \ge \frac{1}{n}$

FAIR SHARE GUARANTEE AKA EQUAL SPLIT LOWER BOUND

Example:

For any distribution *P* and any agent *i* $\mathbb{E}v_i\varphi_i(v) \ge \frac{1}{n}$

FAIR SHARE GUARANTEE AKA EQUAL SPLIT LOWER BOUND

The Utilitarian: not fairQuestion:The Equal-split $\left(\varphi_i(v) \equiv \frac{1}{n}\right)$: fairAny more efficient fair rules?THE PROPORTIONAL RULE $\varphi_i(v) = \frac{v_i}{\sum_{j=1}^n v_j}$

FAIRNESS

Example:

FAIR SHARE GUARANTEE AKA EQUAL SPLIT LOWER BOUND For any distribution *P* and any agent *i* $\mathbb{E}v_i\varphi_i(v) \ge \frac{1}{n}$

The Utilitarian: not fairQuestion:The Equal-split $\left(\varphi_i(v) \equiv \frac{1}{n}\right)$: fairAny more efficient fair rules?THE PROPORTIONAL RULE $\varphi_i(v) = \frac{v_i}{\sum_{j=1}^n v_j}$

THEOREM

The proportional rule is fair

FAIRNESS

Example:

For any distribution P and any agent i $\mathbb{E}v_i\varphi_i(v) \ge \frac{1}{n}$

FAIR SHARE GUARANTEE AKA EQUAL SPLIT LOWER BOUND

- The Utilitarian: not fair **Question:** • The Equal-split $\left(\varphi_i(v) \equiv \frac{1}{n}\right)$: fair Any more efficient fair rules? **THE PROPORTIONAL RULE** $\varphi_i(v) = \frac{v_i}{\sum_{i=1}^n v_i}$ Idea of the proof (n=2): • want to prove $\mathbb{E} \frac{v_1^2}{v_1 + v_2} \ge \frac{1}{2}$ and know that $\mathbb{E} v_1 = \mathbb{E} v_2 = 1$ • there is a linear lower bound $\frac{v_1^2}{v_1 + v_2} \ge \frac{3}{4}v_1 - \frac{1}{4}v_2$ THEOREM
- The proportional rule is fair
- take expectation from both sides.

THE MOST EFFICIENT FAIR RULE FOR TWO AGENTS

Ex-post welfare domination:

$$\varphi \ge \psi \Leftrightarrow \forall v \quad \sum_{i} v_i \varphi_i(v) \ge \sum_{i} v_i \psi_i(v)$$

THE MOST EFFICIENT FAIR RULE FOR TWO AGENTS

Ex-post welfare domination:

STRONG CONDITION. RULES ARE USUALLY INCOMPARABLE

 $\varphi \geq \psi \Leftrightarrow \forall v \quad \sum v_i \varphi_i(v) \geq \sum v_i \psi_i(v)$

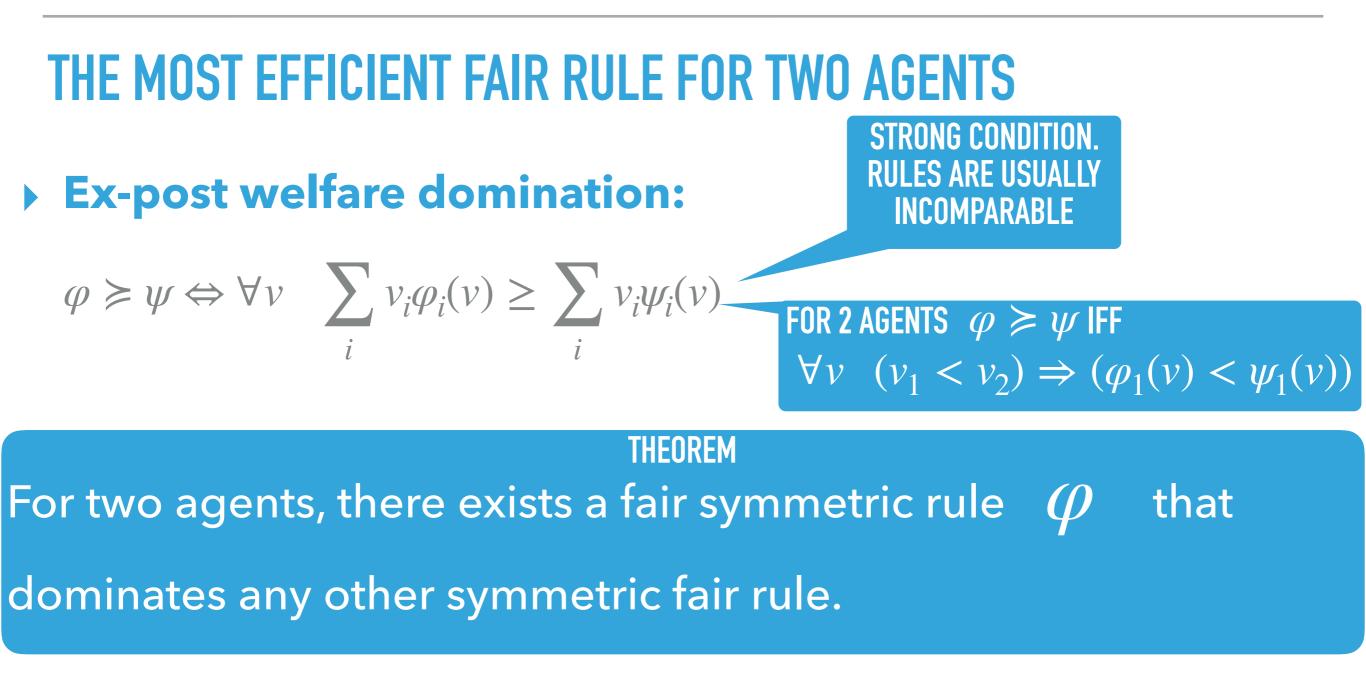
THE MOST EFFICIENT FAIR RULE FOR TWO AGENTS

STRONG CONDITION. RULES ARE USUALLY INCOMPARABLE

Ex-post welfare domination:

 $\varphi \geq \psi \Leftrightarrow \forall v \quad \sum v_i \varphi_i(v) \geq \sum v_i \psi_i(v)$

FOR 2 AGENTS $\varphi \ge \psi$ IFF $\forall v \ (v_1 < v_2) \Rightarrow (\varphi_1(v) < \psi_1(v))$



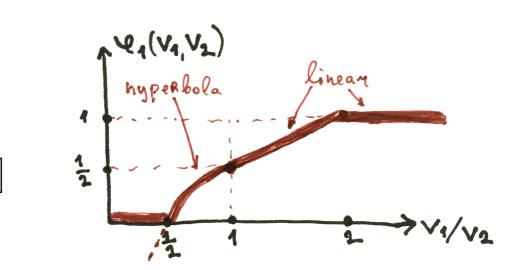
THE MOST EFFICIENT FAIR RULE FOR TWO AGENTSSTRONG CONDITION.
RULES ARE USUALLY
INCOMPARABLE $\varphi \geq \psi \Leftrightarrow \forall v$ $\sum_{i} v_i \varphi_i(v) \geq \sum_{i} v_i \psi_i(v)$ STRONG CONDITION.
RULES ARE USUALLY
INCOMPARABLE $\varphi \geq \psi \Leftrightarrow \forall v$ $\sum_{i} v_i \varphi_i(v) \geq \sum_{i} v_i \psi_i(v)$ FOR 2 AGENTS $\varphi \geq \psi$ IFF
 $\forall v$ $(v_1 < v_2) \Rightarrow (\varphi_1(v) < \psi_1(v))$

THEOREM

For two agents, there exists a fair symmetric rule $\,arphi\,$ that

dominates any other symmetric fair rule.

• The Top-Heavy (TH) rule (n=2): $\varphi_1(v_1, v_2) = 1 - \varphi_2(v_1, v_2) = \begin{cases} 0 & \frac{v_1}{v_2} \leq \frac{1}{2} \\ 1 & \frac{v_1}{v_2} \geq 2 \\ 1 - \frac{1}{2}\frac{v_2}{v_1} & \frac{v_1}{v_2} \in [\frac{1}{2}, 1] \\ \frac{1}{2}\frac{v_1}{v_2} & \frac{v_1}{v_2} \in [1, 2] \end{cases}$

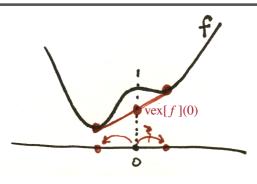


LEMMA

$\mathbb{E} f(\xi) \geq 0 \text{ for any } \xi: \ \mathbb{E} \xi = 0 \Longleftrightarrow f(x) \geq \alpha x \text{ for some } \alpha$

Indeed $\inf_{\xi:\mathbb{E}\xi=0} \mathbb{E}f(\xi) = \operatorname{vex}[f](0).$

By convexity $vex[f](x) \ge vex[f](0) + \alpha x$



LEMMA
$$\mathbb{E}f(\xi) \ge 0 \text{ for any } \xi: \quad \mathbb{E}\xi = 0 \Longleftrightarrow f(x) \ge \alpha x \text{ for some } \alpha$$

Indeed
$$\inf_{\xi:\mathbb{E}\xi=0} \mathbb{E}f(\xi) = \operatorname{vex}[f](0).$$

By convexity $\operatorname{vex}[f](x) \ge \operatorname{vex}[f](0) + \alpha x$
COROLLARY: $\mathbb{E}v_1\varphi_1(v) \ge \frac{1}{2} \iff v_1\varphi_1(v) \ge \alpha v_1 + \beta v_2 + \gamma, \qquad \alpha + \beta + \gamma \ge \frac{1}{2}$

$$\mathbb{E}f(\xi) \ge 0 \text{ for any } \xi: \mathbb{E}\xi = 0 \iff f(x) \ge \alpha x \text{ for some } \alpha$$

Indeed $\inf_{\xi:\mathbb{E}\xi=0} \mathbb{E}f(\xi) = \operatorname{vex}[f](0).$

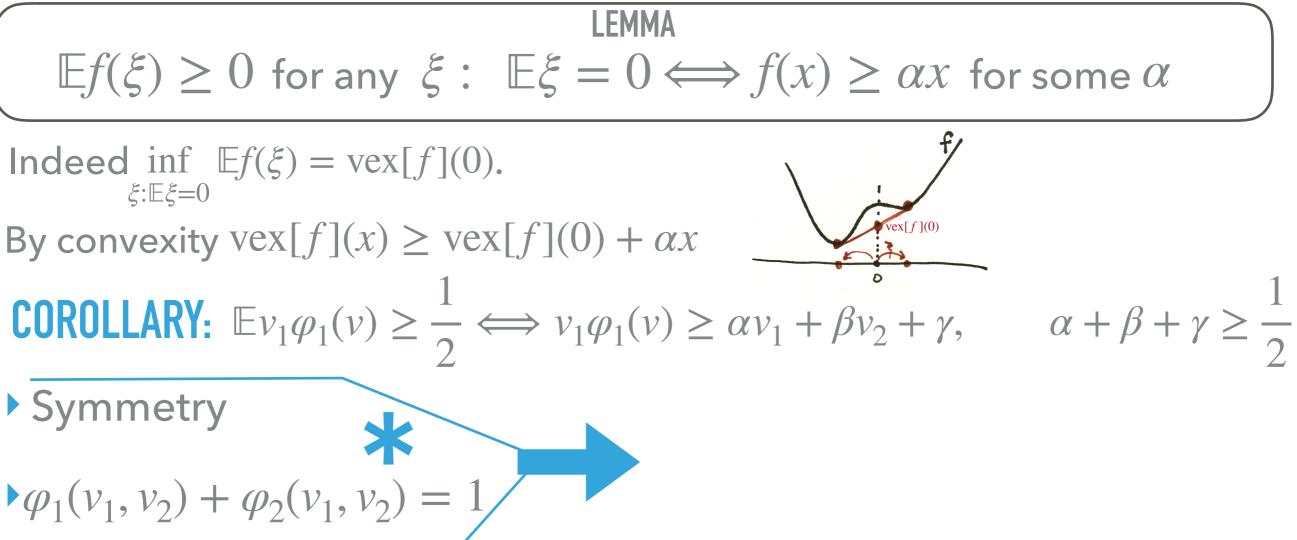
By convexity $vex[f](x) \ge vex[f](0) + \alpha x$

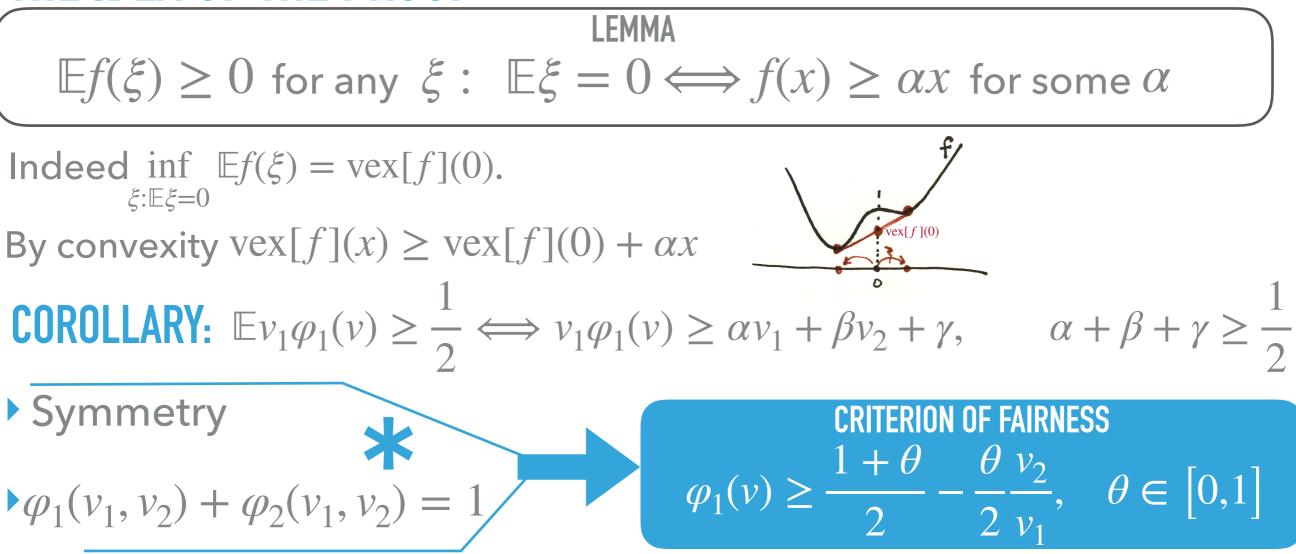
COROLLARY:
$$\mathbb{E}v_1\varphi_1(v) \ge \frac{1}{2} \iff v_1\varphi_1(v) \ge \alpha v_1 + \beta v_2 + \gamma, \qquad \alpha + \beta + \gamma \ge \frac{1}{2}$$

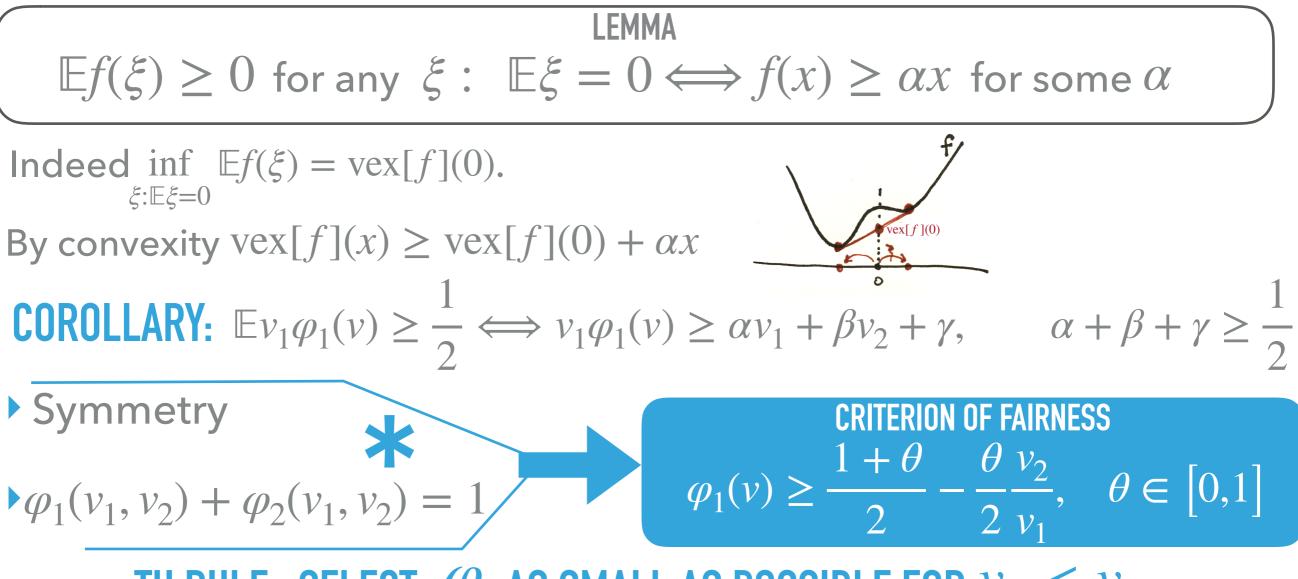
vex[f](0)

Symmetry

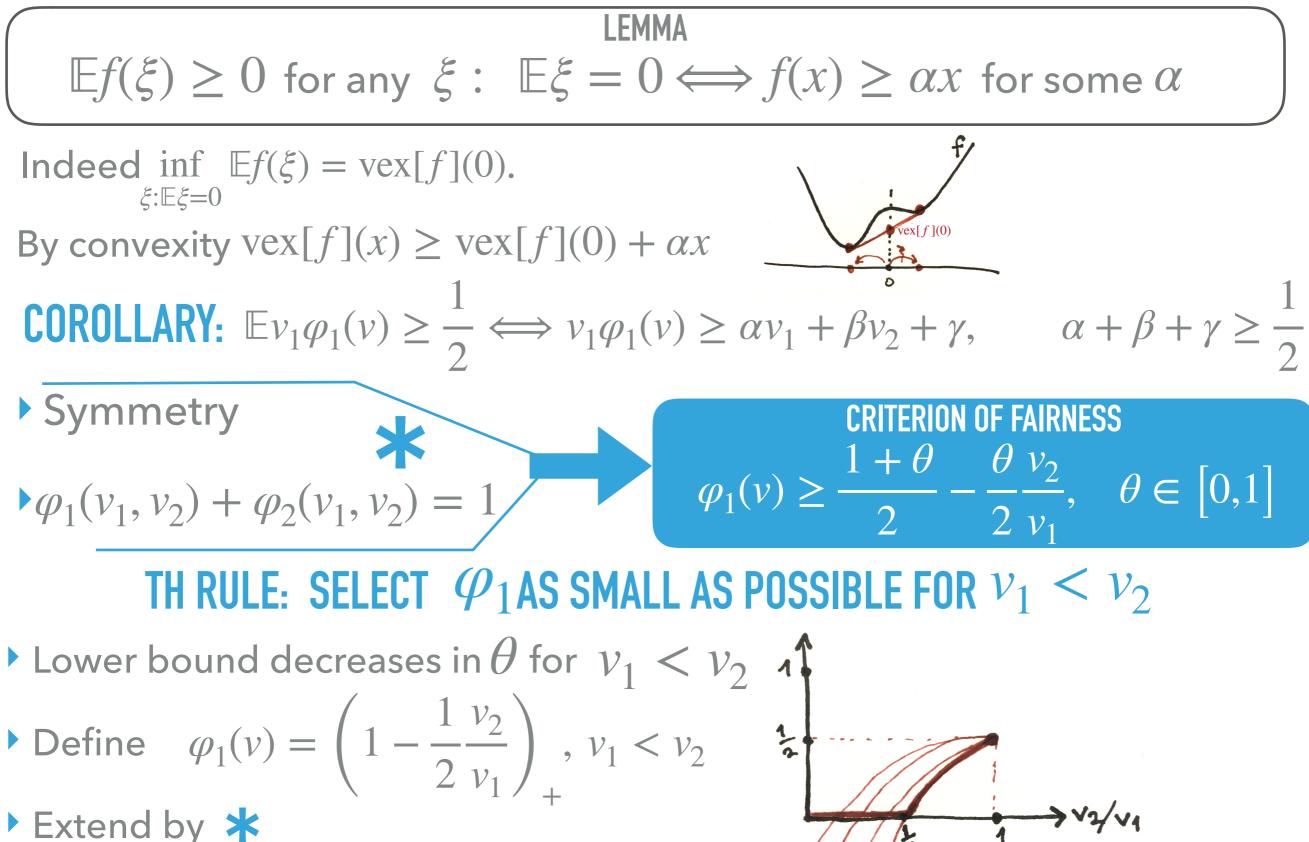
 $\varphi_1(v_1, v_2) + \varphi_2(v_1, v_2) = 1$

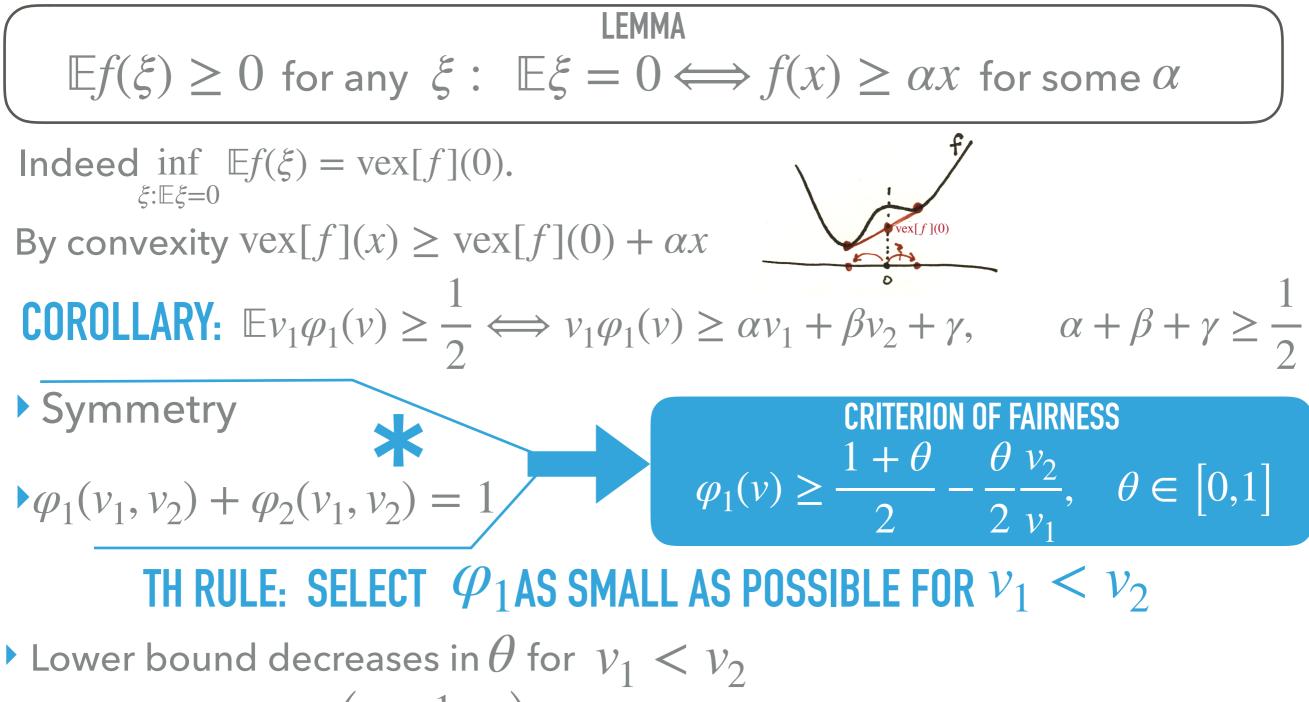




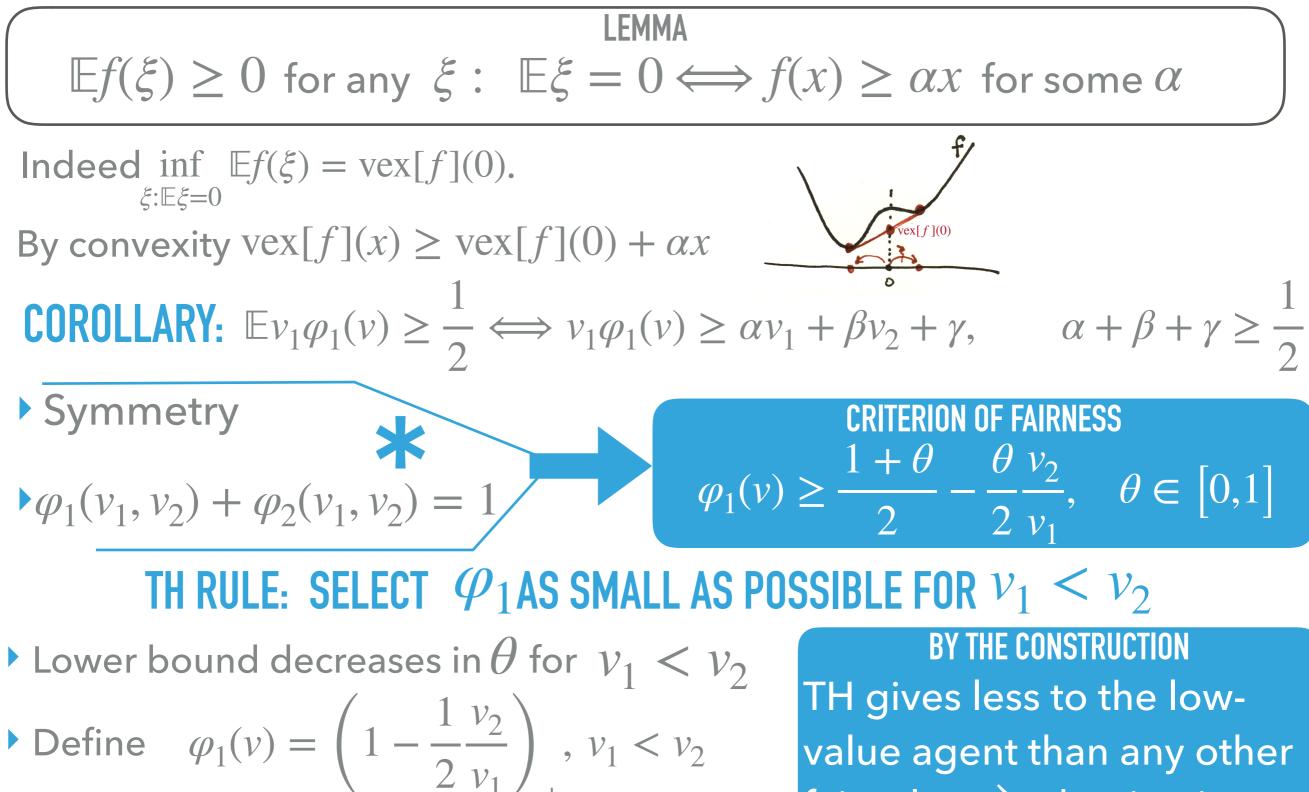


TH RULE: SELECT φ_1 as small as possible for $v_1 < v_2$





- Define $\varphi_1(v) = \left(1 \frac{1}{2}\frac{v_2}{v_1}\right)_+, v_1 < v_2$
- Extend by \star



Extend by *

fair rule \implies domination

MORE THAN TWO AGENTS generalised TH rule;

$$v_i \neq \max_j v_j \Rightarrow \varphi_i(v) = \left(\frac{1}{n} + \frac{1}{(n-1)} \left(1 - \frac{\sum_j v_j}{n \cdot v_i}\right)\right)$$
$$v_i = \max_j v_j \Rightarrow \varphi_i(v) = 1 - \sum_{j \neq i} \varphi_j(v)$$

MORE THAN TWO AGENTS

generalised TH rule:

$$v_i \neq \max_j v_j \Rightarrow \varphi_i(v) = \left(\frac{1}{n} + \frac{1}{(n-1)} \left(1 - \frac{\sum_j v_j}{n \cdot v_i}\right)\right)$$
$$v_i = \max_j v_j \Rightarrow \varphi_i(v) = 1 - \sum_{j \neq i} \varphi_j(v)$$

Unexpected obstacle: Proportional is not dominated by TH

MORE THAN TWO AGENTS
rules
generalised TH rule:

$$v_i \neq \max_j v_j \Rightarrow \varphi_i(v) = \left(\frac{1}{n} + \frac{1}{(n-1)} \left(1 - \frac{\sum_j v_j}{n \cdot v_i}\right)\right)$$

 $v_i = \max_j v_j \Rightarrow \varphi_i(v) = 1 - \sum_{j \neq i} \varphi_j(v)$

Unexpected obstacle: Proportional is not dominated by TH

 v_i

generalised iff rule:

$$v_i \neq \max_j v_j \Rightarrow \varphi_i(v) = \left(\frac{1}{n} + \frac{1}{(n-1)} \left(1 - \frac{\sum_j v_j}{n \cdot v_i}\right)\right)$$

 $v_i = \max_j v_j \Rightarrow \varphi_i(v) = 1 - \sum_{j \neq i} \varphi_j(v)$

Unexpected obstacle: Proportional is not dominated by TH

THEOREM

Any symmetric fair rule is dominated by TH(θ) for some $\theta \in (0,1]$

MORE THAN TWO AGENTS
rules
generalised TH rule:

$$v_i \neq \max_j v_j \Rightarrow \varphi_i(v) = \left(\frac{1}{n} + \frac{\theta}{(n-1)}\left(1 - \frac{\sum_j v_j}{n \cdot v_i}\right)\right)$$

 $v_i = \max_j v_j \Rightarrow \varphi_i(v) = 1 - \sum_{j \neq i} \varphi_j(v)$

Any symmetric fair rule is dominated by TH(θ) for some $\theta \in (0,1]$

THEOREM

Example: for Proportional rule
$$\theta = \frac{n-1}{n}$$

MORE THAN TWO AGENTS
rules
generalised TH rule:

$$v_i \neq \max_j v_j \Rightarrow \varphi_i(v) = \left(\frac{1}{n} + \frac{1}{(n-1)} \left(1 - \frac{\sum_j v_j}{n \cdot v_i}\right)\right)$$

 $v_i = \max_j v_j \Rightarrow \varphi_i(v) = 1 - \sum_{j \neq i} \varphi_j(v)$

Any symmetric fair rule is dominated by TH(θ) for some $\theta \in (0,1]$

THEOREM

Example: for Proportional rule
$$\theta = \frac{n-1}{-----}$$

n

Remark: for bads, the dominating Bottom-Heavy rule is unique.

PRICE OF FAIRNESS <

Bertsimas et. al (2011) The Price of Fairness.

Cardigans et al. (2009) The Efficiency of Fair Division

PRICE OF FAIRNESS Bertsimas et. al (2011) The Price of Fairness. Cardigans et al. (2009) The Efficiency of Fair Division **Performance of** $\rho[\varphi, n] \in [0,1]$ $\rho[\varphi, n] = \inf_{P: \ n \ agents} \frac{\mathbb{E}\langle v, \varphi(v) \rangle}{\mathbb{E} \max_i v_i}$

J Bertsimas et. al (2011) The Price of Fairness.

Cardigans et al. (2009) The Efficiency of Fair Division

• Performance of $\rho[\varphi, n] \in [0, 1]$

PRICE OF FAIRNESS <

$$\rho[\varphi, n] = \inf_{\substack{P: n \text{ agents}}} \frac{\mathbb{E}\langle v, \varphi(v) \rangle}{\mathbb{E} \max_i v_i}$$

• Price of Fairness: $PoF = \sup \rho[\varphi, n]$ Fair φ

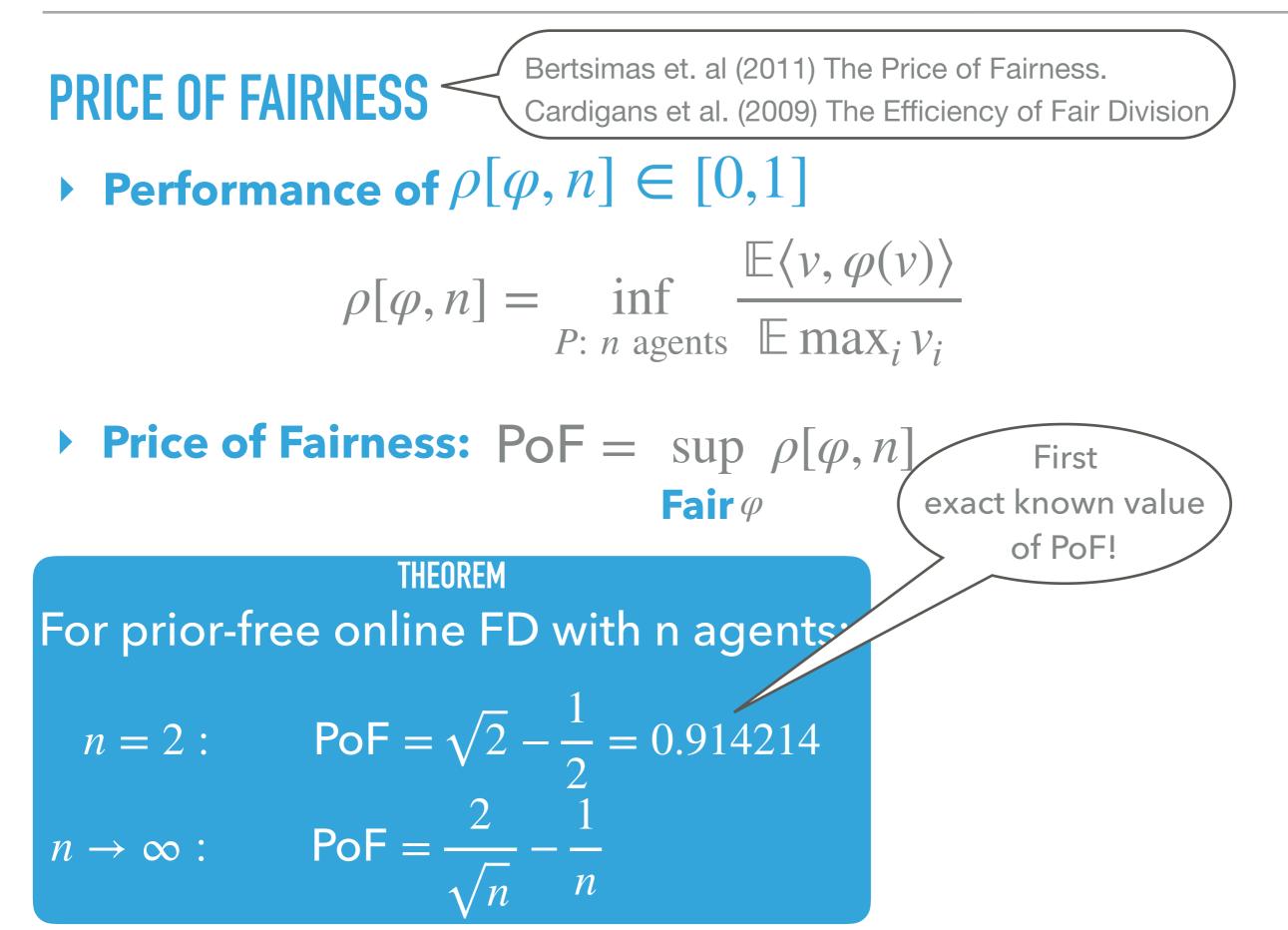
PRICE OF FAIRNESS Cardigans et al. (2011) The Price of Fairness.

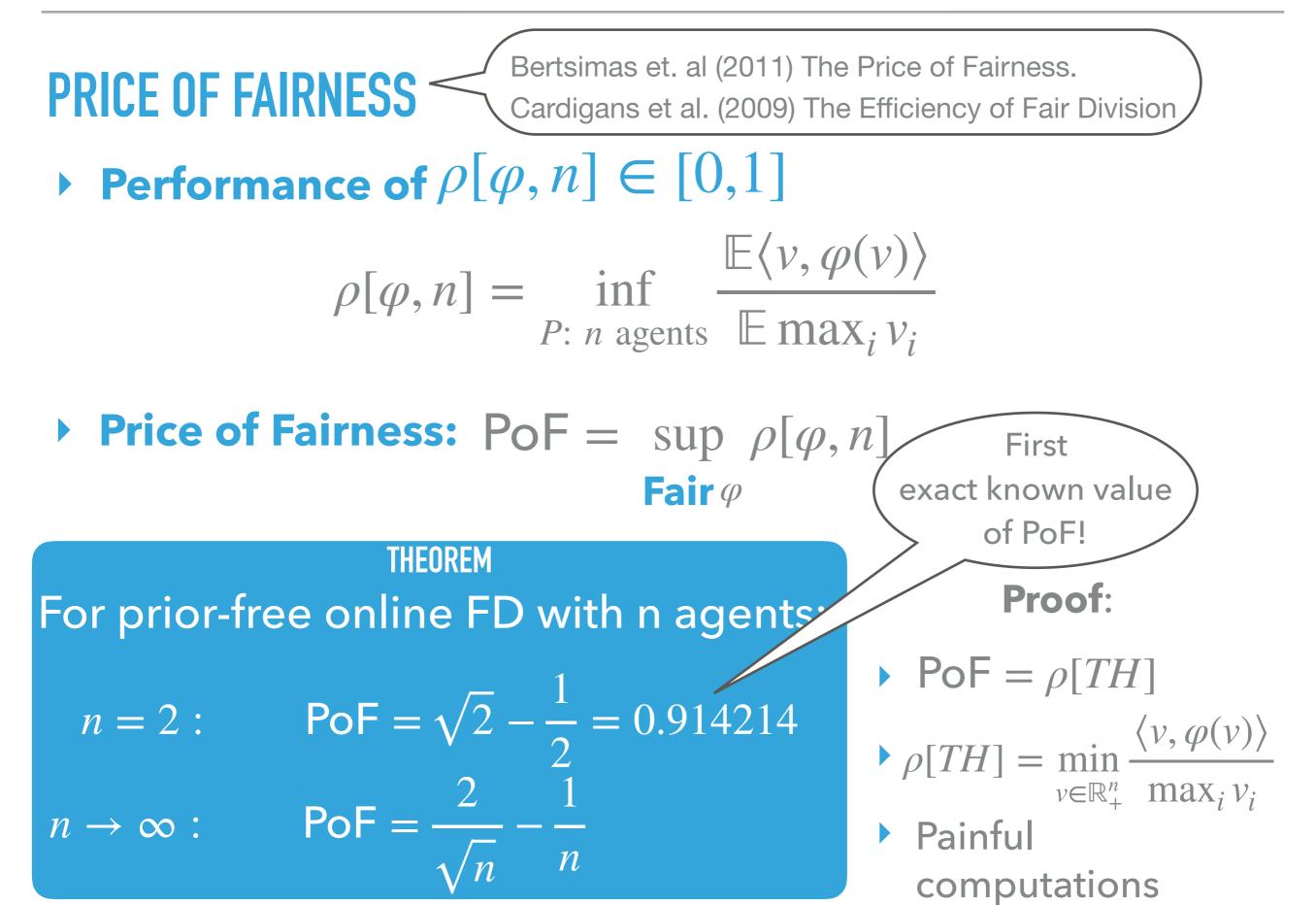
• Performance of $\rho[\varphi, n] \in [0, 1]$

$$\rho[\varphi, n] = \inf_{\substack{P: n \text{ agents}}} \frac{\mathbb{E}\langle v, \varphi(v) \rangle}{\mathbb{E} \max_i v_i}$$

• Price of Fairness: $PoF = \sup \rho[\varphi, n]$ **Fair** φ

THEOREM For prior-free online FD with n agents: *n* = 2 : PoF = $\sqrt{2} - \frac{1}{2} = 0.914214$ *n* $\rightarrow \infty$: PoF = $\frac{2}{\sqrt{2}} - \frac{1}{n}$





PRIOR-DEPENDENT RULES

NOW THE RULE KNOWS P

The set of feasible utilities

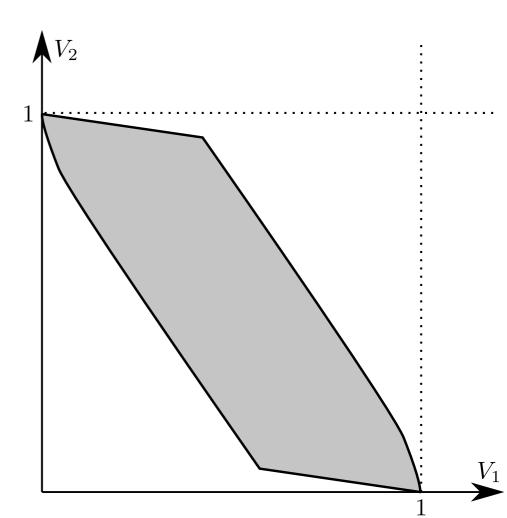
 $F(P) = \{V(\varphi), \varphi \text{ ranges over all rules}\}, \quad V_i(\varphi) = \mathbb{E}v_i\varphi_i(v)$

closed and convex subset of $[0,1]^n$, contains standard unit vectors

The set of feasible utilities

 $F(P) = \{V(\varphi), \varphi \text{ ranges over all rules}\}, \quad V_i(\varphi) = \mathbb{E}v_i\varphi_i(v)$

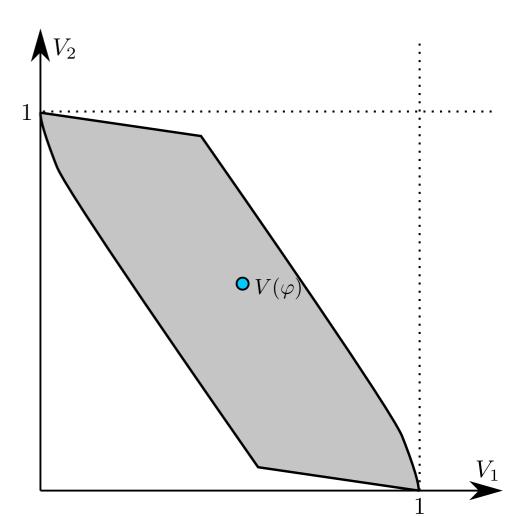
closed and convex subset of $[0,1]^n$, contains standard unit vectors



The set of feasible utilities

 $F(P) = \{V(\varphi), \varphi \text{ ranges over all rules}\}, \quad V_i(\varphi) = \mathbb{E}v_i\varphi_i(v)$

closed and convex subset of $[0,1]^n$, contains standard unit vectors

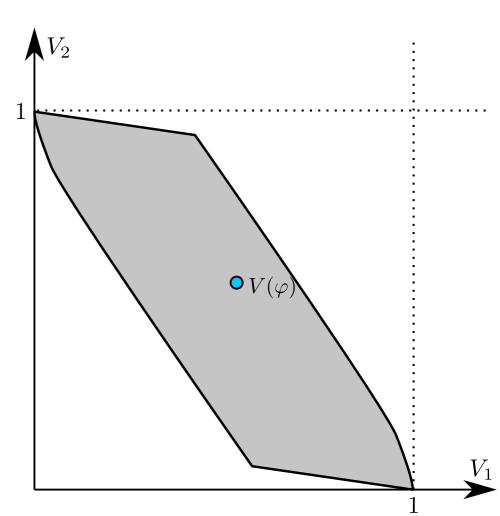


The set of feasible utilities

 $F(P) = \{V(\varphi), \varphi \text{ ranges over all rules}\}, V_i(\varphi) = \mathbb{E}v_i\varphi_i(v)$

closed and convex subset of $[0,1]^n$, contains standard unit vectors

Fairness \Leftrightarrow $V(\varphi)$ in yellow area.

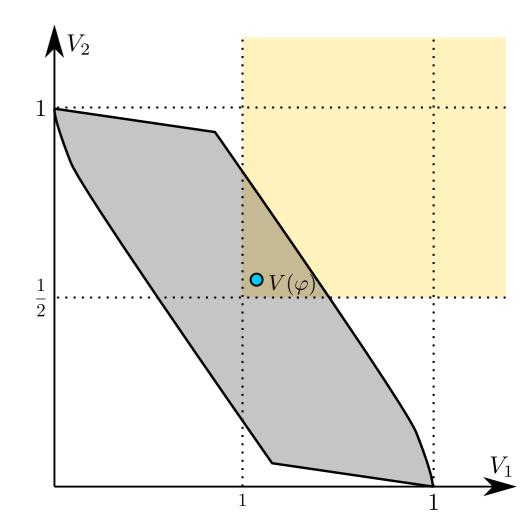


The set of feasible utilities

 $F(P) = \{V(\varphi), \varphi \text{ ranges over all rules}\}, V_i(\varphi) = \mathbb{E}v_i\varphi_i(v)$

closed and convex subset of $[0,1]^n$, contains standard unit vectors

Fairness \Leftrightarrow $V(\varphi)$ in yellow area.



The set of feasible utilities

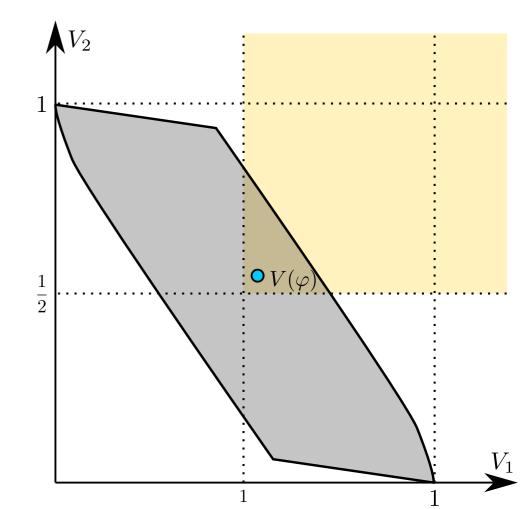
 $F(P) = \{V(\varphi), \varphi \text{ ranges over all rules}\}, V_i(\varphi) = \mathbb{E}v_i\varphi_i(v)$

closed and convex subset of $[0,1]^n$, contains standard unit vectors

Fairness \Leftrightarrow $V(\varphi)$ in yellow area.

Cake-cutting problem

$$\mathsf{Cake} = \mathbb{R}^n_+ \quad V_i(A_i) = \int_{A_i} v_i dP, \quad A_i \subset \mathbb{R}^n_+$$



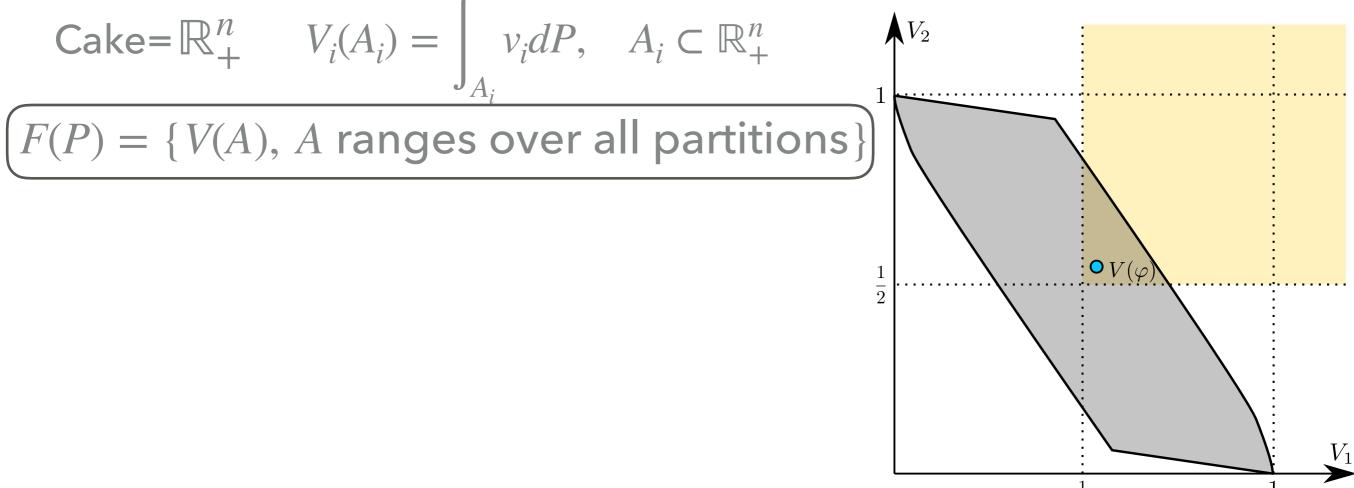
The set of feasible utilities

 $F(P) = \{V(\varphi), \varphi \text{ ranges over all rules}\}, V_i(\varphi) = \mathbb{E}v_i\varphi_i(v)$

closed and convex subset of $[0,1]^n$, contains standard unit vectors

Fairness \Leftrightarrow $V(\varphi)$ in yellow area.

Cake-cutting problem



The set of feasible utilities

 $F(P) = \{V(\varphi), \varphi \text{ ranges over all rules}\}, V_i(\varphi) = \mathbb{E}v_i\varphi_i(v)$

 $\bigvee V_2$

 $\circ V(\varphi)$

 V_1

closed and convex subset of $[0,1]^n$, contains standard unit vectors

Fairness \Leftrightarrow $V(\varphi)$ in yellow area.

Cake-cutting problem

$$\mathsf{Cake} = \mathbb{R}^n_+ \quad V_i(A_i) = \int_{A_i} v_i dP, \quad A_i \subset \mathbb{R}^n_+$$

 $F(P) = \{V(A), A \text{ ranges over all partitions}\}$

Bargaining problem

F is given. A rule: $F \rightarrow V \in F$

The set of feasible utilities

 $F(P) = \{V(\varphi), \varphi \text{ ranges over all rules}\}, V_i(\varphi) = \mathbb{E}v_i\varphi_i(v)$

closed and convex subset of $[0,1]^n$, contains standard unit vectors

Fairness \Leftrightarrow $V(\varphi)$ in yellow area.

 $\circ V(\varphi)$

 V_1

Cake-cutting problem

 $Cake = \mathbb{R}^{n}_{+} \quad V_{i}(A_{i}) = \int_{A_{i}} v_{i}dP, \quad A_{i} \subset \mathbb{R}^{n}_{+}$ $F(P) = \{V(A), A \text{ ranges over all partitions}\}^{1}$

Bargaining problem

F is given. A rule: $F \rightarrow V \in F$

$$\operatorname{PoF}_{Bargain} = \inf_{F} \frac{\max_{V \in F \cap \left\{ V \ge \frac{1}{n} \right\}} \sum_{i} V_{i}}{\max_{V \in F} \sum_{i} V_{i}}$$

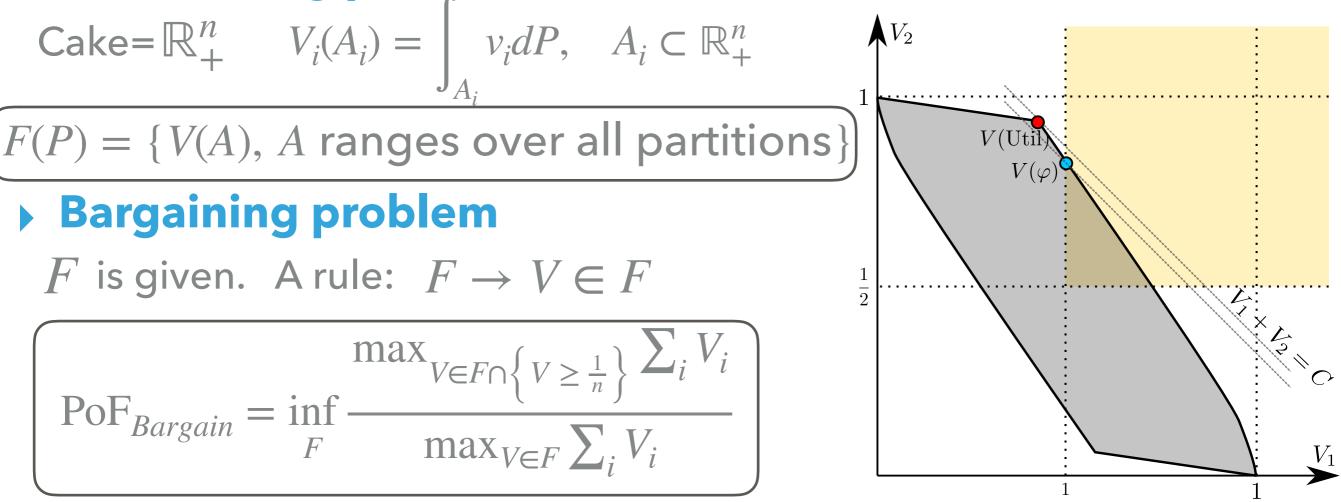
The set of feasible utilities

 $F(P) = \{V(\varphi), \varphi \text{ ranges over all rules}\}, V_i(\varphi) = \mathbb{E}v_i\varphi_i(v)$

closed and convex subset of $[0,1]^n$, contains standard unit vectors

Fairness \Leftrightarrow $V(\varphi)$ in yellow area.

Cake-cutting problem



PRICE OF FAIRNESS AND THE MOST EFFICIENT FAIR RULE

THEOREM

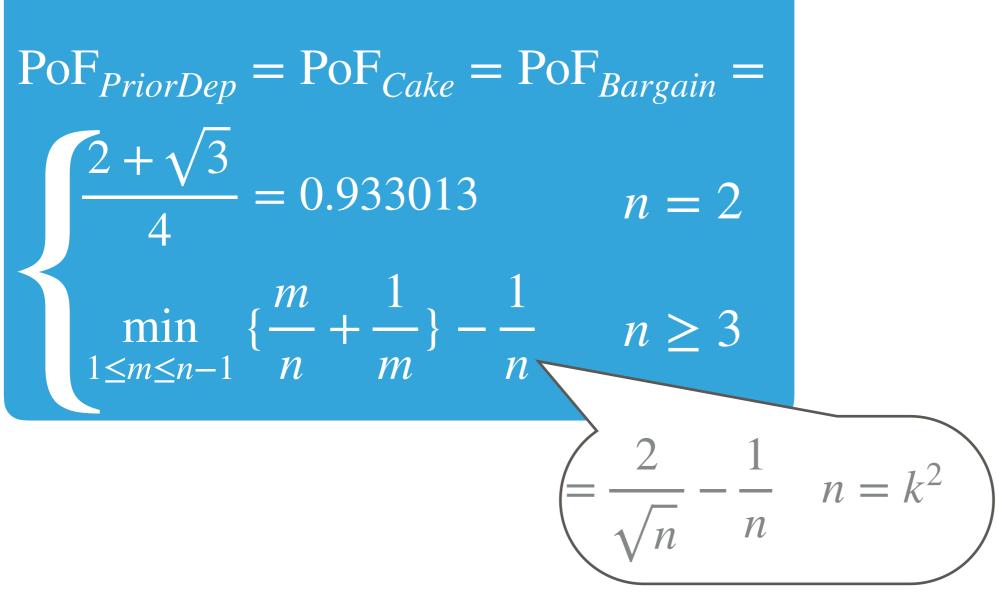
$$\operatorname{PoF}_{PriorDep} = \operatorname{PoF}_{Cake} = \operatorname{PoF}_{Bargain} =$$

$$\underbrace{\frac{2+\sqrt{3}}{4} = 0.933013}_{4} \quad n = 2$$

$$\min_{1 \le m \le n-1} \left\{\frac{m}{n} + \frac{1}{m}\right\} - \frac{1}{n} \quad n \ge 3$$

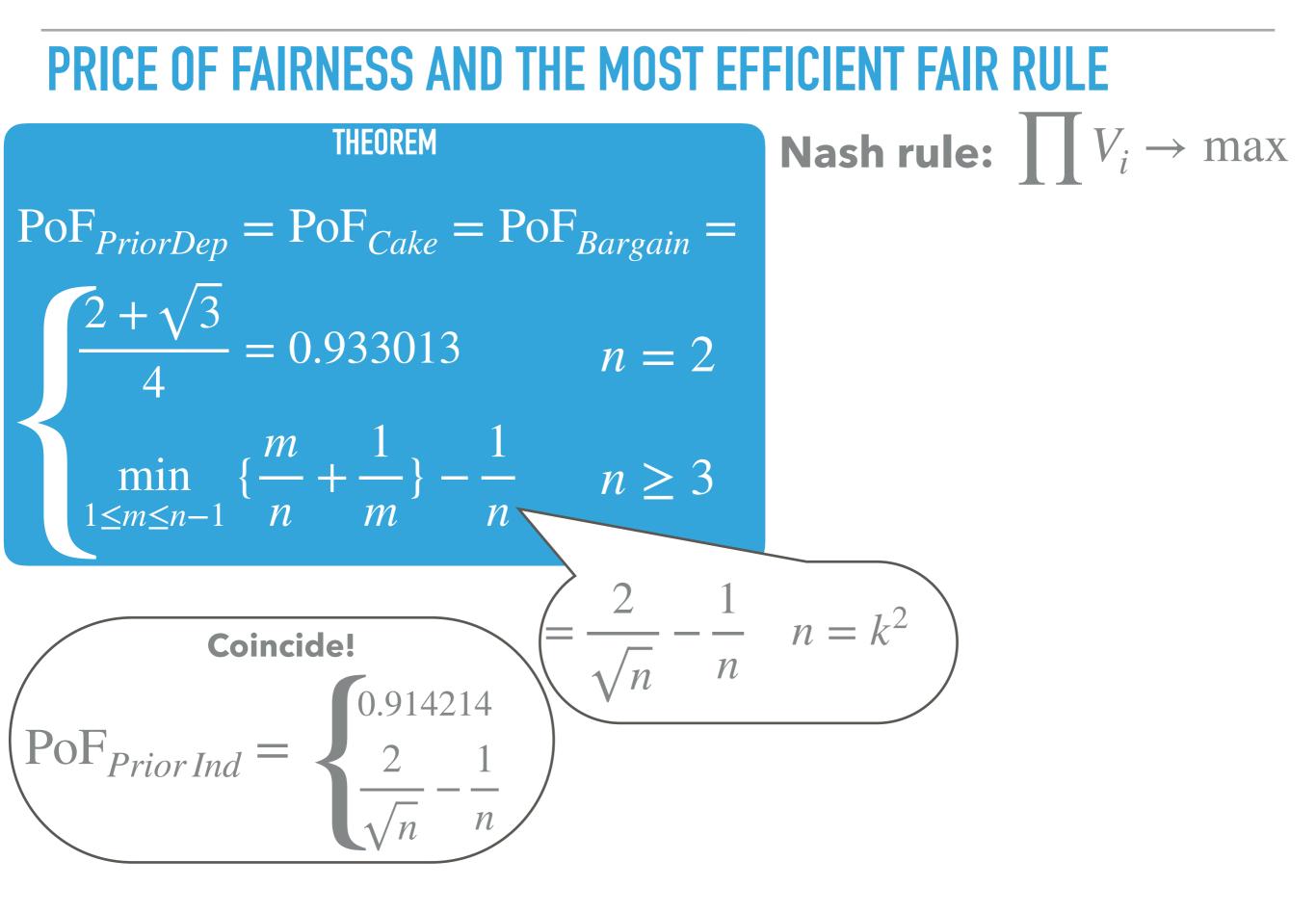
PRICE OF FAIRNESS AND THE MOST EFFICIENT FAIR RULE

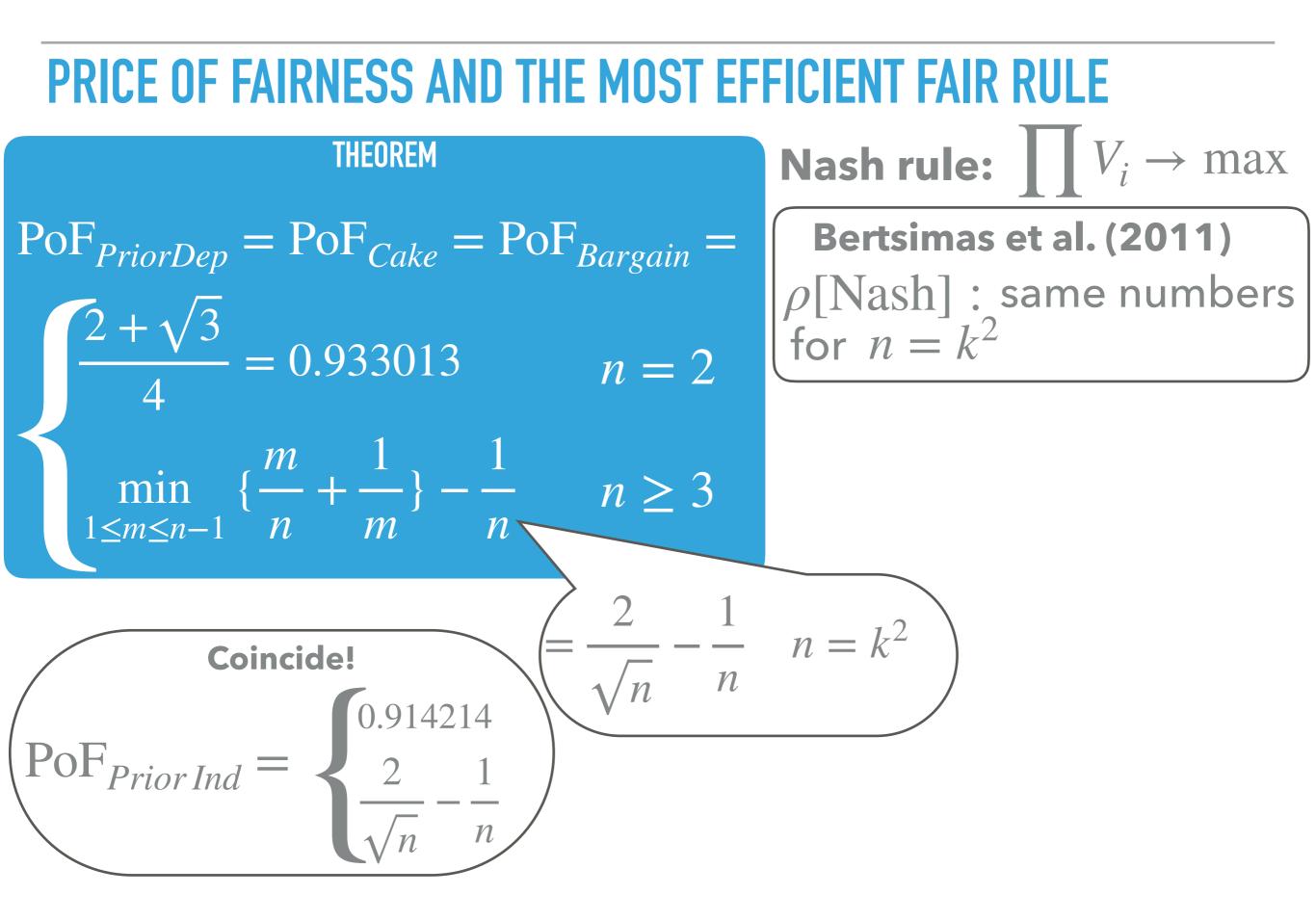
THEOREM

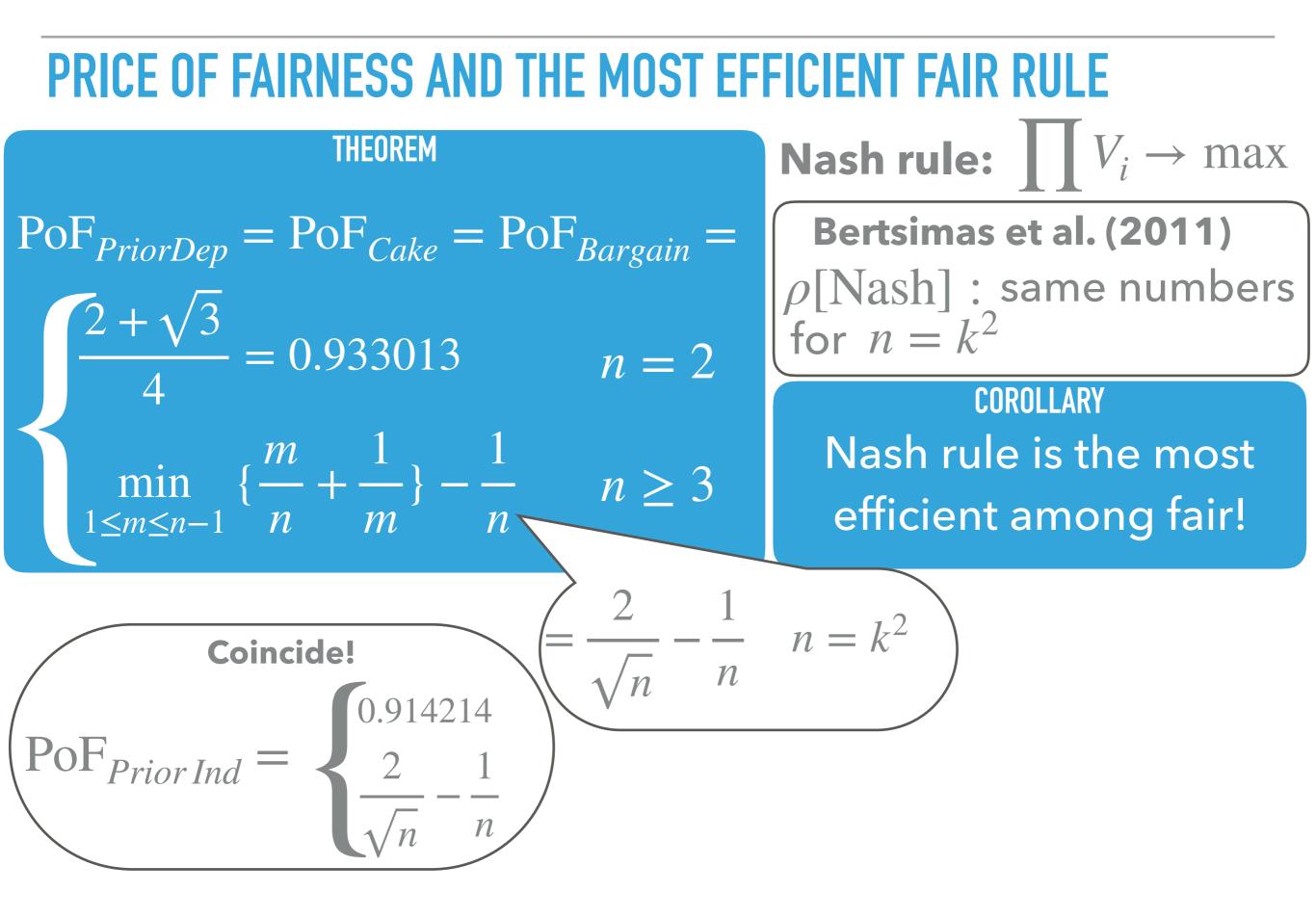


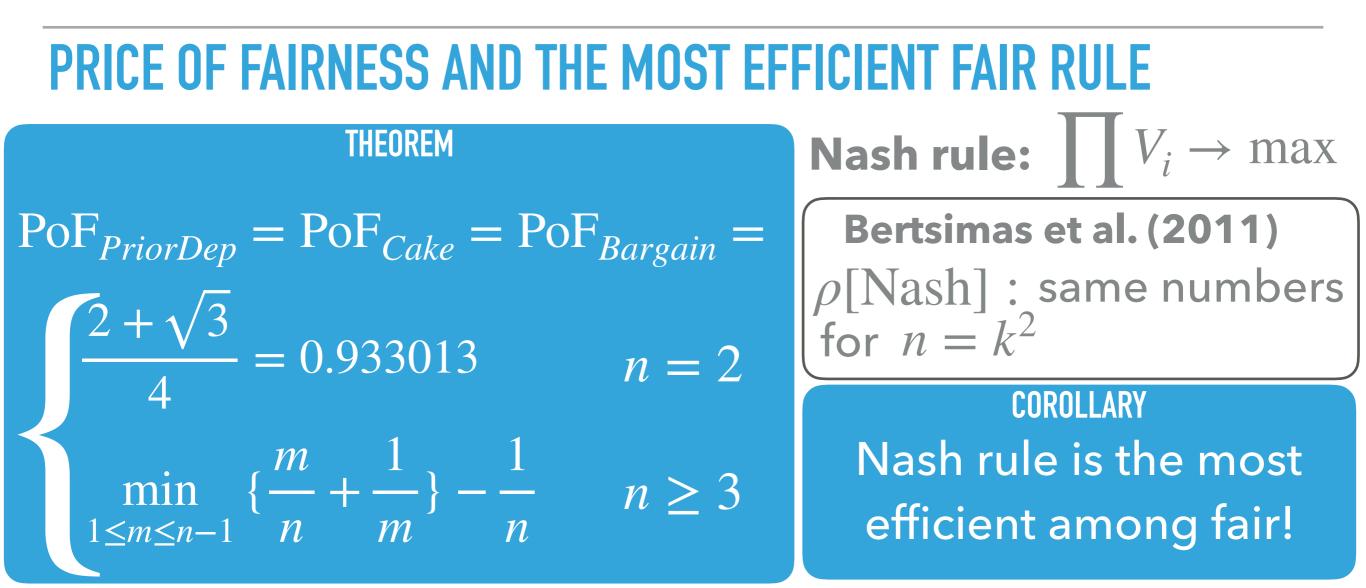
PRICE OF FAIRNESS AND THE MOST EFFICIENT FAIR RULE

THEOREM $PoF_{PriorDep} = PoF_{Cake} = PoF_{Bargain} =$ $\frac{2+\sqrt{3}}{1} = 0.933013$ n=2 $\{\frac{m}{-+-}\} - \frac{1}{---}$ min $n \geq 3$ $1 \le m \le n - 1$ *n* N m $-\frac{1}{-} \quad n = k^2$ **Coincide!** nn 0.914214 2 1 PoF_{Prior Ind}









PRICE OF FAIRNESS AND THE MOST EFFICIENT FAIR RULE
THEOREM
PoF_{PriorDep} = PoF_{Cake} = PoF_{Bargain} =

$$\begin{pmatrix}
2 + \sqrt{3} \\
4 \\
0.933013 \\
1 \le m \le n-1
\end{pmatrix}$$
Restimas et al. (2011)
 $\rho[Nash]$: same numbers
for $n = k^2$
COROLLARY
Nash rule is the most
efficient among fair!
PoF_{Bargain} = $\inf_{F} \frac{\max_{V \in F \cap \left\{ V \ge \frac{1}{n} \right\}}{\sum_{i} V_{i}}}{\max_{V \in F \sum_{i} V_{i}}}$

PRICE OF FAIRNESS AND THE MOST EFFICIENT FAIR RULE
THEOREM
PoF_{PriorDep} = PoF_{Cake} = PoF_{Bargain} =

$$\begin{cases}
2 + \sqrt{3} \\
4 &= 0.933013 \\
1 \le m \le n-1
\end{cases}$$
Rule: $\prod V_i \rightarrow \max$
Bertsimas et al. (2011)
 $\rho[Nash]$: same numbers
for $n = k^2$
COROLLARY
Nash rule is the most
efficient among fair!
PoF_{Bargain} = $\inf_{F} \frac{\max_{V \in F \cap \left\{ V \ge \frac{1}{n} \right\}}{\sum_{i} V_i}}{\max_{V \in F \cap \left\{ V \ge \frac{1}{n} \right\}} \sum_{i} V_i}$
inf = min , $F(x) = \operatorname{conv}[x, (e_i)_{i=1}^n]$

PRICE OF FAIRNESS AND THE MOST EFFICIENT FAIR RULE
THEOREM
PoF_{PriorDep} = PoF_{Cake} = PoF_{Bargain} =

$$\begin{pmatrix}
2 + \sqrt{3} \\
4 \\
5 \\
4
\end{pmatrix} = 0.933013 \qquad n = 2$$

$$\lim_{1 \le m \le n-1} \left\{ \frac{m}{n} + \frac{1}{m} \right\} - \frac{1}{n} \qquad n \ge 3$$
Proof of theorem:
PoF_{Bargain} = $\inf_{F} \frac{\max_{V \in F \cap \left\{ V \ge \frac{1}{n} \right\}} \sum_{i} V_{i}}{\max_{V \in F \cap \left\{ V \ge \frac{1}{n} \right\}} \sum_{i} V_{i}}$

$$\inf_{F} = \min_{F=F(x)}, \quad F(x) = \operatorname{conv}[x, (e_{i})_{i=1}^{n}]$$
Nash rule: $\prod V_{i} \to \max$
Bertsimas et al. (2011)
 $\rho[\text{Nash}]$: same numbers
for $n = k^{2}$
COROLLARY
Nash rule is the most
efficient among fair!

PRICE OF FAIRNESS AND THE MOST EFFICIENT FAIR RULE
THEOREM
PoF_{PriorDep} = PoF_{Cake} = PoF_{Bargain} =

$$\begin{pmatrix}
2 + \sqrt{3} \\
4 &= 0.933013 \\
1 &= 0.933013
\end{pmatrix}$$

$$n = 2$$

$$\frac{2 + \sqrt{3}}{4} = 0.933013 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1 \\
1 &= 1$$

PRICE OF FAIRNESS AND THE MOST EFFICIENT FAIR RULE
THEOREM
$$PoF_{PriorDep} = PoF_{Cake} = PoF_{Bargain} =$$

$$\begin{cases} \frac{2 + \sqrt{3}}{4} = 0.933013 \quad n = 2 \\ \frac{1}{\sqrt{3}}{4} = 0.933013 \quad n = 2 \\ \frac{1}{\sqrt{3}}{4} = 0.933013 \quad n = 2 \\ \frac{1}{\sqrt{3}}{4} = \frac{1}{\sqrt{3}}{1} - \frac{1}{n} \quad n \ge 3 \\ \frac{1}{\sqrt{3}}{\sqrt{3}} = \frac{1}{\sqrt{3}}{1} + \frac{1}{m} - \frac{1}{n} \quad n \ge 3 \\ \frac{1}{\sqrt{3}}{\sqrt{3}} = \frac{1}{\sqrt{3}}{1} + \frac{1}{m} - \frac{1}{n} \quad n \ge 3 \\ \frac{1}{\sqrt{3}}{\sqrt{3}} = \frac{1}{\sqrt{3}}{1} + \frac{1}{m} + \frac{1}{n} - \frac{1}{n} \quad n \ge 3 \\ \frac{1}{\sqrt{3}}{\sqrt{3}} = \frac{1}{\sqrt{3}}{1} + \frac{1}{\sqrt{$$

SUMMARY

Prior-Independent: high worst-case efficiency without learning by prior-free mechanisms: simple and robust. Proportional rule is good, TH is the best.

Prior-Dependent: Nash rule has the highest worst-case efficiency

SUMMARY

Prior-Independent: high worst-case efficiency without learning by prior-free mechanisms: simple and robust. Proportional rule is good, TH is the best.

Prior-Dependent: Nash rule has the highest worst-case efficiency

FUTURE

- Non-worst-case analysis: how often PDR outperform PIR?
- More than one good
- Repeated problems: unknown expectation, almost-truthful rules

SUMMARY

Prior-Independent: high worst-case efficiency without learning by prior-free mechanisms: simple and robust. Proportional rule is good, TH is the best.

Prior-Dependent: Nash rule has the highest worst-case efficiency

FUTURE

- Non-worst-case analysis: how often PDR outperform PIR?
- More than one good
- Repeated problems: unknown expectation, almost-truthful rules

Thank you! Questions?