Beckmann's approach to multi-item multi-bidder auctions arXiv:2203.06837

Alexander V. Kolesnikov (HSE)
Fedor Sandomirskiy (Caltech, fsandomi@caltech.edu, https://www.fedors.info/) Aleh Tsyvinski (Yale)
Alexander P. Zimin (MIT)

Most profitable way to sell m unrelated items to n agents

Bayesian setting: independent private values, seller knows distribution

Most profitable way to sell m unrelated items to n agents

Bayesian setting: independent private values, seller knows distribution

Most profitable way to sell m unrelated items to n agents

Bayesian setting: independent private values, seller knows distribution

What is known?		
$n=1:$	$m=1:$	
	Single-item monopolist Myerson (1981): posted price is optimal	
$n \geq 2:$		

Most profitable way to sell m unrelated items to n agents

Bayesian setting: independent private values, seller knows distribution

What is known?		
$n=1:$	$m=1:$	$m \geq 2:$
	Single-item monopolist Myerson (1981): posted price is optimal	
$n \geq 2:$	Classic auctions Myerson (1981): 2nd-price auction with re- serve is optimal	

Most profitable way to sell m unrelated items to n agents

Bayesian setting: independent private values, seller knows distribution

What is known?		
$n=1:$	$m=1:$	$\begin{array}{l}\text { Single-item monopolist } \\ \text { Myerson (1981): } \\ \text { posted price is optimal }\end{array}$

optimal mechanisms known in

particular cases

Connection to optimal transport\end{array}\right]\)| Classic auctions |
| :--- |
| $n \geq 2:$ | | Myerson (1981): |
| :--- |
| 2nd-price auction with re- |
| serve is optimal |\quad.

Most profitable way to sell m unrelated items to n agents

Bayesian setting: independent private values, seller knows distribution

What is known?		
$n=1:$	Single-item monopolist Myerson (1981): posted price is optimal	Multi-item monopolist optimal mechanisms known in particular cases
$n \geq 2:$	connection to optimal transport ${ }^{\text {a }}$	
C.Daskalakis, A.Deckelbaum, C.Tzamos (2017) Strong duality for a multiple-good monopolist Econometrica		
Myerson (1981): 2nd-price auction with re- serve is optimal		

Most profitable way to sell m unrelated items to n agents

Bayesian setting: independent private values, seller knows distribution

What is known?		
	$m=1$:	$m \geq 2$:
$n=1$:	Single-item monopolist Myerson (1981): posted price is optimal	Multi-item monopolist - optimal mechanisms known in particular cases - connection to optimal transport ${ }^{\text {a }}$ ${ }^{\text {a }}$ C.Daskalakis, A.Deckelbaum, C.Tzamos (2017) Strong duality for a multiple-good monopolist Econometrica
$n \geq 2$:	Classic auctions Myerson (1981): 2nd-price auction with reserve is optimal	Multi-item auctions - almost nothing known about optimal mechanisms ${ }^{a}$ Our paper: connection to optimal transport ${ }^{a}$ Combined obstacles of multidimensional and multi-agent mechanism design

Most profitable way to sell m unrelated items to n agents

Bayesian setting: independent private values, seller knows distribution

What is known?		
	$m=1:$	$m \geq 2$:
$n=1:$	Single-item monopolist Myerson (1981): posted price is optimal	Multi-item monopolist - optimal mechanisms known in particular cases - connection to optimal transport ${ }^{a}$ ${ }^{\text {a }}$ C.Daskalakis, A.Deckelbaum, C.Tzamos (2017) Strong duality for a multiple-good monopolist Econometrica
$n \geq 2$:	Classic auctions Myerson (1981): 2nd-price auction with reserve is optimal	Multi-item auctions - almost nothing known about optimal mechanisms ${ }^{a}$ - Our paper: connection to optimal transport ${ }^{a}$ Combined obstacles of multidimensional and multi-agent mechanism design

What will we see?

Strong duality (informal)

For $n \geq 1$ bidders with additive utilities over $m \geq 1$ items

$$
\underset{\text { max }}{\text { BIC IR mechanisms }} \text { Revenue }=\min _{\text {transport flows }} \text { Cost }
$$

- formal statement later
- left-hand side is intuitive \Rightarrow discuss the right-hand side

What will we see?

Strong duality (informal)

For $n \geq 1$ bidders with additive utilities over $m \geq 1$ items

$$
\max _{\text {BIC IR mechanisms }} \text { Revenue }=\min _{\text {transport flows }} \text { Cost }
$$

- formal statement later
- left-hand side is intuitive \Rightarrow discuss the right-hand side

What will we see?

Strong duality (informal)

For $n \geq 1$ bidders with additive utilities over $m \geq 1$ items

$$
\max _{\text {BIC IR mechanisms }} \text { Revenue }=\min _{\text {transport flows }} \text { Cost }
$$

- formal statement later
- left-hand side is intuitive \Rightarrow discuss the right-hand side

Transportation problem

For given geographical distribution of production $\pi_{+} \in \Delta(X)$ and consumption $\pi_{-} \in \Delta(X), X \subset \mathbb{R}^{d}$, find least costly way of transportation

Transportation problem

For given geographical distribution of production $\pi_{+} \in \Delta(X)$ and consumption $\pi_{-} \in \Delta(X), X \subset \mathbb{R}^{d}$, find least costly way of transportation

Monge-Kantorovich problem

Transportation problem

For given geographical distribution of production $\pi_{+} \in \Delta(X)$ and consumption $\pi_{-} \in \Delta(X), X \subset \mathbb{R}^{d}$, find least costly way of transportation

Monge-Kantorovich problem

Given:
π_{+}, π_{-}and transport costs $c(x, y)$

Transportation problem

For given geographical distribution of production $\pi_{+} \in \Delta(X)$ and consumption $\pi_{-} \in \Delta(X), X \subset \mathbb{R}^{d}$, find least costly way of transportation

Monge-Kantorovich problem

Given:

π_{+}, π_{-}and transport costs $c(x, y)$
Find:
transportation plan γ solving

$$
\min _{\gamma \in \Delta(X \times X):} \int c(x, y) \mathrm{d} \gamma(x, y)
$$

Transportation problem

For given geographical distribution of production $\pi_{+} \in \Delta(X)$ and consumption $\pi_{-} \in \Delta(X), X \subset \mathbb{R}^{d}$, find least costly way of transportation

Monge-Kantorovich problem

Given:

π_{+}, π_{-}and transport costs $c(x, y)$
Find:
transportation plan γ solving

$$
\min _{\gamma \in \Delta(X \times X):} \int c(x, y) \mathrm{d} \gamma(x, y)
$$

- archetypal coupling problem, many econ applications
- appears for $n=1$ bidder

Transportation problem

For given geographical distribution of production $\pi_{+} \in \Delta(X)$ and consumption $\pi_{-} \in \Delta(X), X \subset \mathbb{R}^{d}$, find least costly way of transportation

Monge-Kantorovich problem

Given:

π_{+}, π_{-}and transport costs $c(x, y)$
Find:
transportation plan γ solving

$$
\min _{\gamma \in \Delta(X \times X):} \int c(x, y) \mathrm{d} \gamma(x, y)
$$

- archetypal coupling problem, many econ applications
- appears for $n=1$ bidder

Transportation problem

For given geographical distribution of production $\pi_{+} \in \Delta(X)$ and consumption $\pi_{-} \in \Delta(X), X \subset \mathbb{R}^{d}$, find least costly way of transportation

Monge-Kantorovich problem

Given:

π_{+}, π_{-}and transport costs $c(x, y)$
Find:
transportation plan γ solving

$$
\min _{\gamma \in \Delta(X \times X):} \int c(x, y) \mathrm{d} \gamma(x, y)
$$

- archetypal coupling problem, many econ applications
- appears for $n=1$ bidder
- transportation is immediate

Transportation problem

For given geographical distribution of production $\pi_{+} \in \Delta(X)$ and consumption $\pi_{-} \in \Delta(X), X \subset \mathbb{R}^{d}$, find least costly way of transportation

Monge-Kantorovich problem

Beckmann's problem ${ }^{a}$

Given:
π_{+}, π_{-}and transport costs $c(x, y)$
Find:
transportation plan γ solving
$\min _{\gamma \in \Delta(X \times X):} \int c(x, y) \mathrm{d} \gamma(x, y)$ marginals π_{+}, π_{-}

- archetypal coupling problem, many econ applications
- appears for $n=1$ bidder
- transportation is immediate

Transportation problem

For given geographical distribution of production $\pi_{+} \in \Delta(X)$ and consumption $\pi_{-} \in \Delta(X), X \subset \mathbb{R}^{d}$, find least costly way of transportation

Monge-Kantorovich problem

Given:
π_{+}, π_{-}and transport costs $c(x, y)$

Find:

transportation plan γ solving

$$
\min _{\substack{\gamma \in \Delta(X \times X): \\ \text { marginals } \pi_{+}, \pi_{-}}} \int c(x, y) \mathrm{d} \gamma(x, y)
$$

- archetypal coupling problem, many econ applications
- appears for $n=1$ bidder
- transportation is immediate

Beckmann's problem ${ }^{a}$

Given:

$\pi_{+}, \pi_{-}, \operatorname{costs} \Phi(x)$

Transportation problem

For given geographical distribution of production $\pi_{+} \in \Delta(X)$ and consumption $\pi_{-} \in \Delta(X), X \subset \mathbb{R}^{d}$, find least costly way of transportation

Monge-Kantorovich problem

Given:
π_{+}, π_{-}and transport costs $c(x, y)$

Find:

transportation plan γ solving
$\min _{\gamma \in \Delta(X \times X):} \int c(x, y) \mathrm{d} \gamma(x, y)$ marginals π_{+}, π_{-}

- archetypal coupling problem, many econ applications
- appears for $n=1$ bidder
- transportation is immediate

Beckmann's problem ${ }^{a}$

Given:

$\pi_{+}, \pi_{-}, \operatorname{costs} \Phi(x)$
Find:
flow $f: X \rightarrow \mathbb{R}^{n}$ solving

$$
\min _{\substack{f \text { s.t. }}} \int \Phi(f(x)) \mathrm{d} x
$$

${ }^{\text {a M M.Beckmann (1952) A continuous }}$ model of transportation Econometrica

Transportation problem

For given geographical distribution of production $\pi_{+} \in \Delta(X)$ and consumption $\pi_{-} \in \Delta(X), X \subset \mathbb{R}^{d}$, find least costly way of transportation

Monge-Kantorovich problem

Given:
π_{+}, π_{-}and transport costs $c(x, y)$

Find:

transportation plan γ solving
$\min _{\substack{\gamma \in \Delta(X \times X) \\ \text { marginals } \pi_{+}, \pi_{-}}} \int c(x, y) \mathrm{d} \gamma(x, y)$

- archetypal coupling problem, many econ applications
- appears for $n=1$ bidder
- transportation is immediate

Beckmann's problem ${ }^{\text {a }}$

Given:

π_{+}, π_{-}, costs $\Phi(x)$

Find:

flow $f: X \rightarrow \mathbb{R}^{n}$ solving

$$
\begin{aligned}
& \min _{f \text { s.t. }} \int \Phi(f(x)) \mathrm{d} x \\
& \operatorname{div}[f]=\pi_{+}-\pi_{-}
\end{aligned}
$$

- transportation is continuous
surprisingly, we get Beckmann not Monge-Kantorovich

[^0] model of transportation Econometrica

Transportation problem

For given geographical distribution of production $\pi_{+} \in \Delta(X)$ and consumption $\pi_{-} \in \Delta(X), X \subset \mathbb{R}^{d}$, find least costly way of transportation

Monge-Kantorovich problem

Given:

π_{+}, π_{-}and transport costs $c(x, y)$
Find:
transportation plan γ solving
$\min _{\gamma \in \Delta(X \times X):} \int c(x, y) \mathrm{d} \gamma(x, y)$
marginals π_{+}, π_{-}

- archetypal coupling problem, many econ applications
- appears for $n=1$ bidder
- transportation is immediate

Beckmann's problem ${ }^{a}$

Given:

$\pi_{+}, \pi_{-}, \operatorname{costs} \Phi(x)$

Find:

flow $f: X \rightarrow \mathbb{R}^{n}$ solving

$$
\min _{\substack{f \text { s.t. }}} \int \Phi(f(x)) \mathrm{d} x
$$

- transportation is continuous
- surprisingly, we get Beckmann not Monge-Kantorovich

[^1]
Related literature

- Econ applications of optimal transport
- Monge-Kantorovich: Daskalakis et al. (2017), Kleiner, Manelli (2019), Boerma et al.(2021), Chiapporiet et al. (2010), Galichon (2021), Steinerberger, Tsyvinski (2019), Gensbittel (2015), Arieli et al.,(2022), Guo, Shmaya (2021)
- Beckmann: Fajgelbaum, Schaal (2020), Allenand, Arkolakis (2014), Santambrogio (2015)
- Non-transport duality in auction design Giannakopoulos, Koutsoupias (2018), Cai et al. (2019), Bergemann et al. (2016)
- Simple mechanisms with good revenue guaratees Hart, Reny (2019), Haghpanah, Hartline (2021), Babaioff et al. $(2020,2021)$, Hart, Nisan (2017), Jehiel et al. (2007), Yao (2017), and many more...
- Majorization in economics Hart and Reny (2015), Kleiner et al. (2021), Arieli et al. (2019), Candogan, Strack (2021), Nikzad (2022)

Known results: $m \geq 2$ goods, $n=1$ agent

- agent with values $v=\left(v_{1}, \ldots, v_{m}\right) \sim \rho(v) \mathrm{d} v$ and additive utilities
- Goal: maximize revenue over BIC IR mechanisms
- Rochet-Chone approach: mechanisms \Leftrightarrow interim utility functions

Known results: $m \geq 2$ goods, $n=1$ agent

- agent with values $v=\left(v_{1}, \ldots, v_{m}\right) \sim \rho(v) \mathrm{d} v$ and additive utilities
- Goal: maximize revenue over BIC IR mechanisms
- Rochet-Chone approach: mechanisms \Leftrightarrow interim utility functions

Known results: $m \geq 2$ goods, $n=1$ agent

- agent with values $v=\left(v_{1}, \ldots, v_{m}\right) \sim \rho(v) \mathrm{d} v$ and additive utilities
- Goal: maximize revenue over BIC IR mechanisms
- Rochet-Chone approach: mechanisms \Leftrightarrow interim utility functions

Known results: $m \geq 2$ goods, $n=1$ agent

- agent with values $v=\left(v_{1}, \ldots, v_{m}\right) \sim \rho(v) \mathrm{d} v$ and additive utilities
- Goal: maximize revenue over BIC IR mechanisms
- Rochet-Chone approach: mechanisms \Leftrightarrow interim utility functions

Theorem (Rochet and Chone (1998))

$$
\text { optimal revenue }=\underset{\substack{\text { convex monotone } u \\ u(0)=0 \\ 1-\text { Lipshitz }}}{\max _{\mathbb{R}_{+}^{m}}(\langle\partial u(v), v\rangle-u(v)) \rho(v) \mathrm{d} v}
$$

Known results: $m \geq 2$ goods, $n=1$ agent

- agent with values $v=\left(v_{1}, \ldots, v_{m}\right) \sim \rho(v) \mathrm{d} v$ and additive utilities
- Goal: maximize revenue over BIC IR mechanisms
- Rochet-Chone approach: mechanisms \Leftrightarrow interim utility functions

Theorem (Rochet and Chone (1998))

$$
\begin{gathered}
\text { optimal revenue }=\begin{array}{c}
\max _{\text {convex monotone } u}^{u(0)=0,} \\
1-\text { Lipshitz }
\end{array} \int_{\mathbb{R}_{+}^{m}}(\langle\partial u(v), v\rangle-u(v)) \rho(v) \mathrm{d} v= \\
\\
\quad[\text { integrating by parts }]
\end{gathered}
$$

Known results: $m \geq 2$ goods, $n=1$ agent

- agent with values $v=\left(v_{1}, \ldots, v_{m}\right) \sim \rho(v) \mathrm{d} v$ and additive utilities
- Goal: maximize revenue over BIC IR mechanisms
- Rochet-Chone approach: mechanisms \Leftrightarrow interim utility functions

Theorem (Rochet and Chone (1998))

$$
\begin{gathered}
\text { optimal revenue }=\begin{array}{c}
\max \\
\text { convex monotone } u \\
u(0)=0, \\
1-\text { Lipshitz }
\end{array} \int_{\mathbb{R}_{+}^{m}}(\langle\partial u(v), v\rangle-u(v)) \rho(v) \mathrm{d} v= \\
\quad[\text { integrating by parts }] \\
=\quad \max _{\substack{\text { convex } u \\
u(0)=0, 1-\text { Lipshitz }}} \int_{\mathbb{R}_{+}^{m}} u(v) \mathrm{d} \psi,
\end{gathered}
$$

where $\mathrm{d} \psi=\left((m+1) \rho(v)+\sum_{j=1}^{m} v_{i} \partial_{v_{i}} \rho\right) \mathrm{d} v$ (signed measure!)

Known results: $m \geq 2$ goods, $n=1$ agent

- agent with values $v=\left(v_{1}, \ldots, v_{m}\right) \sim \rho(v) \mathrm{d} v$ and additive utilities
- Goal: maximize revenue over BIC IR mechanisms
- Rochet-Chone approach: mechanisms \Leftrightarrow interim utility functions

Theorem (Rochet and Chone (1998))

$$
\text { optimal revenue }=\underset{\substack{\text { convex monotone } u}}{\max _{\mathbb{R}_{+}^{m}} u(0)=0} \begin{gathered}
1-\text { Lipshitz }
\end{gathered}
$$

Known results: $m \geq 2$ goods, $n=1$ agent

- agent with values $v=\left(v_{1}, \ldots, v_{m}\right) \sim \rho(v) \mathrm{d} v$ and additive utilities
- Goal: maximize revenue over BIC IR mechanisms
- Rochet-Chone approach: mechanisms \Leftrightarrow interim utility functions

Theorem (Rochet and Chone (1998))

$$
\text { optimal revenue }=\underset{\substack{\text { convex monotone } u}}{\max _{\mathbb{R}_{+}^{m}} u(0)=0} \begin{gathered}
1-\text { Lipshitz }
\end{gathered}
$$

What is the dual?

Known results: $m \geq 2$ goods, $n=1$ agent

- agent with values $v=\left(v_{1}, \ldots, v_{m}\right) \sim \rho(v) \mathrm{d} v$ and additive utilities
- Goal: maximize revenue over BIC IR mechanisms
- Rochet-Chone approach: mechanisms \Leftrightarrow interim utility functions

Theorem (Rochet and Chone (1998))

$$
\text { optimal revenue }=\underset{\substack{\text { convex monotone } u}}{\max _{\mathbb{R}_{+}^{m}} u(0)=0} \begin{gathered}
1-\text { Lipshitz }
\end{gathered}
$$

What is the dual?

Definition: 2nd-order stochastic dominance aka majorization

$$
\mu \succeq \nu \Longleftrightarrow \int g \mathrm{~d} \mu \geq \int g \mathrm{~d} \nu \text { for any convex monotone } \mathrm{g}
$$

Known results: $m \geq 2$ goods, $n=1$ agent

- agent with values $v=\left(v_{1}, \ldots, v_{m}\right) \sim \rho(v) \mathrm{d} v$ and additive utilities
- Goal: maximize revenue over BIC IR mechanisms
- Rochet-Chone approach: mechanisms \Leftrightarrow interim utility functions

Theorem (Rochet and Chone (1998))

$$
\text { optimal revenue }=\underset{\substack{\text { convex monotone } u \\ u(0)=0, 1-\text { Lipshitz }}}{\max } \int_{\mathbb{R}_{+}^{m}} u(v) \mathrm{d} \psi
$$

Definition: 2nd-order stochastic dominance aka majorization

$$
\mu \succeq \nu \Longleftrightarrow \int g \mathrm{~d} \mu \geq \int g \mathrm{~d} \nu \text { for any convex monotone } \mathrm{g}
$$

Theorem (Daskalakis et al (2017))

$$
\text { optimal revenue }=\underset{\substack{\text { positive measures } \gamma \\ \text { on } \mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{m} \\ \gamma_{1}-\gamma_{2} \succeq \psi}}{ } \int_{\mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{m}}\left\|v-v^{\prime}\right\|_{1} \mathrm{~d} \gamma\left(v, v^{\prime}\right)
$$

Multi-bidder case: $m \geq 2$ goods, $n \geq 1$ agents

- n i.i.d agents with values $v=\left(v_{1}, \ldots, v_{m}\right) \sim \rho(v) \mathrm{d} v$
- Goal: maximize revenue over BIC IR mechanisms

Multi-bidder case: $m \geq 2$ goods, $n \geq 1$ agents

- n i.i.d agents with values $v=\left(v_{1}, \ldots, v_{m}\right) \sim \rho(v) \mathrm{d} v$
- Goal: maximize revenue over BIC IR mechanisms

Multi-bidder case: $m \geq 2$ goods, $n \geq 1$ agents

- n i.i.d agents with values $v=\left(v_{1}, \ldots, v_{m}\right) \sim \rho(v) \mathrm{d} v$
- Goal: maximize revenue over BIC IR mechanisms

Multi-bidder extension of Rochet-Chone representation

$$
\begin{aligned}
& \text { optimal revenue }=n . \underset{\text { convex monotone } u}{\max } \int_{\mathbb{R}_{+}^{m}} u(v) \mathrm{d} \psi \\
& u(0)=0, \\
& \partial_{v_{i}} u(v) \preceq z^{n-1} \forall i \\
& z \sim \operatorname{Uniform}([0,1])
\end{aligned}
$$

Multi-bidder case: $m \geq 2$ goods, $n \geq 1$ agents

- n i.i.d agents with values $v=\left(v_{1}, \ldots, v_{m}\right) \sim \rho(v) \mathrm{d} v$
- Goal: maximize revenue over BIC IR mechanisms

Multi-bidder extension of Rochet-Chone representation

$$
\begin{gathered}
\text { optimal revenue }=n \cdot \begin{array}{c}
\max \\
\text { convex monotone } u \\
u(0)=0, \\
\partial_{v_{i}} u(v) \preceq z^{n-1} \forall i \\
z \sim \operatorname{Uniform}([0,1])
\end{array}
\end{gathered}
$$

- non-local non-linear majorization constraint on gradient's distribution

Multi-bidder case: $m \geq 2$ goods, $n \geq 1$ agents

- n i.i.d agents with values $v=\left(v_{1}, \ldots, v_{m}\right) \sim \rho(v) \mathrm{d} v$
- Goal: maximize revenue over BIC IR mechanisms

Multi-bidder extension of Rochet-Chone representation

$$
\begin{gathered}
\text { optimal revenue }=n \cdot \begin{array}{c}
\max \\
\text { convex monotone } u
\end{array} \int_{\mathbb{R}_{+}^{m}} u(v) \mathrm{d} \psi \\
u(0)=0, \\
\partial_{v_{i}} u(v) \preceq z^{n-1} \forall i \\
z \sim \operatorname{Uniform}([0,1])
\end{gathered}
$$

- non-local non-linear majorization constraint on gradient's distribution
- Ingredients:
- reduction: n-agent mechanism $\rightarrow 1$-agent reduced form
- characterization of feasible reduced forms via majorization:
\qquad t and Reny
equivalent to Border's theorem

[^2]
Multi-bidder case: $m \geq 2$ goods, $n \geq 1$ agents

- n i.i.d agents with values $v=\left(v_{1}, \ldots, v_{m}\right) \sim \rho(v) \mathrm{d} v$
- Goal: maximize revenue over BIC IR mechanisms

Multi-bidder extension of Rochet-Chone representation

$$
\begin{gathered}
\text { optimal revenue }=n \cdot \\
\max \\
\text { convex monotone } u \\
u(0)=0, \\
\partial_{v_{i}} u(v) \preceq z^{n-1} \forall i \\
z
\end{gathered} \int_{\mathbb{R}_{+}^{m}} u(v) \mathrm{d} \psi
$$

- non-local non-linear majorization constraint on gradient's distribution
- Ingredients:
- reduction: n-agent mechanism $\rightarrow 1$-agent reduced form
- characterization of feasible reduced forms via majorization: $m=1$ proved by Hart and Reny ${ }^{1}$, equivalent to Border's theorem ${ }^{1}$ S.Hart, P.Reny (2015) Implementation of reduced form mechanisms ET Bulletin

Multi-bidder case: $m \geq 2$ goods, $n \geq 1$ agents

- n i.i.d agents with values $v=\left(v_{1}, \ldots, v_{m}\right) \sim \rho(v) \mathrm{d} v$
- Goal: maximize revenue over BIC IR mechanisms

Multi-bidder extension of Rochet-Chone representation

$$
\text { optimal revenue }=n \cdot \begin{array}{|c}
\max _{\text {convex monotone } u} u(0)=0, \\
\partial_{\mathbb{R}_{i}} u(v) \preceq z^{n-1} \forall i \\
z \sim \operatorname{Uniform}([0,1])
\end{array}
$$

What is the dual?

Multi-bidder case: $m \geq 2$ goods, $n \geq 1$ agents

Multi-bidder extension of Rochet-Chone representation

$$
\begin{gathered}
\text { optimal revenue }=n \cdot \begin{array}{c}
\max \\
\text { convex monotone } u
\end{array} \int_{\mathbb{R}_{+}^{m}} u(v) \mathrm{d} \psi \\
u(0)=0, \\
\partial_{v_{i}} u(v) \preceq z^{n-1} \forall i \\
z \sim \text { Uniform }([0,1])
\end{gathered}
$$

What is the dual?

Beckmann: $\mathrm{B}_{\rho}(\pi, \Phi)=\min _{f: \operatorname{div}[\rho \cdot f]+\pi=0} \int_{\mathbb{R}_{+}^{m}} \Phi(f(v)) \cdot \rho(v) \mathrm{d} v$

Multi-bidder case: $m \geq 2$ goods, $n \geq 1$ agents

Multi-bidder extension of Rochet-Chone representation

$$
\begin{gathered}
\text { optimal revenue }=n \cdot \\
\max _{\substack{\text { convex monotone } u}}^{u(0)=0,} \int_{\mathbb{R}_{+}^{m}} u(v) \mathrm{d} \psi \\
\partial_{v_{i}} u(v) \preceq z^{n-1} \forall i \\
z \sim \operatorname{Uniform}([0,1])
\end{gathered}
$$

Beckmann: $\mathrm{B}_{\rho}(\pi, \Phi)=\min _{f: \operatorname{div}[\rho \cdot f]+\pi=0} \int_{\mathbb{R}_{+}^{m}} \Phi(f(v)) \cdot \rho(v) \mathrm{d} v$

Theorem (strong duality)

optimal revenue $=n \cdot \min _{\pi \succeq \psi}\left[\mathrm{B}_{\rho}(\pi, \Phi)+\sum_{i=1}^{m} \int_{0}^{1} \varphi_{i}\left(z^{n-1}\right) \mathrm{d} z\right]$,

$$
\varphi_{i} \text { on } \mathbb{R}_{+} \text {s.t. }
$$

$$
\text { convex, monotone, } \varphi_{i}(0)=0
$$

where $\Phi(f)=\sum_{i=1}^{m} \varphi_{i}^{*}\left(\left|f_{i}\right|\right) \quad$ and $\varphi_{i}^{*}(y)=\sup _{x}\langle x, y\rangle-\varphi_{i}(x)$

The case for $n=1$ agent

Question: How can it be that seller's problem admits two duals: Monge-Kantorovich and Beckmann?

The case for $n=1$ agent

Question: How can it be that seller's problem admits two duals: Monge-Kantorovich and Beckmann?

Beckmann's dual simplifies:

$$
\text { optimal revenue }=\min _{\pi \succeq \psi} \mathrm{B}_{\rho}\left(\pi,\|\cdot\| \|_{1}\right)
$$

The case for $n=1$ agent

Question: How can it be that seller's problem admits two duals:
Monge-Kantorovich and Beckmann?

Beckmann's dual simplifies:

$$
\text { optimal revenue }=\min _{\pi \succeq \psi} \mathrm{B}_{\rho}\left(\pi,\|\cdot\|_{1}\right)
$$

Theorem (Santambrogio (2015))

$$
\mathrm{B}_{\rho}\left(\pi,\|\cdot\|_{1}\right)=\underset{\substack{\text { positive measures } \gamma \\ \text { with marginals } \pi_{+}, \pi_{-}}}{\min } \int\left\|v-v^{\prime}\right\|_{1} \mathrm{~d} \gamma\left(v, v^{\prime}\right)
$$

The case for $n=1$ agent

Question: How can it be that seller's problem admits two duals:
Monge-Kantorovich and Beckmann?
Beckmann's dual simplifies:

$$
\text { optimal revenue }=\min _{\pi \succeq \psi} \mathrm{B}_{\rho}\left(\pi,\|\cdot\|_{1}\right)
$$

Theorem (Santambrogio (2015))

$$
\mathrm{B}_{\rho}\left(\pi,\|\cdot\|_{1}\right)=\underset{\substack{\text { positive measures } \gamma \\ \text { with marginals } \pi_{+}, \pi_{-}}}{\min } \int\left\|v-v^{\prime}\right\|_{1} \mathrm{~d} \gamma\left(v, v^{\prime}\right)
$$

Corollary: duality by Daskalakis et al. (2017)

Applications

Strong duality \Rightarrow complementary slackness conditions

- allow to disprove optimality
- Example: For $\rho(v)=\rho_{1}\left(v_{1}\right) \cdot \ldots \cdot \rho_{m}\left(v_{m}\right)$, selling separately is never optimal ${ }^{1}$
- help to guess an explicit solution and to prove optimality - Example: For $n=1$ and $m=2$ i.i.d. uniform items, selling each for or both for $\frac{4-\sqrt{2}}{3}$ is optimal ${ }^{2}$

[^3]
Applications

Strong duality \Rightarrow complementary slackness conditions

- allow to disprove optimality
- Example: For $\rho(v)=\rho_{1}\left(v_{1}\right) \cdot \ldots \cdot \rho_{m}\left(v_{m}\right)$, selling separately is never optimal ${ }^{1}$
- help to guess an explicit solution and to prove optimality
- Example: For $n=1$ and $m=2$ i.i.d. uniform items, selling each for or both for $\frac{4-\sqrt{2}}{3}$ is optimal ${ }^{2}$

[^4]
Applications

Strong duality \Rightarrow complementary slackness conditions

- allow to disprove optimality
- Example: For $\rho(v)=\rho_{1}\left(v_{1}\right) \cdot \ldots \cdot \rho_{m}\left(v_{m}\right)$, selling separately is never optimal ${ }^{1}$
- help to guess an explicit solution and to prove optimality
- Example: For $n=1$ and $m=2$ i.i.d. uniform items, selling each for $\frac{2}{3}$ or both for $\frac{4-\sqrt{2}}{3}$ is optimal ${ }^{2}$

[^5]
Applications

Strong duality \Rightarrow complementary slackness conditions

- allow to disprove optimality
- Example: For $\rho(v)=\rho_{1}\left(v_{1}\right) \cdot \ldots \cdot \rho_{m}\left(v_{m}\right)$, selling separately is never optimal ${ }^{1}$
- help to guess an explicit solution and to prove optimality
- Example: For $n=1$ and $m=2$ i.i.d. uniform items, selling each for $\frac{2}{3}$ or both for $\frac{4-\sqrt{2}}{3}$ is optimal ${ }^{2}$

Question: Any hope for an explicit solution with $n \geq 2$ and $m=2$ i.i.d. uniform items?

[^6]
Applications

Strong duality \Rightarrow complementary slackness conditions

- allow to disprove optimality
- Example: For $\rho(v)=\rho_{1}\left(v_{1}\right) \cdot \ldots \cdot \rho_{m}\left(v_{m}\right)$, selling separately is never optimal ${ }^{1}$
- help to guess an explicit solution and to prove optimality
- Example: For $n=1$ and $m=2$ i.i.d. uniform items, selling each for $\frac{2}{3}$ or both for $\frac{4-\sqrt{2}}{3}$ is optimal ${ }^{2}$

Question: Any hope for an explicit solution with $n \geq 2$ and $m=2$ i.i.d. uniform items? Perhaps, not

[^7]
Pictures for dessert: 2 bidders, 2 i.i.d. uniform items

Probability to receive the first item as a function of bidder's values (v_{1}, v_{2}) in the optimal auction (abont alforitim):

Pictures for dessert: 2 bidders, 2 i.i.d. uniform items

Probability to receive the first item as a function of bidder's values $\left(v_{1}, v_{2}\right)$ in the optimal auction (about algoritm):

Thank you!

Complementary slackness conditions

Optimal $u^{\text {opt }}$, functions $\varphi_{i}^{\text {opt }}$, measure $\pi^{\text {opt }}$, and vector field $f^{\text {opt }}$ satisfy:

$$
\begin{gathered}
\int u^{\mathrm{opt}}(v) \mathrm{d} \psi(v)=\int u^{\mathrm{opt}}(v) \mathrm{d} \pi^{\mathrm{opt}}(v) \\
f_{i}^{\mathrm{opt}}(v) \in \partial \varphi_{i}^{\mathrm{opt}}\left(\frac{\partial u^{\mathrm{opt}}}{\partial v_{i}}(v)\right) \\
\int \varphi_{i}^{\mathrm{opt}}\left(\frac{\partial u^{\mathrm{opt}}}{\partial v_{i}}(v)\right) \rho(v) \mathrm{d} v=\int_{0}^{1} \varphi_{i}^{\mathrm{opt}}\left(z^{n-1}\right) \mathrm{d} z
\end{gathered}
$$

Algorithmic ideas back to simulations

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of n agents can have q different
values for each of m items \Rightarrow the dimension $\sim\left(q^{n}\right)^{m}$
- How to avoid:

- Linearization via transport:

Algorithmic ideas back to simulations

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of n agents can have q different values for each of m items \Rightarrow the dimension $\sim\left(q^{n}\right)^{m}$
- intractable for $(m=2, q=100 n=2)$ or for $(m=2 q=10 n=4)$
- deep neural networks improve the bounds; Dutting et al. (2019)
- How to avoid:

- Linearization via transport:

Algorithmic ideas

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of n agents can have q different values for each of m items \Rightarrow the dimension $\sim\left(q^{n}\right)^{m}$
- intractable for ($m=2, q=100 n=2$) or for ($m=2 q=10 n=4$)
- deep neural networks improve the bounds; Dutting et al. (2019)
- How to avoid:

- Linearization via transport:

Algorithmic ideas

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of n agents can have q different values for each of m items \Rightarrow the dimension $\sim\left(q^{n}\right)^{m}$
- intractable for ($m=2, q=100 n=2$) or for ($m=2 q=10 n=4$)
- deep neural networks improve the bounds; Dutting et al. (2019)
- How to avoid:

- Linearization via transport:

Algorithmic ideas

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of n agents can have q different values for each of m items \Rightarrow the dimension $\sim\left(q^{n}\right)^{m}$
- intractable for $(m=2, q=100 n=2)$ or for ($m=2 q=10 n=4$)
- deep neural networks improve the bounds; Dutting et al. (2019)
- How to avoid:

$$
\begin{gathered}
R_{n, m}(\rho)=\max _{\text {convex monotone } u} n \cdot \int_{\mathbb{R}_{+}^{m}} u(v) \mathrm{d} \psi(v) \\
u(0)=0, \partial_{v_{i}} u(v) \preceq z^{n-1}
\end{gathered}
$$

- Pros: dependence on n is killed; Cai et al.(2012), Alaei et al. (2019)
- Cons: non-linear program
- Linearization via transport:

Algorithmic ideas

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of n agents can have q different values for each of m items \Rightarrow the dimension $\sim\left(q^{n}\right)^{m}$
- intractable for $(m=2, q=100 n=2)$ or for $(m=2 q=10 n=4)$
- deep neural networks improve the bounds; Dutting et al. (2019)
- How to avoid:

$$
\begin{gathered}
R_{n, m}(\rho)=\max _{\substack{\text { convex monotone } u}} n \cdot \int_{\mathbb{R}_{+}^{m}} u(v) \mathrm{d} \psi(v) \\
u(0)=0, \partial_{v_{i}} u(v) \preceq z^{n-1}
\end{gathered}
$$

- Pros: dependence on n is killed; Cai et al.(2012), Alaei et al. (2019)
- Linearization via transport:

Algorithmic ideas

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of n agents can have q different values for each of m items \Rightarrow the dimension $\sim\left(q^{n}\right)^{m}$
- intractable for $(m=2, q=100 n=2)$ or for $(m=2 q=10 n=4)$
- deep neural networks improve the bounds; Dutting et al. (2019)
- How to avoid:

$$
\begin{gathered}
R_{n, m}(\rho)=\max _{\text {convex }}^{=} n \cdot \int_{\mathbb{R}_{+}^{m}} u(v) \mathrm{d} \psi(v) \\
u(0)=0, \partial_{v_{i}} u(v) \preceq z^{n-1}
\end{gathered}
$$

- Pros: dependence on n is killed; Cai et al.(2012), Alaei et al. (2019)
- Cons: non-linear program
- Linearization via transport:

Algorithmic ideas

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of n agents can have q different values for each of m items \Rightarrow the dimension $\sim\left(q^{n}\right)^{m}$
- intractable for $(m=2, q=100 n=2)$ or for $(m=2 q=10 n=4)$
- deep neural networks improve the bounds; Dutting et al. (2019)
- How to avoid:

$$
\begin{gathered}
R_{n, m}(\rho)=\max _{\text {convex }}^{=} n \cdot \int_{\mathbb{R}_{+}^{m}} u(v) \mathrm{d} \psi(v) \\
u(0)=0, \partial_{v_{i}} u(v) \preceq z^{n-1}
\end{gathered}
$$

- Pros: dependence on n is killed; Cai et al.(2012), Alaei et al. (2019)
- Cons: non-linear program
- Linearization via transport:
- μ on $[0,1]$ majorizes ν if and only if there is γ on $[0,1]^{2}$ with marginals μ on y and ν on x and such that $\int y \mathrm{~d} \gamma(y \mid x) \geq x$ for γ-almost all x
- solve for (u, γ)

Algorithmic ideas

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of n agents can have q different values for each of m items \Rightarrow the dimension $\sim\left(q^{n}\right)^{m}$
- intractable for $(m=2, q=100 n=2)$ or for $(m=2 q=10 n=4)$
- deep neural networks improve the bounds; Dutting et al. (2019)
- How to avoid:

$$
\begin{gathered}
R_{n, m}(\rho)=\max _{\text {convex monotone } u} n \cdot \int_{\mathbb{R}_{+}^{m}} u(v) \mathrm{d} \psi(v) \\
u(0)=0, \partial_{v_{i}} u(v) \preceq z^{n-1}
\end{gathered}
$$

- Pros: dependence on n is killed; Cai et al.(2012), Alaei et al. (2019)
- Cons: non-linear program
- Linearization via transport:
- μ on $[0,1]$ majorizes ν if and only if there is γ on $[0,1]^{2}$ with marginals μ on y and ν on x and such that $\int y \mathrm{~d} \gamma(y \mid x) \geq x$ for γ-almost all x

Algorithmic ideas

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of n agents can have q different values for each of m items \Rightarrow the dimension $\sim\left(q^{n}\right)^{m}$
- intractable for $(m=2, q=100 n=2)$ or for $(m=2 q=10 n=4)$
- deep neural networks improve the bounds; Dutting et al. (2019)
- How to avoid:

$$
\begin{gathered}
R_{n, m}(\rho)=\max _{\text {convex monotone } u} n \cdot \int_{\mathbb{R}_{+}^{m}} u(v) \mathrm{d} \psi(v) \\
u(0)=0, \partial_{v_{i}} u(v) \preceq z^{n-1}
\end{gathered}
$$

- Pros: dependence on n is killed; Cai et al.(2012), Alaei et al. (2019)
- Cons: non-linear program
- Linearization via transport:
- μ on $[0,1]$ majorizes ν if and only if there is γ on $[0,1]^{2}$ with marginals μ on y and ν on x and such that $\int y \mathrm{~d} \gamma(y \mid x) \geq x$ for γ-almost all x
- solve for (u, γ)

Algorithmic ideas

- Automated mechanism design: revenue maximization is an LP, let's feed it to an LP solver; Sandholm (2003)
- Curse of dimensionality: If each of n agents can have q different values for each of m items \Rightarrow the dimension $\sim\left(q^{n}\right)^{m}$
- intractable for $(m=2, q=100 n=2)$ or for $(m=2 q=10 n=4)$
- deep neural networks improve the bounds; Dutting et al. (2019)
- How to avoid:

$$
\begin{gathered}
R_{n, m}(\rho)=\max _{\text {convex monotone } u} n \cdot \int_{\mathbb{R}_{+}^{m}} u(v) \mathrm{d} \psi(v) \\
u(0)=0, \partial_{v_{i}} u(v) \preceq z^{n-1}
\end{gathered}
$$

- Pros: dependence on n is killed; Cai et al.(2012), Alaei et al. (2019)
- Cons: non-linear program
- Linearization via transport:
- μ on $[0,1]$ majorizes ν if and only if there is γ on $[0,1]^{2}$ with marginals μ on y and ν on x and such that $\int y \mathrm{~d} \gamma(y \mid x) \geq x$ for γ-almost all x
- solve for (u, γ)
- Performance: algorithm handles $(m=2 q=100 n=10)$

Revenue

Revenue as a function of the number of bidders n for two items with i.i.d. values uniform on $[0,1]$. Graphs from bottom to top: selling separately (light-green), selling optimally (blue), full surplus extraction (red), limit for $n \rightarrow \infty$ (the dashed line).

Remark: For $n=2$, selling optimally improves upon selling separately

Revenue

Revenue as a function of the number of bidders n for two items with i.i.d. values uniform on $[0,1]$. Graphs from bottom to top: selling separately (light-green), selling optimally (blue), full surplus extraction (red), limit for $n \rightarrow \infty$ (the dashed line).

Remark: For $n=2$, selling optimally improves upon selling separately by 5%

[^0]: ${ }^{a}$ M.Beckmann (1952) A continuous

[^1]: ${ }^{a}$ M.Beckmann (1952) A continuous

[^2]: ${ }^{1}$ S. Hart, P.Reny (2015) Implementation of reduced form mechanisms ET Bulletin

[^3]: ${ }^{1}$ P. Jehiel, M.Meyer-Ter-Vehn, B.Moldovanu (2007) Mixed bundling auctions JET
 ${ }^{2}$ A.Manelli, D.Vincent (2007) Multidimensional Mechanism Design JET

[^4]: ${ }^{1}$ P. Jehiel, M.Meyer-Ter-Vehn, B.Moldovanu (2007) Mixed bundling auctions JET

[^5]: ${ }^{1}$ P. Jehiel, M.Meyer-Ter-Vehn, B.Moldovanu (2007) Mixed bundling auctions JET
 ${ }^{2}$ A.Manelli, D.Vincent (2007) Multidimensional Mechanism Design JET

[^6]: ${ }^{1}$ P. Jehiel, M.Meyer-Ter-Vehn, B.Moldovanu (2007) Mixed bundling auctions JET
 ${ }^{2}$ A.Manelli, D.Vincent (2007) Multidimensional Mechanism Design JET

[^7]: ${ }^{1}$ P. Jehiel, M.Meyer-Ter-Vehn, B.Moldovanu (2007) Mixed bundling auctions JET ${ }^{2}$ A.Manelli, D.Vincent (2007) Multidimensional Mechanism Design JET

