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Most profitable way to sell m unrelated items to n agents

Bayesian setting: independent private values, seller knows distribution

What is known?

m = 1: m ≥ 2:

Single-item monopolist Multi-item monopolist

n = 1:

Myerson (1981):

posted price is optimal

• optimal mechanisms known in

particular cases

• connection to optimal transport
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What will we see?

Strong duality (informal)

For n ≥ 1 bidders with additive utilities over m ≥ 1 items

max
BIC IR mechanisms

Revenue = min
transport flows

Cost

• formal statement later

• left-hand side is intuitive ⇒ discuss the right-hand side
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Transportation problem

For given geographical distribution of production π+ ∈ ∆(X ) and

consumption π− ∈ ∆(X ), X ⊂ Rd , find least costly way of transportation

Monge-Kantorovich problem

Given:

π+, π− and transport costs c(x , y)

Find:

transportation plan γ solving

min
γ ∈ ∆(X × X ) :

marginals π+, π−

∫
c(x , y)dγ(x , y)

• archetypal coupling problem,

many econ applications

• appears for n = 1 bidder

• transportation is immediate

Beckmann’s problem

Given:

π+, π−, costs Φ(x)

Find:

flow f : X → Rn solving

min
f s.t.

div[f ] = π+ − π−

∫
Φ(f (x))dx

• transportation is continuous

• surprisingly, we get Beckmann

not Monge-Kantorovich
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Known results: m ≥ 2 goods, n = 1 agent

• agent with values v = (v1, . . . , vm) ∼ ρ(v)dv and additive utilities

• Goal: maximize revenue over BIC IR mechanisms

• Rochet-Chone approach: mechanisms ⇔ interim utility functions

Theorem (Rochet and Chone (1998))

optimal revenue = max
convex monotone u

u(0) = 0,

1−Lipshitz

Definition: 2nd-order stochastic dominance aka majorization

µ ⪰ ν ⇐⇒
∫

g dµ ≥
∫

g dν for any convex monotone g

Theorem (Daskalakis et al (2017))

optimal revenue = min
positive measures γ

on Rm
+ × Rm

+

γ1 − γ2 ⪰ ψ

∫
Rm

+×Rm
+

∥v − v ′∥1 dγ(v , v ′)
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Multi-bidder case: m ≥ 2 goods, n ≥ 1 agents

• n i.i.d agents with values v = (v1, . . . , vm) ∼ ρ(v)dv

• Goal: maximize revenue over BIC IR mechanisms

Multi-bidder extension of Rochet-Chone representation

optimal revenue = n · max
convex monotone u

u(0) = 0,

∂vi u(v) ⪯ zn−1 ∀i
z ∼ Uniform([0, 1])

∫
Rm

+

u(v)dψ

7
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distribution
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Beckmann: Bρ (π,Φ) = minf : div[ρ·f ]+π=0

∫
Rm

+
Φ(f (v)) · ρ(v)dv

Theorem (strong duality)

optimal revenue = n · min
π ⪰ ψ

φi on R+ s.t.

convex, monotone, φi (0) = 0

[
Bρ

(
π, Φ

)
+

m∑
i=1

∫ 1

0

φi

(
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]
,

where Φ(f ) =
∑m

i=1 φ
∗
i (|fi |) and φ∗

i (y) = supx⟨x , y⟩ − φi (x)
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The case for n = 1 agent

Question: How can it be that seller’s problem admits two duals:

Monge-Kantorovich and Beckmann?

Beckmann’s dual simplifies:

optimal revenue = min
π⪰ψ

Bρ

(
π, ∥ · ∥1

)

Theorem (Santambrogio (2015))

Bρ

(
π, ∥ · ∥1

)
= min

positive measures γ

with marginals π+, π−

∫
∥v − v ′∥1 dγ(v , v ′)

Corollary: duality by Daskalakis et al. (2017)
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Applications

Strong duality ⇒ complementary slackness conditions

• allow to disprove optimality

• Example: For ρ(v) = ρ1(v1) · . . . · ρm(vm), selling separately is never

optimal1

• help to guess an explicit solution and to prove optimality

• Example: For n = 1 and m = 2 i.i.d. uniform items, selling each for
2
3
or both for 4−

√
2

3
is optimal2

Perhaps, not

1P. Jehiel, M.Meyer-Ter-Vehn, B.Moldovanu (2007) Mixed bundling auctions JET
2A.Manelli, D.Vincent (2007) Multidimensional Mechanism Design JET

9

https://www.econstor.eu/bitstream/10419/94118/1/sfb-tr15-dp141.pdf
https://www.econstor.eu/bitstream/10419/74262/1/NDL2004-153.pdf
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Pictures for dessert: 2 bidders, 2 i.i.d. uniform items

Probability to receive the first item as a function of bidder’s values

(v1, v2) in the optimal auction ( about algorithm ):
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Pictures for dessert: 2 bidders, 2 i.i.d. uniform items

Probability to receive the first item as a function of bidder’s values

(v1, v2) in the optimal auction ( about algorithm ):

Thank you!
10



Complementary slackness conditions back to theorem

Optimal uopt, functions φopt
i , measure πopt, and vector field f opt satisfy:

∫
uopt(v)dψ(v) =

∫
uopt(v)dπopt(v)

f opti (v) ∈ ∂φopt
i

(
∂uopt

∂vi
(v)

)
∫
φopt
i

(
∂uopt

∂vi
(v)

)
ρ(v)dv =

∫ 1

0

φopt
i

(
zn−1

)
dz

11



Algorithmic ideas back to simulations

• Automated mechanism design: revenue maximization is an LP,

let’s feed it to an LP solver; Sandholm (2003)

• Curse of dimensionality: If each of n agents can have q different

values for each of m items ⇒ the dimension ∼
(
qn

)m
• intractable for (m = 2, q = 100 n = 2) or for (m = 2 q = 10 n = 4)

• deep neural networks improve the bounds; Dutting et al. (2019)

• How to avoid:

Rn,m(ρ) = max
convex monotone u

u(0) = 0, ∂vi u(v) ⪯ zn−1

n ·
∫
Rm

+

u(v)dψ(v)

• Pros: dependence on n is killed; Cai et al.(2012), Alaei et al. (2019)

• Cons: non-linear program

• Linearization via transport:
• µ on [0, 1] majorizes ν if and only if there is γ on [0, 1]2 with

marginals µ on y and ν on x and such that
∫
y dγ(y | x) ≥ x for

γ-almost all x

• solve for (u, γ)

• Performance: algorithm handles (m = 2 q = 100 n = 10) revenue curve 12
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Revenue back to algorithmic ideas

Revenue as a function of the number of bidders n for two items with i.i.d.

values uniform on [0, 1]. Graphs from bottom to top: selling separately

(light-green), selling optimally (blue), full surplus extraction (red), limit for

n → ∞ (the dashed line).

Remark: For n = 2, selling optimally improves upon selling separately

by 5%

13
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