Private Private Information

Kevin He (UPenn) Fedor Sandomirskiy (Caltech) Omer Tamuz (Caltech) EC'22

Our question: how to disclose information optimally if constrained by privacy?

Our question: how to disclose information optimally if constrained by privacy?

- Agents $\{1, \ldots, n\}$

Our question: how to disclose information optimally if constrained by privacy?

- Agents $\{1, \ldots, n\}$
- A binary state $\omega \in\{\ell, h\}$, common prior $\mathbb{P}[\omega=h]=p$

Our question: how to disclose information optimally if constrained by privacy?

- Agents $\{1, \ldots, n\}$
- A binary state $\omega \in\{\ell, h\}$, common prior $\mathbb{P}[\omega=h]=p$
- Agent i gets signal $s_{i} \in S_{i}$ about ω, her private information

Our question: how to disclose information optimally if constrained by privacy?

- Agents $\{1, \ldots, n\}$
- A binary state $\omega \in\{\ell, h\}$, common prior $\mathbb{P}[\omega=h]=p$
- Agent i gets signal $s_{i} \in S_{i}$ about ω, her private information
- s_{i} may carry info about s_{j} : public signals is a particular case
- private information may not be private

Our question: how to disclose information optimally if constrained by privacy?

- Agents $\{1, \ldots, n\}$
- A binary state $\omega \in\{\ell, h\}$, common prior $\mathbb{P}[\omega=h]=p$
- Agent i gets signal $s_{i} \in S_{i}$ about ω, her private information
- s_{i} may carry info about s_{j} : public signals is a particular case
- private information may not be private

Definition

A joint distribution \mathbb{P} over $\left(\omega, s_{1}, \ldots, s_{n}\right)$ is a private private information structure if $\left(s_{1}, \ldots, s_{n}\right)$ are independent

Our question: how to disclose information optimally if constrained by privacy?

- Agents $\{1, \ldots, n\}$
- A binary state $\omega \in\{\ell, h\}$, common prior $\mathbb{P}[\omega=h]=p$
- Agent i gets signal $s_{i} \in S_{i}$ about ω, her private information
- s_{i} may carry info about s_{j} : public signals is a particular case
- private information may not be private

Definition

A joint distribution \mathbb{P} over $\left(\omega, s_{1}, \ldots, s_{n}\right)$ is a private private information structure if $\left(s_{1}, \ldots, s_{n}\right)$ are independent

- Private private signals contain info about ω, not about each other

Our question: how to disclose information optimally if constrained by privacy?

- Agents $\{1, \ldots, n\}$
- A binary state $\omega \in\{\ell, h\}$, common prior $\mathbb{P}[\omega=h]=p$
- Agent i gets signal $s_{i} \in S_{i}$ about ω, her private information
- s_{i} may carry info about s_{j} : public signals is a particular case
- private information may not be private

Definition

A joint distribution \mathbb{P} over $\left(\omega, s_{1}, \ldots, s_{n}\right)$ is a private private information structure if $\left(s_{1}, \ldots, s_{n}\right)$ are independent

- Private private signals contain info about ω, not about each other
- Can everyone get informative private private signals?

Our question: how to disclose information optimally if constrained by privacy?

- Agents $\{1, \ldots, n\}$
- A binary state $\omega \in\{\ell, h\}$, common prior $\mathbb{P}[\omega=h]=p$
- Agent i gets signal $s_{i} \in S_{i}$ about ω, her private information
- s_{i} may carry info about s_{j} : public signals is a particular case
- private information may not be private

Definition

A joint distribution \mathbb{P} over $\left(\omega, s_{1}, \ldots, s_{n}\right)$ is a private private information structure if $\left(s_{1}, \ldots, s_{n}\right)$ are independent

- Private private signals contain info about ω, not about each other
- Can everyone get informative private private signals?
- Paradoxical: s_{1} informative about ω, ω correlated with s_{2}, yet P1 learns nothing about s_{2} ?

Our question: how to disclose information optimally if constrained by privacy?

- Agents $\{1, \ldots, n\}$
- A binary state $\omega \in\{\ell, h\}$, common prior $\mathbb{P}[\omega=h]=p$
- Agent i gets signal $s_{i} \in S_{i}$ about ω, her private information
- s_{i} may carry info about s_{j} : public signals is a particular case
- private information may not be private

Definition

A joint distribution \mathbb{P} over $\left(\omega, s_{1}, \ldots, s_{n}\right)$ is a private private information structure if $\left(s_{1}, \ldots, s_{n}\right)$ are independent

- Private private signals contain info about ω, not about each other
- Can everyone get informative private private signals?
- Paradoxical: s_{1} informative about ω, ω correlated with s_{2}, yet P1 learns nothing about s_{2} ?
- It is possible! We study tension between informativeness and privacy

How to compare informativeness?

- What does it mean that a signal s is more informative about ω than s^{\prime} ?

How to compare informativeness?

- What does it mean that a signal s is more informative about ω than s^{\prime} ?
- Denote $p(s)=\mathbb{P}[\omega=h \mid s]$ the posterior belief induced by s

How to compare informativeness?

- What does it mean that a signal s is more informative about ω than s^{\prime} ?
- Denote $p(s)=\mathbb{P}[\omega=h \mid s]$ the posterior belief induced by s

Definition
A signal s Blackwell dominates s^{\prime} if for any convex φ on $[0,1]$

$$
\mathbb{E}[\varphi(p(s))] \geq \mathbb{E}\left[\varphi\left(p^{\prime}\left(s^{\prime}\right)\right)\right] .
$$

How to compare informativeness?

- What does it mean that a signal s is more informative about ω than s^{\prime} ?
- Denote $p(s)=\mathbb{P}[\omega=h \mid s]$ the posterior belief induced by s

Definition
A signal s Blackwell dominates s^{\prime} if for any convex φ on $[0,1]$

$$
\mathbb{E}[\varphi(p(s))] \geq \mathbb{E}\left[\varphi\left(p^{\prime}\left(s^{\prime}\right)\right)\right] .
$$

- Equivalent definition:
- in any decision problem s gives higher expected utility than s^{\prime}

How to compare informativeness?

- What does it mean that a signal s is more informative about ω than s^{\prime} ?
- Denote $p(s)=\mathbb{P}[\omega=h \mid s]$ the posterior belief induced by s

Definition

A signal s Blackwell dominates s^{\prime} if for any convex φ on $[0,1]$

$$
\mathbb{E}[\varphi(p(s))] \geq \mathbb{E}\left[\varphi\left(p^{\prime}\left(s^{\prime}\right)\right)\right] .
$$

- Equivalent definition:
- in any decision problem s gives higher expected utility than s^{\prime}

Definition

An information structure ($\omega, s_{1}, \ldots, s_{n}$) Blackwell dominates $\left(\omega, s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right)$ if each agent's signal s_{i} dominates s_{i}^{\prime}.

How to compare informativeness?

- What does it mean that a signal s is more informative about ω than s^{\prime} ?
- Denote $p(s)=\mathbb{P}[\omega=h \mid s]$ the posterior belief induced by s

Definition

A signal s Blackwell dominates s^{\prime} if for any convex φ on $[0,1]$

$$
\mathbb{E}[\varphi(p(s))] \geq \mathbb{E}\left[\varphi\left(p^{\prime}\left(s^{\prime}\right)\right)\right] .
$$

- Equivalent definition:
- in any decision problem s gives higher expected utility than s^{\prime}

Definition

An information structure ($\omega, s_{1}, \ldots, s_{n}$) Blackwell dominates $\left(\omega, s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right)$ if each agent's signal s_{i} dominates s_{i}^{\prime}.
A private private structure is Pareto optimal if it is not dominated by another private private structure.

Characterization of Pareto Optimality for $n=2$

- Let F be a cdf of a distribution on $[0,1]$ with mean p

Characterization of Pareto Optimality for $n=2$

- Let F be a cdf of a distribution on $[0,1]$ with mean p
- Denote $\hat{F}(x)=1-F^{-1}(1-x)$

Characterization of Pareto Optimality for $n=2$

- Let F be a cdf of a distribution on $[0,1]$ with mean p
- Denote $\hat{F}(x)=1-F^{-1}(1-x)$
- Then \hat{F} is also a cdf of a distribution on $[0,1]$ with mean p, obtained by reflecting F around the anti-diagonal

\hat{F}

Characterization of Pareto Optimality for $n=2$

- Let F be a cdf of a distribution on $[0,1]$ with mean p
- Denote $\hat{F}(x)=1-F^{-1}(1-x)$
- Then \hat{F} is also a cdf of a distribution on $[0,1]$ with mean p, obtained by reflecting F around the anti-diagonal

- Call F and \hat{F} conjugates

Characterization of Pareto Optimality for $n=2$

- Let F be a cdf of a distribution on $[0,1]$ with mean p
- Denote $\hat{F}(x)=1-F^{-1}(1-x)$
- Then \hat{F} is also a cdf of a distribution on $[0,1]$ with mean p, obtained by reflecting F around the anti-diagonal

- Call F and \hat{F} conjugates

Theorem 1

For $n=2$, a private private info structure is Pareto optimal if and only if the belief distributions induced by s_{1} and s_{2} are conjugates.

Application: fairness, equity, and privacy in rating design

Application: fairness, equity, and privacy in rating design

- $\omega \in\{\ell, h\}$ is borrower's creditworthiness

Application: fairness, equity, and privacy in rating design

- $\omega \in\{\ell, h\}$ is borrower's creditworthiness
- s_{1} is a private or legally protected trait, correlated with ω

Application: fairness, equity, and privacy in rating design

- $\omega \in\{\ell, h\}$ is borrower's creditworthiness
- s_{1} is a private or legally protected trait, correlated with ω
- rating agency knows ω and s_{1}

Application: fairness, equity, and privacy in rating design

- $\omega \in\{\ell, h\}$ is borrower's creditworthiness
- s_{1} is a private or legally protected trait, correlated with ω
- rating agency knows ω and s_{1}
- sends a signal s_{2} about the borrower's creditworthiness

Application: fairness, equity, and privacy in rating design

- $\omega \in\{\ell, h\}$ is borrower's creditworthiness
- s_{1} is a private or legally protected trait, correlated with ω
- rating agency knows ω and s_{1}
- sends a signal s_{2} about the borrower's creditworthiness
- regulations / privacy laws may require s_{2} to be independent of s_{1} (demographic parity)

Application: fairness, equity, and privacy in rating design

- $\omega \in\{\ell, h\}$ is borrower's creditworthiness
- s_{1} is a private or legally protected trait, correlated with ω
- rating agency knows ω and s_{1}
- sends a signal s_{2} about the borrower's creditworthiness
- regulations / privacy laws may require s_{2} to be independent of s_{1} (demographic parity)
- Observation: finding the most informative s_{2} independent of $s_{1} \Leftrightarrow$ finding a Pareto optimal (ω, s_{1}, s_{2}) with the given $\left(\omega, s_{1}\right)$ marginal

Application: fairness, equity, and privacy in rating design

- $\omega \in\{\ell, h\}$ is borrower's creditworthiness
- s_{1} is a private or legally protected trait, correlated with ω
- rating agency knows ω and s_{1}
- sends a signal s_{2} about the borrower's creditworthiness
- regulations / privacy laws may require s_{2} to be independent of s_{1} (demographic parity)
- Observation: finding the most informative s_{2} independent of $s_{1} \Leftrightarrow$ finding a Pareto optimal (ω, s_{1}, s_{2}) with the given $\left(\omega, s_{1}\right)$ marginal

Corollary

For given (ω, s_{1}), optimal s_{2} is unique, i.e., s_{2} dominates any other s_{2}^{\prime} independent of s_{1}. Belief distributions induced by s_{1} and s_{2} are conjugates.

Application: fairness, equity, and privacy in rating design

- $\omega \in\{\ell, h\}$ is borrower's creditworthiness
- s_{1} is a private or legally protected trait, correlated with ω
- rating agency knows ω and s_{1}
- sends a signal s_{2} about the borrower's creditworthiness
- regulations / privacy laws may require s_{2} to be independent of s_{1} (demographic parity)
- Observation: finding the most informative s_{2} independent of $s_{1} \Leftrightarrow$ finding a Pareto optimal (ω, s_{1}, s_{2}) with the given $\left(\omega, s_{1}\right)$ marginal

Corollary

For given (ω, s_{1}), optimal s_{2} is unique, i.e., s_{2} dominates any other s_{2}^{\prime} independent of s_{1}. Belief distributions induced by s_{1} and s_{2} are conjugates.

- for ≥ 3 states ω, there may be a continuum of optimal s_{2}

Canonical representation of private private info structures

- Fix $A \subset[0,1]^{n}$ with measure p

Canonical representation of private private info structures

- Fix $A \subset[0,1]^{n}$ with measure p
- Define a private private structure associated with A :

Canonical representation of private private info structures

- Fix $A \subset[0,1]^{n}$ with measure p
- Define a private private structure associated with A :
- When $\omega=h$, choose $\left(s_{1}, \ldots, s_{n}\right)$ uniformly from A

Canonical representation of private private info structures

- Fix $A \subset[0,1]^{n}$ with measure p
- Define a private private structure associated with A :
- When $\omega=h$, choose $\left(s_{1}, \ldots, s_{n}\right)$ uniformly from A
- When $\omega=\ell$, choose $\left(s_{1}, \ldots, s_{n}\right)$ uniformly from $[0,1]^{n} \backslash A$

Canonical representation of private private info structures

- Fix $A \subset[0,1]^{n}$ with measure p
- Define a private private structure associated with A :
- When $\omega=h$, choose $\left(s_{1}, \ldots, s_{n}\right)$ uniformly from A
- When $\omega=\ell$, choose $\left(s_{1}, \ldots, s_{n}\right)$ uniformly from $[0,1]^{n} \backslash A$
- Signals are uniform on $[0,1]^{n}$, hence, private private

Canonical representation of private private info structures

- Fix $A \subset[0,1]^{n}$ with measure p
- Define a private private structure associated with A :
- When $\omega=h$, choose $\left(s_{1}, \ldots, s_{n}\right)$ uniformly from A
- When $\omega=\ell$, choose $\left(s_{1}, \ldots, s_{n}\right)$ uniformly from $[0,1]^{n} \backslash A$
- Signals are uniform on $[0,1]^{n}$, hence, private private

Canonical representation of private private info structures

- Fix $A \subset[0,1]^{n}$ with measure p
- Define a private private structure associated with A :
- When $\omega=h$, choose $\left(s_{1}, \ldots, s_{n}\right)$ uniformly from A
- When $\omega=\ell$, choose $\left(s_{1}, \ldots, s_{n}\right)$ uniformly from $[0,1]^{n} \backslash A$
- Signals are uniform on $[0,1]^{n}$, hence, private private

Canonical representation of private private info structures

- Fix $A \subset[0,1]^{n}$ with measure p
- Define a private private structure associated with A :
- When $\omega=h$, choose $\left(s_{1}, \ldots, s_{n}\right)$ uniformly from A
- When $\omega=\ell$, choose $\left(s_{1}, \ldots, s_{n}\right)$ uniformly from $[0,1]^{n} \backslash A$
- Signals are uniform on $[0,1]^{n}$, hence, private private
S_{2}

beliefs:
uniform on $[0,1]$
beliefs:
$1 / 4$ and $3 / 4$

Canonical representation of private private info structures

- Fix $A \subset[0,1]^{n}$ with measure p
- Define a private private structure associated with A :
- When $\omega=h$, choose $\left(s_{1}, \ldots, s_{n}\right)$ uniformly from A
- When $\omega=\ell$, choose $\left(s_{1}, \ldots, s_{n}\right)$ uniformly from $[0,1]^{n} \backslash A$
- Signals are uniform on $[0,1]^{n}$, hence, private private

beliefs:
uniform on $[0,1]$

beliefs:
$1 / 4$ and $3 / 4$

Proposition

Any private private info structure is equivalent to a structure associated with some $A \subseteq[0,1]^{n}$

Pareto optimality and tomography

Tomography reconstructs objects from lower-dimensional projections

Pareto optimality and tomography

Tomography reconstructs objects from lower-dimensional projections

We need a concept from math tomography:

Definition

$A \subseteq[0,1]^{n}$ is a set of uniqueness if its n projections to n coordinate axes suffice to reconstruct A

Pareto optimality and tomography

Tomography reconstructs objects from lower-dimensional projections

We need a concept from math tomography:

Definition

$A \subseteq[0,1]^{n}$ is a set of uniqueness if its n projections to n coordinate axes suffice to reconstruct A

Theorem 2

A private private info structure is Pareto optimal \Longleftrightarrow equivalent to a structure associated with a set of uniqueness

Pareto optimality and tomography

Tomography reconstructs objects from lower-dimensional projections

We need a concept from math tomography:

Definition

$A \subseteq[0,1]^{n}$ is a set of uniqueness if its n projections to n coordinate axes suffice to reconstruct A

Theorem 2

A private private info structure is Pareto optimal \Longleftrightarrow equivalent to a structure associated with a set of uniqueness

Fishburn, Lagarias, Reeds, Shepp 1990
For $n=2, A$ is a set of uniqueness \Leftrightarrow upward-closed up to a measure-preserving transformations of axes

Pareto optimality and tomography

Tomography reconstructs objects from lower-dimensional projections

We need a concept from math tomography:

Definition

$A \subseteq[0,1]^{n}$ is a set of uniqueness if its n projections to n coordinate axes suffice to reconstruct A

Theorem 2

A private private info structure is Pareto optimal \Longleftrightarrow equivalent to a structure associated with a set of uniqueness

Fishburn, Lagarias, Reeds, Shepp 1990
For $n=2, A$ is a set of uniqueness \Leftrightarrow upward-closed up to a measure-preserving transformations of axes

Corollary: characterization of Pareto Optimality via conjugates (Th 1)

Summary

- Private private information structures: signals of different agents $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ are unconditionally independent

Summary

- Private private information structures: signals of different agents $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ are unconditionally independent
- Can represent all such info structures as subsets of $[0,1]^{n}$

Summary

- Private private information structures: signals of different agents $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ are unconditionally independent
- Can represent all such info structures as subsets of $[0,1]^{n}$
- Pareto optimal private private info structures are associated with sets of uniqueness

Summary

- Private private information structures: signals of different agents $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ are unconditionally independent
- Can represent all such info structures as subsets of $[0,1]^{n}$

Summary

- Private private information structures: signals of different agents $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ are unconditionally independent
- Can represent all such info structures as subsets of $[0,1]^{n}$

Other occurrences of private private signals

Other occurrences of private private signals

- Worst-case information structures in robust mechanism design:
- Bergemann, Brooks, Morris First-price auctions with general information structures:Implications for bidding and revenue Econometrica 2017
- Brooks and Du Optimal auction design with common values: An informationally robust approach Econometrica 2021

Other occurrences of private private signals

- Worst-case information structures in robust mechanism design:
- Bergemann, Brooks, Morris First-price auctions with general information structures:Implications for bidding and revenue Econometrica 2017
- Brooks and Du Optimal auction design with common values: An informationally robust approach Econometrica 2021
- Counterexamples to information aggregation in exchange economies
- Ostrovsky Information aggregation in dynamic markets with strategic traders Econometrica 2012

Other occurrences of private private signals

- Worst-case information structures in robust mechanism design:
- Bergemann, Brooks, Morris First-price auctions with general information structures:Implications for bidding and revenue Econometrica 2017
- Brooks and Du Optimal auction design with common values: An informationally robust approach Econometrica 2021
- Counterexamples to information aggregation in exchange economies
- Ostrovsky Information aggregation in dynamic markets with strategic traders Econometrica 2012
- Feasible joint distributions of posterior beliefs
- Arieli, Babichenko, Sandomirskiy, Tamuz Feasible joint posterior beliefs Journal of Political Economy 2021

