Private Private Information

Kevin He (UPenn) Fedor Sandomirskiy (Caltech) Omer Tamuz (Caltech) EC'22

• Agents $\{1,...,n\}$

- Agents $\{1, ..., n\}$
- A binary state $\omega \in \{\ell, h\}$, common prior $\mathbb{P}[\omega = h] = p$

- Agents $\{1,...,n\}$
- A binary state $\omega \in \{\ell, h\}$, common prior $\mathbb{P}[\omega = h] = p$
- Agent *i* gets signal $s_i \in S_i$ about ω , her **private information**

- Agents $\{1, ..., n\}$
- A binary state $\omega \in \{\ell, h\}$, common prior $\mathbb{P}[\omega = h] = p$
- Agent *i* gets signal $s_i \in S_i$ about ω , her **private information**
 - s_i may carry info about s_j : public signals is a particular case
 - private information may not be private

- Agents $\{1,...,n\}$
- A binary state $\omega \in \{\ell, h\}$, common prior $\mathbb{P}[\omega = h] = p$
- Agent *i* gets signal $s_i \in S_i$ about ω , her **private information**
 - s_i may carry info about s_j : public signals is a particular case
 - private information may not be private

Definition

- Agents $\{1, ..., n\}$
- A binary state $\omega \in \{\ell, h\}$, common prior $\mathbb{P}[\omega = h] = p$
- Agent *i* gets signal $s_i \in S_i$ about ω , her **private information**
 - s_i may carry info about s_j : public signals is a particular case
 - private information may not be private

Definition

A joint distribution \mathbb{P} over $(\omega, s_1, ..., s_n)$ is a **private private information structure** if $(s_1, ..., s_n)$ are independent

• Private private signals contain info about ω , not about each other

- Agents $\{1,...,n\}$
- A binary state $\omega \in \{\ell, h\}$, common prior $\mathbb{P}[\omega = h] = p$
- Agent *i* gets signal $s_i \in S_i$ about ω , her **private information**
 - s_i may carry info about s_j : public signals is a particular case
 - private information may not be private

Definition

- Private private signals contain info about ω , not about each other
- Can everyone get informative private private signals?

- Agents $\{1, ..., n\}$
- A binary state $\omega \in \{\ell, h\}$, common prior $\mathbb{P}[\omega = h] = p$
- Agent *i* gets signal $s_i \in S_i$ about ω , her **private information**
 - s_i may carry info about s_j : public signals is a particular case
 - private information may not be private

Definition

- Private private signals contain info about ω , not about each other
- Can everyone get informative private private signals?
 - Paradoxical: s₁ informative about ω, ω correlated with s₂, yet P1 learns nothing about s₂?

- Agents $\{1, ..., n\}$
- A binary state $\omega \in \{\ell, h\}$, common prior $\mathbb{P}[\omega = h] = p$
- Agent *i* gets signal $s_i \in S_i$ about ω , her **private information**
 - s_i may carry info about s_j : public signals is a particular case
 - private information may not be private

Definition

- Private private signals contain info about ω , not about each other
- Can everyone get informative private private signals?
 - Paradoxical: s₁ informative about ω, ω correlated with s₂, yet P1 learns nothing about s₂?
- It is possible! We study tension between informativeness and privacy

• What does it mean that a signal s is more informative about ω than s'?

- What does it mean that a signal s is more informative about ω than s'?
- Denote $p(s) = \mathbb{P}[\omega = h \mid s]$ the posterior belief induced by s

- What does it mean that a signal s is more informative about ω than s'?
- Denote $p(s) = \mathbb{P}[\omega = h \mid s]$ the posterior belief induced by s

Definition

A signal s Blackwell dominates s' if for any convex φ on [0,1]

 $\mathbb{E}[\varphi(p(s))] \geq \mathbb{E}[\varphi(p'(s'))].$

- What does it mean that a signal s is more informative about ω than s'?
- Denote $p(s) = \mathbb{P}[\omega = h \mid s]$ the posterior belief induced by s

Definition

A signal s Blackwell dominates s' if for any convex φ on [0,1]

 $\mathbb{E}[\varphi(p(s))] \geq \mathbb{E}[\varphi(p'(s'))].$

- Equivalent definition:
 - in any decision problem s gives higher expected utility than s'

- What does it mean that a signal s is more informative about ω than s'?
- Denote $p(s) = \mathbb{P}[\omega = h \mid s]$ the posterior belief induced by s

Definition

A signal s Blackwell dominates s' if for any convex φ on [0,1]

 $\mathbb{E}[\varphi(p(s))] \geq \mathbb{E}[\varphi(p'(s'))].$

• Equivalent definition:

• in any decision problem s gives higher expected utility than s'

Definition

An information structure $(\omega, s_1, \ldots, s_n)$ Blackwell dominates $(\omega, s'_1, \ldots, s'_n)$ if each agent's signal s_i dominates s'_i .

- What does it mean that a signal s is more informative about ω than s'?
- Denote $p(s) = \mathbb{P}[\omega = h \mid s]$ the posterior belief induced by s

Definition

A signal s Blackwell dominates s' if for any convex φ on [0,1]

 $\mathbb{E}[\varphi(p(s))] \geq \mathbb{E}[\varphi(p'(s'))].$

• Equivalent definition:

• in any decision problem s gives higher expected utility than s'

Definition

An information structure $(\omega, s_1, \ldots, s_n)$ Blackwell dominates $(\omega, s'_1, \ldots, s'_n)$ if each agent's signal s_i dominates s'_i .

A private private structure is **Pareto optimal** if it is not dominated by another private private structure.

• Let F be a cdf of a distribution on [0, 1] with mean p

• Let F be a cdf of a distribution on [0, 1] with mean p

• Denote
$$\hat{F}(x) = 1 - F^{-1}(1-x)$$

• Let F be a cdf of a distribution on [0, 1] with mean p

• Denote
$$\hat{F}(x) = 1 - F^{-1}(1-x)$$

Then *F̂* is also a cdf of a distribution on [0, 1] with mean *p*, obtained by reflecting *F* around the anti-diagonal

• Let F be a cdf of a distribution on [0, 1] with mean p

• Denote
$$\hat{F}(x) = 1 - F^{-1}(1-x)$$

Then *F̂* is also a cdf of a distribution on [0, 1] with mean *p*, obtained by reflecting *F* around the anti-diagonal

• Call F and \hat{F} conjugates

• Let F be a cdf of a distribution on [0, 1] with mean p

• Denote
$$\hat{F}(x) = 1 - F^{-1}(1-x)$$

Then *F̂* is also a cdf of a distribution on [0, 1] with mean *p*, obtained by reflecting *F* around the anti-diagonal

• Call F and \hat{F} conjugates

Theorem 1

For n = 2, a private private info structure is Pareto optimal if and only if the belief distributions induced by s_1 and s_2 are conjugates.

• $\omega \in \{\ell, h\}$ is borrower's creditworthiness

- $\omega \in \{\ell, h\}$ is borrower's creditworthiness
- + ${\it s}_1$ is a private or legally protected trait, correlated with ω

- $\omega \in \{\ell, h\}$ is borrower's creditworthiness
- + ${\it s}_1$ is a private or legally protected trait, correlated with ω
- rating agency knows ω and \textit{s}_1

- $\omega \in \{\ell, h\}$ is borrower's creditworthiness
- + ${\it s}_1$ is a private or legally protected trait, correlated with ω
- rating agency knows ω and ${\it s}_1$
- sends a signal s_2 about the borrower's creditworthiness

- $\omega \in \{\ell, h\}$ is borrower's creditworthiness
- s_1 is a private or legally protected trait, correlated with ω
- rating agency knows ω and \textit{s}_1
- sends a signal s_2 about the borrower's creditworthiness
- regulations / privacy laws may require s₂ to be independent of s₁ (demographic parity)

- $\omega \in \{\ell, h\}$ is borrower's creditworthiness
- s_1 is a private or legally protected trait, correlated with ω
- rating agency knows ω and \textit{s}_1
- sends a signal s_2 about the borrower's creditworthiness
- regulations / privacy laws may require s₂ to be independent of s₁ (demographic parity)
- Observation: finding the most informative s₂ independent of s₁ ⇔ finding a Pareto optimal (ω, s₁, s₂) with the given (ω, s₁) marginal

- $\omega \in \{\ell, h\}$ is borrower's creditworthiness
- s_1 is a private or legally protected trait, correlated with ω
- rating agency knows ω and \textit{s}_1
- sends a signal s_2 about the borrower's creditworthiness
- regulations / privacy laws may require s₂ to be independent of s₁ (demographic parity)
- Observation: finding the most informative s₂ independent of s₁ ⇔ finding a Pareto optimal (ω, s₁, s₂) with the given (ω, s₁) marginal

Corollary

For given (ω, s_1) , optimal s_2 is unique, i.e., s_2 dominates any other s'_2 independent of s_1 . Belief distributions induced by s_1 and s_2 are conjugates.

- $\omega \in \{\ell, h\}$ is borrower's creditworthiness
- s_1 is a private or legally protected trait, correlated with ω
- rating agency knows ω and \textit{s}_1
- sends a signal s_2 about the borrower's creditworthiness
- regulations / privacy laws may require s₂ to be independent of s₁ (demographic parity)
- Observation: finding the most informative s₂ independent of s₁ ⇔ finding a Pareto optimal (ω, s₁, s₂) with the given (ω, s₁) marginal

Corollary

For given (ω, s_1) , optimal s_2 is unique, i.e., s_2 dominates any other s'_2 independent of s_1 . Belief distributions induced by s_1 and s_2 are conjugates.

• for \geq 3 states $\omega,$ there may be a continuum of optimal \textit{s}_2

• Fix $A \subset [0,1]^n$ with measure p

- Fix $A \subset [0,1]^n$ with measure p
- Define a private private structure associated with A:

- Fix $A \subset [0,1]^n$ with measure p
- Define a private private structure associated with A:
 - When $\omega = h$, choose $(s_1, ..., s_n)$ uniformly from A

- Fix $A \subset [0,1]^n$ with measure p
- Define a private private structure associated with A:
 - When $\omega = h$, choose $(s_1, ..., s_n)$ uniformly from A
 - When $\omega = \ell$, choose $(s_1,...,s_n)$ uniformly from $[0,1]^n \setminus A$

- Fix $A \subset [0,1]^n$ with measure p
- Define a private private structure associated with A:
 - When $\omega = h$, choose $(s_1, ..., s_n)$ uniformly from A
 - When $\omega = \ell$, choose $(s_1, ..., s_n)$ uniformly from $[0, 1]^n \setminus A$
 - Signals are uniform on $[0,1]^n$, hence, private private

- Fix $A \subset [0,1]^n$ with measure p
- Define a private private structure associated with A:
 - When $\omega = h$, choose $(s_1, ..., s_n)$ uniformly from A
 - When $\omega = \ell$, choose $(s_1, ..., s_n)$ uniformly from $[0, 1]^n \setminus A$
 - Signals are uniform on $[0,1]^n$, hence, private private

beliefs: uniform on [0, 1]

- Fix $A \subset [0,1]^n$ with measure p
- Define a private private structure associated with A:
 - When $\omega = h$, choose $(s_1, ..., s_n)$ uniformly from A
 - When $\omega = \ell$, choose $(s_1, ..., s_n)$ uniformly from $[0, 1]^n \setminus A$
 - Signals are uniform on $[0,1]^n$, hence, private private

- Fix $A \subset [0,1]^n$ with measure p
- Define a private private structure associated with A:
 - When $\omega = h$, choose $(s_1, ..., s_n)$ uniformly from A
 - When $\omega = \ell$, choose $(s_1, ..., s_n)$ uniformly from $[0, 1]^n \setminus A$
 - Signals are uniform on $[0,1]^n$, hence, private private

- Fix $A \subset [0,1]^n$ with measure p
- Define a private private structure associated with A:
 - When $\omega = h$, choose $(s_1, ..., s_n)$ uniformly from A
 - When $\omega = \ell$, choose $(s_1, ..., s_n)$ uniformly from $[0, 1]^n \setminus A$
 - Signals are uniform on $[0,1]^n$, hence, private private

Proposition

Any private private info structure is equivalent to a structure associated with some $A \subseteq [0,1]^n$

Tomography reconstructs objects from lower-dimensional projections

Tomography reconstructs objects from lower-dimensional projections

We need a concept from math tomography:

Definition

 $A \subseteq [0, 1]^n$ is a **set of uniqueness** if its *n* projections to *n* coordinate axes suffice to reconstruct *A*

Tomography reconstructs objects from lower-dimensional projections

We need a concept from math tomography:

Definition

 $A \subseteq [0,1]^n$ is a **set of uniqueness** if its *n* projections to *n* coordinate axes suffice to reconstruct *A*

Theorem 2

A private private info structure is Pareto optimal \iff equivalent to a structure associated with a set of uniqueness

Tomography reconstructs objects from lower-dimensional projections

We need a concept from math tomography:

Definition

 $A \subseteq [0,1]^n$ is a **set of uniqueness** if its *n* projections to *n* coordinate axes suffice to reconstruct *A*

Theorem 2

A private private info structure is Pareto optimal \iff equivalent to a structure associated with a set of uniqueness

Fishburn, Lagarias, Reeds, Shepp 1990 For n = 2, A is a set of uniqueness \Leftrightarrow upward-closed up to a measure-preserving transformations of axes

Tomography reconstructs objects from lower-dimensional projections

We need a concept from math tomography:

Definition

 $A \subseteq [0,1]^n$ is a **set of uniqueness** if its *n* projections to *n* coordinate axes suffice to reconstruct *A*

Theorem 2

A private private info structure is Pareto optimal \iff equivalent to a structure associated with a set of uniqueness

Fishburn, Lagarias, Reeds, Shepp 1990 For n = 2, A is a set of uniqueness \Leftrightarrow upward-closed up to a measure-preserving transformations of axes

Corollary: characterization of Pareto Optimality via conjugates (Th 1)

• Private private information structures: signals of different agents (*s*₁, *s*₂, ..., *s_n*) are unconditionally independent

- **Private private information structures**: signals of different agents (*s*₁, *s*₂, ..., *s*_n) are unconditionally independent
- Can **represent** all such info structures as subsets of $[0, 1]^n$

- **Private private information structures**: signals of different agents (*s*₁, *s*₂, ..., *s*_n) are unconditionally independent
- Can **represent** all such info structures as subsets of $[0, 1]^n$
- Pareto optimal private private info structures are associated with **sets of uniqueness**

(not Pareto optimal)

1

(Pareto optimal)

- **Private private information structures**: signals of different agents (*s*₁, *s*₂, ..., *s*_n) are unconditionally independent
- Can **represent** all such info structures as subsets of $[0, 1]^n$
- Pareto optimal private private info structures are associated with **sets of uniqueness**
 - For *n* = 2, a simple criterion of Pareto optimality: distributions of posteriors must be conjugate

(Pareto optimal)

- **Private private information structures**: signals of different agents (*s*₁, *s*₂, ..., *s*_n) are unconditionally independent
- Can **represent** all such info structures as subsets of $[0, 1]^n$
- Pareto optimal private private info structures are associated with sets of uniqueness
 - For *n* = 2, a simple criterion of Pareto optimality: distributions of posteriors must be conjugate

Thank you!

(not Pareto optimal)

(Pareto optimal)

Other occurrences of private private signals

- Worst-case information structures in robust mechanism design:
 - Bergemann, Brooks, Morris *First-price auctions with general information structures:Implications for bidding and revenue* Econometrica 2017
 - Brooks and Du Optimal auction design with common values: An informationally robust approach Econometrica 2021

Other occurrences of private private signals

- Worst-case information structures in robust mechanism design:
 - Bergemann, Brooks, Morris *First-price auctions with general information structures:Implications for bidding and revenue* Econometrica 2017
 - Brooks and Du Optimal auction design with common values: An informationally robust approach Econometrica 2021
- Counterexamples to information aggregation in exchange economies
 - Ostrovsky Information aggregation in dynamic markets with strategic traders Econometrica 2012

- Worst-case information structures in robust mechanism design:
 - Bergemann, Brooks, Morris *First-price auctions with general information structures:Implications for bidding and revenue* Econometrica 2017
 - Brooks and Du Optimal auction design with common values: An informationally robust approach Econometrica 2021
- Counterexamples to information aggregation in exchange economies
 - Ostrovsky Information aggregation in dynamic markets with strategic traders Econometrica 2012
- Feasible joint distributions of posterior beliefs
 - Arieli, Babichenko, Sandomirskiy, Tamuz Feasible joint posterior beliefs Journal of Political Economy 2021