Beckmann's approach to multi-item multi-bidder auctions

arXiv:2203.06837

Alexander V. Kolesnikov (HSE) Fedor Sandomirskiy (Caltech, fsandomi@caltech.edu, https://www.fedors.info/) Aleh Tsyvinski (Yale) Alexander P. Zimin (MIT)

Bayesian setting: independent private values, seller knows distribution

	m = 1:	$m \ge 2$:
n = 1:		
<i>II</i> = 1.		
<i>n</i> ≥ 2:		

	m = 1:	$m \ge 2$:
	Single-item monopolist	
<i>n</i> = 1:	Myerson (1981): posted price is optimal	
<i>n</i> ≥ 2:		

	m = 1:	$m \ge 2$:
	Single-item monopolist	
n = 1:	Myerson (1981): posted price is optimal	
	Classic auctions	
<i>n</i> ≥ 2:	Myerson (1981): 2nd-price auction with re- serve is optimal	

	m = 1:	$m \ge 2$:
<i>n</i> = 1:	Single-item monopolist Myerson (1981): posted price is optimal	 Multi-item monopolist optimal mechanisms known in particular cases connection to optimal transport
<i>n</i> ≥ 2:	Classic auctions Myerson (1981): 2nd-price auction with re- serve is optimal	

Bayesian setting: independent private values, seller knows distribution

	m = 1:	$m \ge 2$:
n = 1:	Single-item monopolist Myerson (1981): posted price is optimal	Multi-item monopolist • optimal mechanisms known in particular cases • connection to optimal transport ^a ^a C.Daskalakis, A.Deckelbaum, C.Tzamos (2017) Strong duality for a multiple-good monopolist Econometrica
<i>n</i> ≥ 2:	Classic auctions Myerson (1981): 2nd-price auction with re- serve is optimal	

Bayesian setting: independent private values, seller knows distribution

	m = 1:	$m \ge 2$:
<i>n</i> = 1:	Single-item monopolist Myerson (1981): posted price is optimal	Multi-item monopolist • optimal mechanisms known in particular cases • connection to optimal transport ^a
		^a C.Daskalakis, A.Deckelbaum, C.Tzamos (2017) Strong duality for a multiple-good monopolist Econometrica
	Classic auctions	Multi-item auctionsalmost nothing known about
<i>n</i> ≥ 2:	Myerson (1981): 2nd-price auction with re- serve is optimal	optimal mechanisms ^a Our paper: connection to optimal transport ^aCombined obstacles of multidimensional and multi-agent mechanism design
		and multi-agent meetiamsm design

Bayesian setting: independent private values, seller knows distribution

	m = 1:	$m \ge 2$:
<i>n</i> = 1:	Single-item monopolist Myerson (1981): posted price is optimal	Multi-item monopolist • optimal mechanisms known in particular cases • connection to optimal transport ^a
		^a C.Daskalakis, A.Deckelbaum, C.Tzamos (2017) Strong duality for a multiple-good monopolist Econometrica
<i>n</i> ≥ 2:	Classic auctions Myerson (1981): 2nd-price auction with re- serve is optimal	Multi-item auctions • almost nothing known about optimal mechanisms ^a • Our paper: connection to optimal transport ^a Combined obstacles of multidimensional and multi-agent mechanism design

Strong duality (informal)

For $n \geq 1$ bidders with additive utilities over $m \geq 1$ items

max Revenue = min Cost BIC IR mechanisms transport flows

- formal statement later
- left-hand side is intuitive \Rightarrow discuss the right-hand side

Strong duality (informal)

For $n \geq 1$ bidders with additive utilities over $m \geq 1$ items

max Revenue = min Cost BIC IR mechanisms transport flows

• formal statement later

• left-hand side is intuitive \Rightarrow discuss the right-hand side

Strong duality (informal)

For $n \geq 1$ bidders with additive utilities over $m \geq 1$ items

max Revenue = min Cost BIC IR mechanisms transport flows

- formal statement later
- $\bullet~$ left-hand side is intuitive \Rightarrow discuss the right-hand side

For given geographical distribution of production $\pi_+ \in \Delta(X)$ and consumption $\pi_- \in \Delta(X)$, $X \subset \mathbb{R}^d$, find least costly way of transportation

For given geographical distribution of production $\pi_+ \in \Delta(X)$ and consumption $\pi_- \in \Delta(X)$, $X \subset \mathbb{R}^d$, find least costly way of transportation

Monge-Kantorovich problem

For given geographical distribution of production $\pi_+ \in \Delta(X)$ and consumption $\pi_- \in \Delta(X)$, $X \subset \mathbb{R}^d$, find least costly way of transportation

Monge-Kantorovich problem

Given:

 π_+,π_- and transport costs c(x,y)

For given geographical distribution of production $\pi_+ \in \Delta(X)$ and consumption $\pi_- \in \Delta(X)$, $X \subset \mathbb{R}^d$, find least costly way of transportation

Monge-Kantorovich problem Given: π_+, π_- and transport costs c(x, y)Find:

$$\min_{\substack{\gamma \in \Delta(X \times X) \\ \text{marginals } \pi_+, \pi_-}} \int c(x, y) \, \mathrm{d}\gamma(x, y)$$

For given geographical distribution of production $\pi_+ \in \Delta(X)$ and consumption $\pi_- \in \Delta(X)$, $X \subset \mathbb{R}^d$, find least costly way of transportation

Monge-Kantorovich problem Given: π_+, π_- and transport costs c(x, y)Find:

$$\min_{\substack{\gamma \in \Delta(X \times X) : \int c(x, y) \, d\gamma(x, y) \\ \text{marginals } \pi_+, \pi_-}} \int c(x, y) \, d\gamma(x, y)$$

- archetypal coupling problem, many econ applications
- appears for n = 1 bidder
- transportation is immediate

For given geographical distribution of production $\pi_+ \in \Delta(X)$ and consumption $\pi_- \in \Delta(X)$, $X \subset \mathbb{R}^d$, find least costly way of transportation

Monge-Kantorovich problem Given: π_+, π_- and transport costs c(x, y)Find:

$$\min_{\substack{\gamma \in \Delta(X \times X) : \int c(x, y) \, \mathrm{d}\gamma(x, y) \\ \text{marginals } \pi_+, \pi_-}} \int c(x, y) \, \mathrm{d}\gamma(x, y)$$

- archetypal coupling problem, many econ applications
- appears for n = 1 bidder
- transportation is immediate

For given geographical distribution of production $\pi_+ \in \Delta(X)$ and consumption $\pi_- \in \Delta(X)$, $X \subset \mathbb{R}^d$, find least costly way of transportation

Monge-Kantorovich problem Given: π_+, π_- and transport costs c(x, y)Find:

$$\min_{\substack{\gamma \in \Delta(X \times X) : \int c(x, y) \, \mathrm{d}\gamma(x, y) \\ \text{marginals } \pi_+, \pi_-}} \int c(x, y) \, \mathrm{d}\gamma(x, y)$$

- archetypal coupling problem, many econ applications
- appears for n = 1 bidder
- transportation is immediate

For given geographical distribution of production $\pi_+ \in \Delta(X)$ and consumption $\pi_- \in \Delta(X)$, $X \subset \mathbb{R}^d$, find least costly way of transportation

Monge-Kantorovich problem	Beckmann's problem ^a
Given:	
π_+,π and transport costs $c(x,y)$	
Find:	
transportation plan γ solving	
$\min_{\substack{\gamma \in \Delta(X \times X) : \int c(x, y) \mathrm{d}\gamma(x, y) \\ \text{marginals } \pi_+, \pi}}$	

- archetypal coupling problem, many econ applications
- appears for n = 1 bidder
- transportation is immediate

^aM.Beckmann (1952) A continuous model of transportation Econometrica

For given geographical distribution of production $\pi_+ \in \Delta(X)$ and consumption $\pi_- \in \Delta(X)$, $X \subset \mathbb{R}^d$, find least costly way of transportation

Monge-Kantorovich problem	Beckmann's problem ^a
Given:	Given:
π_+,π and transport costs $c(x,y)$	π_+,π , costs $\Phi(x)$
Find:	
transportation plan γ solving	
$\min_{\substack{\gamma \in \Delta(X \times X) : \int c(x, y) \mathrm{d}\gamma(x, y) \\ \text{marginals } \pi_+, \pi}}$	

- archetypal coupling problem, many econ applications
- appears for n = 1 bidder
- transportation is immediate

^aM.Beckmann (1952) A continuous model of transportation Econometrica

For given geographical distribution of production $\pi_+ \in \Delta(X)$ and consumption $\pi_- \in \Delta(X)$, $X \subset \mathbb{R}^d$, find least costly way of transportation

Monge-Kantorovich problem	Beckmann's problem ^a
Given:	Given:
π_+,π and transport costs $c(x,y)$	π_+,π , costs $\Phi(x)$
Find:	Find:
transportation plan γ solving	flow $f: X \to \mathbb{R}^n$ solving
$\min_{\substack{\gamma \in \Delta(X imes X) : \int c(x,y) \mathrm{d}\gamma(x,y) \ \mathrm{marginals} \ \pi_+, \pi}}$	$\min_{\substack{f \text{ s.t.}}} \int \Phi(f(x)) \mathrm{d}x$ $\operatorname{div}[f] = \pi_+ - \pi$

- archetypal coupling problem, many econ applications
- appears for n = 1 bidder
- transportation is immediate

^aM.Beckmann (1952) A continuous model of transportation Econometrica

For given geographical distribution of production $\pi_+ \in \Delta(X)$ and consumption $\pi_- \in \Delta(X)$, $X \subset \mathbb{R}^d$, find least costly way of transportation

Monge-Kantorovich problem	Beckmann's problem ^a
Given:	Given:
π_+,π and transport costs $c(x,y)$	π_+,π , costs $\Phi(x)$
Find:	Find:
transportation plan γ solving	flow $f: X \to \mathbb{R}^n$ solving
$\min_{\substack{\gamma \in \Delta(X \times X) : J \\ \text{marginals } \pi_+, \pi}} \int c(x, y) \mathrm{d}\gamma(x, y)$	$\min_{\substack{f \text{ s.t. }}} \int \Phi(f(x)) \mathrm{d}x$ $\operatorname{div}[f] = \pi_+ - \pi$
 archetypal coupling problem, many econ applications 	transportation is continuoussurprisingly, we get Beckmann

- appears for n = 1 bidder
- transportation is immediate
- ^aM.Beckmann (1952) A continuous model of transportation Econometrica

For given geographical distribution of production $\pi_+ \in \Delta(X)$ and consumption $\pi_{-} \in \Delta(X)$, $X \subset \mathbb{R}^{d}$, find least costly way of transportation

Monge-Kantorovich problem	Beckmann's problem ^a
Given:	Given:
π_+,π and transport costs $c(x,y)$	π_+,π , costs $\Phi(x)$
Find:	Find:
transportation plan γ solving	flow $f: X \to \mathbb{R}^n$ solving
$\min_{\substack{\gamma \in \Delta(X \times X) : J \\ \text{marginals } \pi_+, \pi}} \int c(x, y) \mathrm{d}\gamma(x, y)$	$\min_{\substack{f \text{ s.t. }}} \int \Phi(f(x)) \mathrm{d}x$ $\operatorname{div}[f] = \pi_+ - \pi$
 archetypal coupling problem, many econ applications appears for n = 1 bidder 	 transportation is continuous surprisingly, we get Beckmann not Monge-Kantorovich

- appears for n = 1 bidder
- transportation is immediate
- ^aM.Beckmann (1952) A continuous model of transportation Econometrica

Related literature

- Econ applications of optimal transport
 - <u>Monge-Kantorovich</u>: Daskalakis et al. (2017), Kleiner, Manelli (2019), Boerma et al.(2021), Chiapporiet et al. (2010), Galichon (2021), Steinerberger, Tsyvinski (2019), Gensbittel (2015), Arieli et al.,(2022), Guo, Shmaya (2021)
 - <u>Beckmann:</u> Fajgelbaum, Schaal (2020), Allenand, Arkolakis (2014), Santambrogio (2015)
- Non-transport duality in auction design Giannakopoulos, Koutsoupias (2018), Cai et al. (2019), Bergemann et al. (2016)
- Simple mechanisms with good revenue guaratees Hart, Reny (2019), Haghpanah, Hartline (2021), Babaioff et al. (2020,2021), Hart, Nisan (2017), Jehiel et al. (2007), Yao (2017), and many more...
- Majorization in economics Hart and Reny (2015), Kleiner et al. (2021), Arieli et al. (2019), Candogan, Strack (2021), Nikzad (2022)

- agent with values $v = (v_1, \dots, v_m) \sim
 ho(v) \, \mathrm{d} v$ and additive utilities
- Goal: maximize revenue over BIC IR mechanisms
- Rochet-Chone approach: mechanisms \Leftrightarrow interim utility functions

- agent with values $v = (v_1, \ldots, v_m) \sim \rho(v) \, \mathrm{d} v$ and additive utilities
- Goal: maximize revenue over BIC IR mechanisms
- Rochet-Chone approach: mechanisms \Leftrightarrow interim utility functions

- agent with values $v = (v_1, \ldots, v_m) \sim
 ho(v) \, \mathrm{d} v$ and additive utilities
- Goal: maximize revenue over BIC IR mechanisms
- Rochet-Chone approach: mechanisms \Leftrightarrow interim utility functions

- agent with values $v = (v_1, \ldots, v_m) \sim
 ho(v) \, \mathrm{d} v$ and additive utilities
- Goal: maximize revenue over BIC IR mechanisms
- Rochet-Chone approach: mechanisms \Leftrightarrow interim utility functions

```
Theorem (Rochet and Chone (1998))
```

```
optimal revenue = \max_{\substack{\text{convex monotone } u \\ u(0) = 0, \\ 1-\text{Lipshitz}}} \int_{\mathbb{R}^m_+} \left( \langle \partial u(v), v \rangle - u(v) \right) \rho(v) \, \mathrm{d}v
```

- agent with values $v = (v_1, \ldots, v_m) \sim
 ho(v) \, \mathrm{d} v$ and additive utilities
- Goal: maximize revenue over BIC IR mechanisms
- Rochet-Chone approach: mechanisms \Leftrightarrow interim utility functions

```
Theorem (Rochet and Chone (1998))

optimal revenue = \max_{\substack{\text{convex monotone } u \\ u(0) = 0, \\ 1-\text{Lipshitz}}} \int_{\mathbb{R}^{m}_{+}} (\langle \partial u(v), v \rangle - u(v)) \rho(v) \, dv =
```

- agent with values $v = (v_1, \ldots, v_m) \sim \rho(v) \, \mathrm{d} v$ and additive utilities
- Goal: maximize revenue over BIC IR mechanisms
- Rochet-Chone approach: mechanisms \Leftrightarrow interim utility functions

```
Theorem (Rochet and Chone (1998))
optimal revenue = \max_{\text{convex monotone } u} \int_{\mathbb{R}^m_+} \left( \langle \partial u(v), v \rangle - u(v) \right) \rho(v) \, \mathrm{d}v =
                                      u(0) = 0,
                                     1-Lipshitz
                                        integrating by parts
                                   = \max_{\text{convex } u} \int_{\mathbb{R}^m_+} u(v) \, \mathrm{d}\psi,
                                           u(0) = 0.
                                          1-Lipshitz
 where d\psi = ((m+1)\rho(v) + \sum_{i=1}^{m} v_i \partial_{v_i} \rho) dv (signed measure!)
```

- agent with values $v = (v_1, \ldots, v_m) \sim
 ho(v) \, \mathrm{d} v$ and additive utilities
- Goal: maximize revenue over BIC IR mechanisms
- Rochet-Chone approach: mechanisms \Leftrightarrow interim utility functions

- agent with values $v = (v_1, \ldots, v_m) \sim
 ho(v) \, \mathrm{d} v$ and additive utilities
- Goal: maximize revenue over BIC IR mechanisms
- Rochet-Chone approach: mechanisms \Leftrightarrow interim utility functions

What is the dual?

- agent with values $v = (v_1, \ldots, v_m) \sim \rho(v) \, \mathrm{d} v$ and additive utilities
- Goal: maximize revenue over BIC IR mechanisms
- Rochet-Chone approach: mechanisms \Leftrightarrow interim utility functions

What is the dual?

Definition: 2nd-order stochastic dominance aka majorization

$$\mu \succeq \nu \Longleftrightarrow \int g \, \mathrm{d} \mu \geq \int g \, \mathrm{d} \nu \; \; \text{for any convex monotone g}$$

- agent with values $v = (v_1, \ldots, v_m) \sim \rho(v) \, \mathrm{d} v$ and additive utilities
- Goal: maximize revenue over BIC IR mechanisms
- Rochet-Chone approach: mechanisms \Leftrightarrow interim utility functions

Theorem (Rochet and Chone (1998))
optimal revenue =
$$\max_{\substack{\text{convex monotone } u \\ u(0) = 0, \\ 1-\text{Lipshitz}}} \int_{\mathbb{R}^m_+} u(v) \, \mathrm{d}\psi$$

Definition: 2nd-order stochastic dominance aka majorization

$$\mu \succeq \nu \iff \int g \, \mathrm{d}\mu \ge \int g \, \mathrm{d}\nu \quad \text{for any convex monotone } g$$
Theorem (Daskalakis et al (2017))

$$\text{optimal revenue} = \min_{\substack{\text{positive measures } \gamma \\ \text{on } \mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{m} \\ \gamma_{1} - \gamma_{2} \succeq \psi} \int_{\mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{m}} \|\nu - \nu'\|_{1} \, \mathrm{d}\gamma(\nu, \nu')$$

- *n* i.i.d agents with values $v = (v_1, \ldots, v_m) \sim \rho(v) dv$
- Goal: maximize revenue over BIC IR mechanisms

- *n* i.i.d agents with values $v = (v_1, \ldots, v_m) \sim \rho(v) dv$
- Goal: maximize revenue over BIC IR mechanisms

- *n* i.i.d agents with values $v = (v_1, \ldots, v_m) \sim \rho(v) dv$
- Goal: maximize revenue over BIC IR mechanisms

Multi-bidder extension of Rochet-Chone representation optimal revenue = $n \cdot \max_{\substack{\text{convex monotone } u \\ u(0) = 0, \\ \partial_{v_i}u(v) \leq z^{n-1} \forall i \\ z \sim \text{Uniform}([0, 1])}} \int_{\mathbb{R}^m_+} u(v) \, \mathrm{d}\psi$

- *n* i.i.d agents with values $v = (v_1, \ldots, v_m) \sim \rho(v) \, \mathrm{d} v$
- Goal: maximize revenue over BIC IR mechanisms

Multi-bidder extension of Rochet-Chone representation

```
optimal revenue = n \cdot \max_{\substack{\text{convex monotone } u \\ u(0) = 0, \\ \partial_{v_i} u(v) \leq z^{n-1} \forall i \\ z \sim \text{Uniform}([0, 1])} \int_{\mathbb{R}^m_+} u(v) \, \mathrm{d}\psi
```

non-local non-linear majorization constraint on gradient's distribution

Multi-bidder case: $m \ge 2$ goods, $n \ge 1$ agents

- *n* i.i.d agents with values $v = (v_1, \ldots, v_m) \sim \rho(v) \, \mathrm{d} v$
- Goal: maximize revenue over BIC IR mechanisms

Multi-bidder extension of Rochet-Chone representation

optimal revenue = $n \cdot \max_{\substack{\text{convex monotone } u \\ u(0) = 0, \\ \partial_{v_i} u(v) \leq z^{n-1} \forall i \\ z \sim \text{Uniform}([0, 1])}} \int_{\mathbb{R}^m_+} u(v) \, \mathrm{d}\psi$

- non-local non-linear majorization constraint on gradient's distribution
- Ingredients:
 - reduction: n-agent mechanism \rightarrow 1-agent reduced form

• characterization of feasible reduced forms via majorization:

n=1 proved by Hart and Reny 1 , equivalent to Border's theorem

¹S.Hart, P.Reny (2015) Implementation of reduced form mechanisms ET Bulletin

Multi-bidder case: $m \ge 2$ goods, $n \ge 1$ agents

- *n* i.i.d agents with values $v = (v_1, \ldots, v_m) \sim \rho(v) \, \mathrm{d} v$
- Goal: maximize revenue over BIC IR mechanisms

Multi-bidder extension of Rochet-Chone representation

optimal revenue = $n \cdot \max_{\substack{\text{convex monotone } u \\ u(0) = 0, \\ \partial_{v_i} u(v) \leq z^{n-1} \forall i \\ z \sim \text{Uniform}([0, 1])} \int_{\mathbb{R}^m_+} u(v) \, \mathrm{d}\psi$

- non-local non-linear majorization constraint on gradient's distribution
- Ingredients:
 - $\bullet~$ reduction: $\mathit{n}\text{-}\mathsf{agent}$ mechanism \rightarrow 1-agent reduced form
 - characterization of feasible reduced forms via majorization:

m = 1 proved by Hart and Reny¹, equivalent to Border's theorem

¹S.Hart, P.Reny (2015) Implementation of reduced form mechanisms ET Bulletin

- *n* i.i.d agents with values $v = (v_1, \ldots, v_m) \sim \rho(v) \, \mathrm{d} v$
- Goal: maximize revenue over BIC IR mechanisms

Multi-bidder extension of Rochet-Chone representation optimal revenue = $\mathbf{n} \cdot \max_{\substack{\text{convex monotone } u \\ u(0) = 0, \\\partial_{v_i} u(v) \leq z^{n-1} \forall i \\ z \sim \text{Uniform}([0, 1])}} \int_{\mathbb{R}^m_+} u(v) \, \mathrm{d}\psi$

What is the dual?

What is the dual?

Beckmann: $B_{\rho}(\pi, \Phi) = \min_{f: \operatorname{div}[\rho \cdot f] + \pi = 0} \int_{\mathbb{R}^{m}} \Phi(f(v)) \cdot \rho(v) dv$

Multi-bidder case: $m \ge 2$ goods, $n \ge 1$ agents

Multi-bidder extension of Rochet-Chone representation

optimal revenue =
$$n \cdot \max_{\substack{\text{convex monotone } u \\ u(0) = 0, \\ \partial_{v_i} u(v) \leq z^{n-1} \forall i \\ z \sim \text{Uniform}([0, 1])}} \int_{\mathbb{R}^m_+} u(v) \, \mathrm{d}\psi$$

Beckmann: $B_{\rho}(\pi, \Phi) = \min_{f: \operatorname{div}[\rho \cdot f] + \pi = 0} \int_{\mathbb{R}^m_+} \Phi(f(v)) \cdot \rho(v) \, \mathrm{d}v$

Theorem (strong duality)

optimal revenue =
$$n \cdot \min_{\substack{\pi \succeq \psi \\ \varphi_i \text{ on } \mathbb{R}_+ \text{ s.t.}}} \left[B_{\rho}(\pi, \Phi) + \sum_{i=1}^m \int_0^1 \varphi_i(z^{n-1}) dz \right],$$

convex, monotone, $\varphi_i(0) = 0$

where $\Phi(f) = \sum_{i=1}^{m} \varphi_i^*(|f_i|)$ and $\varphi_i^*(y) = \sup_x \langle x, y \rangle - \varphi_i(x)$

Beckmann's dual simplifies:

optimal revenue
$$= \min_{\pi \succ \psi} \mathrm{B}_{
ho} \Big(\pi, \, \| \cdot \|_1 \Big)$$

Beckmann's dual simplifies:

optimal revenue
$$= \min_{\pi \succeq \psi} \mathrm{B}_{
ho} \Big(\pi, \, \| \cdot \|_1 \Big)$$

Beckmann's dual simplifies:

optimal revenue
$$= \min_{\pi \succeq \psi} \mathrm{B}_{
ho} \Big(\pi, \, \| \cdot \|_1 \Big)$$

Corollary: duality by Daskalakis et al. (2017)

- allow to **disprove** optimality
 - Example: For ρ(v) = ρ₁(v₁) · ... · ρ_m(v_m), selling separately is never optimal¹
- help to guess an explicit solution and to prove optimality
 - **Example:** For n = 1 and m = 2 i.i.d. uniform items, selling each for $\frac{2}{3}$ or both for $\frac{4-\sqrt{2}}{3}$ is optimal²

 ¹P. Jehiel, M.Meyer-Ter-Vehn, B.Moldovanu (2007) Mixed bundling auctions JET
 ²A.Manelli, D.Vincent (2007) Multidimensional Mechanism Design JET

- allow to disprove optimality
 - Example: For ρ(v) = ρ₁(v₁) · ... · ρ_m(v_m), selling separately is never optimal¹
- help to guess an explicit solution and to prove optimality
 - **Example:** For n = 1 and m = 2 i.i.d. uniform items, selling each for $\frac{2}{3}$ or both for $\frac{4-\sqrt{2}}{3}$ is optimal²

¹P. Jehiel, M.Meyer-Ter-Vehn, B.Moldovanu (2007) Mixed bundling auctions JET ²A.Manelli, D.Vincent (2007) Multidimensional Mechanism Design JET

- allow to disprove optimality
 - Example: For ρ(v) = ρ₁(v₁) · ... · ρ_m(v_m), selling separately is never optimal¹
- help to guess an explicit solution and to prove optimality
 - **Example:** For n = 1 and m = 2 i.i.d. uniform items, selling each for $\frac{2}{3}$ or both for $\frac{4-\sqrt{2}}{3}$ is optimal²

¹P. Jehiel, M.Meyer-Ter-Vehn, B.Moldovanu (2007) Mixed bundling auctions JET ²A.Manelli, D.Vincent (2007) Multidimensional Mechanism Design JET

- allow to disprove optimality
 - Example: For ρ(v) = ρ₁(v₁) · . . . · ρ_m(v_m), selling separately is never optimal¹
- help to guess an explicit solution and to prove optimality
 - **Example:** For n = 1 and m = 2 i.i.d. uniform items, selling each for $\frac{2}{3}$ or both for $\frac{4-\sqrt{2}}{3}$ is optimal²

Question: Any hope for an explicit solution with $n \ge 2$ and m = 2 i.i.d. uniform items?

¹P. Jehiel, M.Meyer-Ter-Vehn, B.Moldovanu (2007) Mixed bundling auctions JET ²A.Manelli, D.Vincent (2007) Multidimensional Mechanism Design JET

- allow to disprove optimality
 - Example: For ρ(v) = ρ₁(v₁) · . . . · ρ_m(v_m), selling separately is never optimal¹
- help to guess an explicit solution and to prove optimality
 - **Example:** For n = 1 and m = 2 i.i.d. uniform items, selling each for $\frac{2}{3}$ or both for $\frac{4-\sqrt{2}}{3}$ is optimal²

Question: Any hope for an explicit solution with $n \ge 2$ and m = 2 i.i.d. uniform items? **Perhaps, not**

¹P. Jehiel, M.Meyer-Ter-Vehn, B.Moldovanu (2007) Mixed bundling auctions JET ²A.Manelli, D.Vincent (2007) Multidimensional Mechanism Design JET

Pictures for dessert: 2 bidders, 2 i.i.d. uniform items

Pictures for dessert: 2 bidders, 2 i.i.d. uniform items

Thank you!

Optimal u^{opt} , functions φ_i^{opt} , measure π^{opt} , and vector field f^{opt} satisfy:

$$\int u^{\text{opt}}(v) \, \mathrm{d}\psi(v) = \int u^{\text{opt}}(v) \, \mathrm{d}\pi^{\text{opt}}(v)$$
$$f_i^{\text{opt}}(v) \in \partial \varphi_i^{\text{opt}}\left(\frac{\partial u^{\text{opt}}}{\partial v_i}(v)\right)$$
$$\int \varphi_i^{\text{opt}}\left(\frac{\partial u^{\text{opt}}}{\partial v_i}(v)\right) \rho(v) \, \mathrm{d}v = \int_0^1 \varphi_i^{\text{opt}}\left(z^{n-1}\right) \, \mathrm{d}z$$

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of n agents can have q different values for each of m items ⇒ the dimension ~ (qⁿ)^m
 - intractable for (m = 2, q = 100 n = 2) or for (m = 2 q = 10 n = 4)
 - deep neural networks improve the bounds; Dutting et al. (2019)
- How to avoid:

$$R_{n,m}(\rho) = \max_{\substack{\text{convex monotone } u \\ u(0) = 0, \ \partial_{v_i} u(v) \leq z^{n-1}}} n \cdot \int_{\mathbb{R}^m_+} u(v) \, \mathrm{d}\psi(v)$$

- Pros: dependence on n is killed; Cai et al. (2012), Alaei et al. (2019)
- Cons: non-linear program
- Linearization via transport:
 - μ on [0, 1] majorizes ν if and only if there is γ on [0, 1]² with marginals μ on y and ν on x and such that ∫ y dγ(y | x) ≥ x for γ-almost all x
 - solve for (u, γ)
- Performance: algorithm handles $(m = 2 \ q = 100 \ n = 10)$ revenue curve 1

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of *n* agents can have *q* different values for each of *m* items \Rightarrow the dimension $\sim (q^n)^m$
 - intractable for (m = 2, q = 100 n = 2) or for (m = 2 q = 10 n = 4)
 - deep neural networks improve the bounds; Dutting et al. (2019)
- How to avoid:

$$R_{n,m}(\rho) = \max_{\substack{\text{convex monotone } u \\ u(0) = 0, \ \partial_{v_i}u(v) \leq z^{n-1}}} n \cdot \int_{\mathbb{R}^m_+} u(v) \, \mathrm{d}\psi(v)$$

- Pros: dependence on n is killed; Cai et al. (2012), Alaei et al. (2019)
- Cons: non-linear program
- Linearization via transport:
 - μ on [0, 1] majorizes ν if and only if there is γ on [0, 1]² with marginals μ on y and ν on x and such that ∫ y dγ(y | x) ≥ x for γ-almost all x
 - solve for (u, γ)
- **Performance:** algorithm handles $(m = 2 \ q = 100 \ n = 10)$ revenue curve $(m = 2 \ q = 100 \ n = 10)$

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of *n* agents can have *q* different values for each of *m* items \Rightarrow the dimension $\sim (q^n)^m$
 - intractable for (m = 2, q = 100 n = 2) or for (m = 2 q = 10 n = 4)
 - deep neural networks improve the bounds; Dutting et al. (2019)
- How to avoid:

$$R_{n,m}(\rho) = \max_{\substack{\text{convex monotone } u \\ u(0) = 0, \ \partial_{v_{i}}u(v) \preceq z^{n-1}}} n \cdot \int_{\mathbb{R}^{m}_{+}} u(v) \, \mathrm{d}\psi(v)$$

- Pros: dependence on n is killed; Cai et al. (2012), Alaei et al. (2019)
- Cons: non-linear program
- Linearization via transport:
 - μ on [0, 1] majorizes ν if and only if there is γ on [0, 1]² with marginals μ on y and ν on x and such that ∫ y dγ(y | x) ≥ x for γ-almost all x
 - solve for (u, γ)
- **Performance:** algorithm handles $(m = 2 \ q = 100 \ n = 10)$ revenue curve

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of *n* agents can have *q* different values for each of *m* items \Rightarrow the dimension $\sim (q^n)^m$
 - intractable for (m = 2, q = 100 n = 2) or for (m = 2 q = 10 n = 4)
 - deep neural networks improve the bounds; Dutting et al. (2019)
- How to avoid:

 $R_{n,m}(\rho) = \max_{\substack{\text{convex monotone } u \\ u(0) = 0, \ \partial_{v'}u(v) \prec z^{n-1}}} n \cdot \int_{\mathbb{R}^m_+} u(v) \, \mathrm{d}\psi(v)$

- Pros: dependence on n is killed; Cai et al. (2012), Alaei et al. (2019)
- Cons: non-linear program
- Linearization via transport:
 - μ on [0, 1] majorizes ν if and only if there is γ on [0, 1]² with marginals μ on y and ν on x and such that ∫ y dγ(y | x) ≥ x for γ-almost all x
 - solve for (u, γ)
- **Performance:** algorithm handles $(m = 2 \ q = 100 \ n = 10)$ revenue curve

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of *n* agents can have *q* different values for each of *m* items \Rightarrow the dimension $\sim (q^n)^m$
 - intractable for (m = 2, q = 100 n = 2) or for (m = 2 q = 10 n = 4)
 - deep neural networks improve the bounds; Dutting et al. (2019)
- How to avoid:

 $R_{n,m}(\rho) = \max_{\substack{\text{convex monotone } u \\ u(0) = 0, \ \partial_{v_i}u(v) \leq z^{n-1}}} n \cdot \int_{\mathbb{R}^m_+} u(v) \, \mathrm{d}\psi(v)$

- Pros: dependence on *n* is killed; Cai et al. (2012), Alaei et al. (2019)
- Cons: non-linear program
- Linearization via transport:
 - μ on [0, 1] majorizes ν if and only if there is γ on [0, 1]² with marginals μ on y and ν on x and such that ∫ y dγ(y | x) ≥ x for γ-almost all x
 - solve for (u, γ)
- **Performance:** algorithm handles $(m = 2 \ q = 100 \ n = 10)$ revenue curve

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of *n* agents can have *q* different values for each of *m* items \Rightarrow the dimension $\sim (q^n)^m$
 - intractable for (m = 2, q = 100 n = 2) or for (m = 2 q = 10 n = 4)
 - deep neural networks improve the bounds; Dutting et al. (2019)
- How to avoid:

 $R_{n,m}(\rho) = \max_{\substack{\text{convex monotone } u \\ u(0) = 0, \ \partial_{v_i} u(v) \leq z^{n-1}}} n \cdot \int_{\mathbb{R}^m_+} u(v) \, \mathrm{d}\psi(v)$

- Pros: dependence on n is killed; Cai et al. (2012), Alaei et al. (2019)
- Cons: non-linear program
- Linearization via transport:
 - μ on [0, 1] majorizes ν if and only if there is γ on [0, 1]² with marginals μ on y and ν on x and such that ∫ y dγ(y | x) ≥ x for γ-almost all x
 - solve for (u, γ)
- **Performance:** algorithm handles $(m = 2 \ q = 100 \ n = 10)$ revenue curve :

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of *n* agents can have *q* different values for each of *m* items \Rightarrow the dimension $\sim (q^n)^m$
 - intractable for (m = 2, q = 100 n = 2) or for (m = 2 q = 10 n = 4)
 - deep neural networks improve the bounds; Dutting et al. (2019)
- How to avoid:

 $R_{n,m}(\rho) = \max_{\substack{\text{convex monotone } u \\ u(0) = 0, \ \partial_{v_i}u(v) \leq z^{n-1}}} n \cdot \int_{\mathbb{R}^m_+} u(v) \, \mathrm{d}\psi(v)$

- Pros: dependence on n is killed; Cai et al. (2012), Alaei et al. (2019)
- <u>Cons:</u> non-linear program
- Linearization via transport:
 - μ on [0, 1] majorizes ν if and only if there is γ on [0, 1]² with marginals μ on y and ν on x and such that ∫ y dγ(y | x) ≥ x for γ-almost all x
 - solve for (u, γ)
- **Performance:** algorithm handles $(m = 2 \ q = 100 \ n = 10)$ revenue curve 12

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of *n* agents can have *q* different values for each of *m* items \Rightarrow the dimension $\sim (q^n)^m$
 - intractable for (m = 2, q = 100 n = 2) or for (m = 2 q = 10 n = 4)
 - deep neural networks improve the bounds; Dutting et al. (2019)
- How to avoid:

$$R_{n,m}(\rho) = \max_{\substack{\text{convex monotone } u \\ u(0) = 0, \ \partial_{v_i} u(v) \leq z^{n-1}}} n \cdot \int_{\mathbb{R}^m_+} u(v) \, \mathrm{d}\psi(v)$$

- Pros: dependence on n is killed; Cai et al. (2012), Alaei et al. (2019)
- <u>Cons:</u> non-linear program

• Linearization via transport:

- μ on [0, 1] majorizes ν if and only if there is γ on $[0, 1]^2$ with marginals μ on y and ν on x and such that $\int y \, d\gamma(y \mid x) \ge x$ for γ -almost all x
- solve for (u, γ)
- **Performance:** algorithm handles $(m = 2 \ q = 100 \ n = 10)$ revenue curve 1

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of *n* agents can have *q* different values for each of *m* items \Rightarrow the dimension $\sim (q^n)^m$
 - intractable for (m = 2, q = 100 n = 2) or for (m = 2 q = 10 n = 4)
 - deep neural networks improve the bounds; Dutting et al. (2019)
- How to avoid:

 $R_{n,m}(\rho) = \max_{\substack{\text{convex monotone } u \\ u(0) = 0, \ \partial_{v_i} u(v) \leq z^{n-1}}} n \cdot \int_{\mathbb{R}^m_+} u(v) \, \mathrm{d}\psi(v)$

- Pros: dependence on n is killed; Cai et al. (2012), Alaei et al. (2019)
- <u>Cons:</u> non-linear program

• Linearization via transport:

- μ on [0, 1] majorizes ν if and only if there is γ on $[0, 1]^2$ with marginals μ on y and ν on x and such that $\int y \, d\gamma(y \mid x) \ge x$ for γ -almost all x
- solve for (u, γ)
- **Performance:** algorithm handles $(m = 2 \ q = 100 \ n = 10)$ revenue curve

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of *n* agents can have *q* different values for each of *m* items \Rightarrow the dimension $\sim (q^n)^m$
 - intractable for (m = 2, q = 100 n = 2) or for (m = 2 q = 10 n = 4)
 - deep neural networks improve the bounds; Dutting et al. (2019)
- How to avoid:

$$R_{n,m}(\rho) = \max_{\substack{\text{convex monotone } u \\ u(0) = 0, \ \partial_{v_i} u(v) \leq z^{n-1}}} n \cdot \int_{\mathbb{R}^m_+} u(v) \, \mathrm{d}\psi(v)$$

- Pros: dependence on n is killed; Cai et al. (2012), Alaei et al. (2019)
- <u>Cons:</u> non-linear program

• Linearization via transport:

- μ on [0, 1] majorizes ν if and only if there is γ on $[0, 1]^2$ with marginals μ on y and ν on x and such that $\int y \, d\gamma(y \mid x) \ge x$ for γ -almost all x
- solve for (u, γ)

• **Performance:** algorithm handles $(m = 2 \ q = 100 \ n = 10)$ revenue curve 1

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of *n* agents can have *q* different values for each of *m* items \Rightarrow the dimension $\sim (q^n)^m$
 - intractable for (m = 2, q = 100 n = 2) or for (m = 2 q = 10 n = 4)
 - deep neural networks improve the bounds; Dutting et al. (2019)
- How to avoid:

$$R_{n,m}(\rho) = \max_{\substack{\text{convex monotone } u \\ u(0) = 0, \ \partial_{v_i} u(v) \leq z^{n-1}}} n \cdot \int_{\mathbb{R}^m_+} u(v) \, \mathrm{d}\psi(v)$$

- Pros: dependence on n is killed; Cai et al. (2012), Alaei et al. (2019)
- <u>Cons:</u> non-linear program

• Linearization via transport:

- μ on [0, 1] majorizes ν if and only if there is γ on $[0, 1]^2$ with marginals μ on y and ν on x and such that $\int y \, d\gamma(y \mid x) \ge x$ for γ -almost all x
- solve for (u, γ)
- Performance: algorithm handles $(m = 2 \ q = 100 \ n = 10)$ revenue curve 12

Revenue as a function of the number of bidders n for two items with i.i.d. values uniform on [0, 1]. Graphs from bottom to top: selling separately (light-green), selling optimally (blue), full surplus extraction (red), limit for $n \to \infty$ (the dashed line).

Remark: For n = 2, selling optimally improves upon selling separately by 5%

Revenue as a function of the number of bidders n for two items with i.i.d. values uniform on [0, 1]. Graphs from bottom to top: selling separately (light-green), selling optimally (blue), full surplus extraction (red), limit for $n \to \infty$ (the dashed line).

Remark: For n = 2, selling optimally improves upon selling separately by 5%