The geometry of consumer preference aggregation

Fedor Sandomirskiy (Caltech) Philip Ushchev (ECARES, U.libre de Bruxelles)

from individual to population behavior and back

• How do assumptions on individual characteristics of consumers — preferences and incomes — restrict aggregate demand?

from individual to population behavior and back

- How do assumptions on individual characteristics of consumers preferences and incomes restrict aggregate demand?
- How does observed aggregate demand restrict individual characteristics?

from individual to population behavior and back

- How do assumptions on individual characteristics of consumers preferences and incomes — restrict aggregate demand?
- How does observed aggregate demand restrict individual characteristics?
- \bullet > 100 papers since Sonnenschein (1973), two chapters in MWG...

from individual to population behavior and back

- How do assumptions on individual characteristics of consumers preferences and incomes — restrict aggregate demand?
- How does observed aggregate demand restrict individual characteristics?
- ullet > 100 papers since Sonnenschein (1973), two chapters in MWG...
- D. Kreps (2020):

So what can we say about aggregate demand based on the hypothesis that individuals are preference/utility maximizers? Unless we are able to make strong assumptions about the distribution of preferences or income throughout the economy (e.g., everyone has the same preferences) there is little we can say.

from individual to population behavior and back

- How do assumptions on individual characteristics of consumers preferences and incomes — restrict aggregate demand?
- How does observed aggregate demand restrict individual characteristics?
- ullet > 100 papers since Sonnenschein (1973), two chapters in MWG...
- D. Kreps (2020):

So what can we say about aggregate demand based on the hypothesis that individuals are preference/utility maximizers? Unless we are able to make strong assumptions about the distribution of preferences or income throughout the economy (e.g., everyone has the same preferences) there is little we can say.

• The two extremes:

- 1. Sonnenschein-Mantel-Debreu theorem and related results
- 2. Gorman's representative consumer

from individual to population behavior and back

- How do assumptions on individual characteristics of consumers preferences and incomes — restrict aggregate demand?
- How does observed aggregate demand restrict individual characteristics?
- ullet > 100 papers since Sonnenschein (1973), two chapters in MWG...
- D. Kreps (2020):

So what can we say about aggregate demand based on the hypothesis that individuals are preference/utility maximizers? Unless we are able to make strong assumptions about the distribution of preferences or income throughout the economy (e.g., everyone has the same preferences) there is little we can say.

• The two extremes:

- 1. Sonnenschein-Mantel-Debreu theorem and related results
- 2. Gorman's representative consumer
- Our paper is a middle ground: a rich enough tractable setting

Key Contribution:

a method linking individual characteristics and market demand properties

Key Contribution:

a method linking individual characteristics and market demand properties

• works for homothetic preferences (linear, Leontief, CES, etc)

Key Contribution:

a method linking individual characteristics and market demand properties

• works for homothetic preferences (linear, Leontief, CES, etc)

Key Insights:

Key Contribution:

a method linking individual characteristics and market demand properties

• works for homothetic preferences (linear, Leontief, CES, etc)

Key Insights:

• utility functions NO, log(expenditure functions) YES

Key Contribution:

a method linking individual characteristics and market demand properties

• works for homothetic preferences (linear, Leontief, CES, etc)

Key Insights:

- utility functions NO, log(expenditure functions) YES
- a heterogeneous population ≃ a single consumer whose log(expenditure function) = a weighted average of individual ones

Key Contribution:

a method linking individual characteristics and market demand properties

• works for homothetic preferences (linear, Leontief, CES, etc)

Key Insights:

- utility functions NO, log(expenditure functions) YES
- a heterogeneous population ≃ a single consumer whose log(expenditure function) = a weighted average of individual ones

• enables extreme-point and convexification tools

Robust welfare analysis

• Observe market demand, estimate a welfare change caused by a price change

- Observe market demand, estimate a welfare change caused by a price change
- Representative consumer approach:

- Observe market demand, estimate a welfare change caused by a price change
- Representative consumer approach:
 - postulate a representative, use her utility as proxy for welfare

- Observe market demand, estimate a welfare change caused by a price change
- Representative consumer approach:
 - postulate a representative, use her utility as proxy for welfare
 - hence, market demand is a sufficient statistic

- Observe market demand, estimate a welfare change caused by a price change
- Representative consumer approach:
 - postulate a representative, use her utility as proxy for welfare
 - hence, market demand is a sufficient statistic
- The same market demand can be generated by different populations

- Observe market demand, estimate a welfare change caused by a price change
- Representative consumer approach:
 - postulate a representative, use her utility as proxy for welfare
 - hence, market demand is a sufficient statistic
- The same market demand can be generated by different populations
- Get a range of welfare levels for the equivalent variation

- Observe market demand, estimate a welfare change caused by a price change
- Representative consumer approach:
 - postulate a representative, use her utility as proxy for welfare
 - hence, market demand is a sufficient statistic
- The same market demand can be generated by different populations
- Get a range of welfare levels for the equivalent variation
- We compute the range via Bayesian persuasion

Robust welfare analysis

- The same market demand can be generated by different populations
- Get a range of welfare levels for the equivalent variation
- We compute the range via Bayesian persuasion

Rationalizable aggregate behaviors

Robust welfare analysis

- The same market demand can be generated by different populations
- Get a range of welfare levels for the equivalent variation
- We compute the range via Bayesian persuasion

Rationalizable aggregate behaviors

• Given a domain of individual preferences (e.g. linear, Leontief), what aggregate behaviors can we get?

Robust welfare analysis

- The same market demand can be generated by different populations
- Get a range of welfare levels for the equivalent variation
- We compute the range via Bayesian persuasion

Rationalizable aggregate behaviors

- Given a domain of individual preferences (e.g. linear, Leontief), what aggregate behaviors can we get?
- Rationalizable behaviors ≃ the convex hull in log(expenditure)-space

Robust welfare analysis

- The same market demand can be generated by different populations
- Get a range of welfare levels for the equivalent variation
- We compute the range via Bayesian persuasion

Rationalizable aggregate behaviors

- Given a domain of individual preferences (e.g. linear, Leontief), what aggregate behaviors can we get?
- Rationalizable behaviors \simeq the convex hull in log(expenditure)-space
- Complexity of pseudo-market mechanisms

Robust welfare analysis

- The same market demand can be generated by different populations
- Get a range of welfare levels for the equivalent variation
- We compute the range via Bayesian persuasion

Rationalizable aggregate behaviors

- Given a domain of individual preferences (e.g. linear, Leontief), what aggregate behaviors can we get?
- Rationalizable behaviors \simeq the convex hull in log(expenditure)-space

Complexity of pseudo-market mechanisms

• Emulate market outcomes in non-monetary settings, e.g., charity

Robust welfare analysis

- The same market demand can be generated by different populations
- Get a range of welfare levels for the equivalent variation
- We compute the range via Bayesian persuasion

Rationalizable aggregate behaviors

- Given a domain of individual preferences (e.g. linear, Leontief), what aggregate behaviors can we get?
- Rationalizable behaviors \simeq the convex hull in log(expenditure)-space

Complexity of pseudo-market mechanisms

- Emulate market outcomes in non-monetary settings, e.g., charity
- We design bidding languages for efficient outcome computation

Robust welfare analysis

- The same market demand can be generated by different populations
- Get a range of welfare levels for the equivalent variation
- We compute the range via Bayesian persuasion

Rationalizable aggregate behaviors

- Given a domain of individual preferences (e.g. linear, Leontief), what aggregate behaviors can we get?
- Rationalizable behaviors \simeq the convex hull in log(expenditure)-space

Complexity of pseudo-market mechanisms

- Emulate market outcomes in non-monetary settings, e.g., charity
- We design bidding languages for efficient outcome computation

Identification of preference distributions

Robust welfare analysis

- The same market demand can be generated by different populations
- Get a range of welfare levels for the equivalent variation
- We compute the range via Bayesian persuasion

Rationalizable aggregate behaviors

- Given a domain of individual preferences (e.g. linear, Leontief), what aggregate behaviors can we get?
- Rationalizable behaviors \simeq the convex hull in log(expenditure)-space

Complexity of pseudo-market mechanisms

- Emulate market outcomes in non-monetary settings, e.g., charity
- We design bidding languages for efficient outcome computation

Identification of preference distributions

• Aggregate behavior pins down preference distributions for "simplex domains"

- Representative agents
 - almost never exist: Gorman (1961), Jackson & Yariv (2019)

- Representative agents
 - almost never exist: Gorman (1961), Jackson & Yariv (2019)
 - exist if income-dependent: Eisenberg (1961), Eisenberg & Gale (1959), Jerrison (1984)

- Representative agents
 - almost never exist: Gorman (1961), Jackson & Yariv (2019)
 - exist if income-dependent: Eisenberg (1961), Eisenberg & Gale (1959), Jerrison (1984)

- Representative agents
 - almost never exist: Gorman (1961), Jackson & Yariv (2019)
 - exist if income-dependent: Eisenberg (1961), Eisenberg & Gale (1959), Jerrison (1984)
- Robust welfare analysis
 - Kang and Vasserman (2022), Steiner et al. (2022)

- Representative agents
 - almost never exist: Gorman (1961), Jackson & Yariv (2019)
 - exist if income-dependent: Eisenberg (1961), Eisenberg & Gale (1959), Jerrison (1984)
- Robust welfare analysis
 - Kang and Vasserman (2022), Steiner et al. (2022)
- Pseudo-markets and complexity of exchange economies
 - Pycia (2022), Moulin (2019), Nisan et al. (2007)

- Representative agents
 - almost never exist: Gorman (1961), Jackson & Yariv (2019)
 - exist if income-dependent: Eisenberg (1961), Eisenberg & Gale (1959), Jerrison (1984)
- Robust welfare analysis
 - Kang and Vasserman (2022), Steiner et al. (2022)
- Pseudo-markets and complexity of exchange economies
 - Pycia (2022), Moulin (2019), Nisan et al. (2007)
- Economic applications of extreme points, Choquet theory, and convexification
 - Kleiner et al. (2021), Arieli et al. (2020), Manelli & Vincent (2010), Kamenica & Gentzkow (2011), Aumann et al. (1995)

Single consumer's choice
Single consumer's choice

• *n* divisible goods

Single consumer's choice

- *n* divisible goods
- a consumer with a preference \succeq over \mathbb{R}^n_+ and budget b

Single consumer's choice

- *n* divisible goods
- a consumer with a preference \succeq over \mathbb{R}^n_+ and budget b
- \succeq is homothetic: $\mathbf{x} \succeq \mathbf{y} \Leftrightarrow \lambda \mathbf{x} \succeq \lambda \mathbf{y}, \ \lambda > 0$

Single consumer's choice

- *n* divisible goods
- a consumer with a preference \succeq over \mathbb{R}^n_+ and budget b
- \succeq is homothetic: $\mathbf{x} \succeq \mathbf{y} \Leftrightarrow \lambda \mathbf{x} \succeq \lambda \mathbf{y}, \ \lambda > 0$
- and convex, continuous, monotone

$$\succeq \iff$$
 concave utility u s.t. $u(\alpha \cdot \mathbf{x}) = \alpha \cdot u(\mathbf{x})$

Single consumer's choice

- *n* divisible goods
- a consumer with a preference \succeq over \mathbb{R}^n_+ and budget b
- \succeq is homothetic: $\mathbf{x} \succeq \mathbf{y} \Leftrightarrow \lambda \mathbf{x} \succeq \lambda \mathbf{y}, \ \lambda > 0$
- and convex, continuous, monotone

$$\succeq \iff$$
 concave utility u s.t. $u(\alpha \cdot \mathbf{x}) = \alpha \cdot u(\mathbf{x})$

demand as a function of prices p

$$D(\mathbf{p}, b) = \arg \max_{\mathbf{x} \in \mathbb{R}^n_+ : \langle \mathbf{p}, \mathbf{x} \rangle \le b} u(\mathbf{x})$$

• Consider a population of *m* consumers $(\succeq_k, b_k)_{k=1,...,m}$

- Consider a population of m consumers $(\succeq_k, b_k)_{k=1,...,m}$
- Total income $B = \sum_k b_k$ and $\beta_k = b_k/B$ the relative income of k

- Consider a population of m consumers $(\succeq_k, b_k)_{k=1,...,m}$
- Total income $B = \sum_k b_k$ and $\beta_k = b_k/B$ the relative income of k

Definition

 $\gtrsim_{
m aggr}$ is the aggregate preference for this population if

 $D_{\mathrm{aggr}}\left(\mathbf{p},B
ight)=D_{1}(\mathbf{p},b_{1})+\ldots+D_{m}(\mathbf{p},b_{m})$ for any price \mathbf{p}

- Consider a population of m consumers $(\succeq_k, b_k)_{k=1,...,m}$
- Total income $B = \sum_k b_k$ and $\beta_k = b_k/B$ the relative income of k

Definition

 $\gtrsim_{
m aggr}$ is the aggregate preference for this population if

$$D_{\mathrm{aggr}}\left(\mathbf{p},B
ight)=D_{1}(\mathbf{p},b_{1})+\ldots+D_{m}(\mathbf{p},b_{m})$$
 for any price \mathbf{p}

Eisenberg (1961), Eisenberg and Gale (1959):

• The aggregate preference exists

- Consider a population of m consumers $(\succeq_k, b_k)_{k=1,...,m}$
- Total income $B = \sum_k b_k$ and $\beta_k = b_k/B$ the relative income of k

Definition

 $\gtrsim_{
m aggr}$ is the aggregate preference for this population if

$$D_{\mathrm{aggr}}\left(\mathbf{p},B
ight)=D_{1}(\mathbf{p},b_{1})+\ldots+D_{m}(\mathbf{p},b_{m})$$
 for any price \mathbf{p}

Eisenberg (1961), Eisenberg and Gale (1959):

- The aggregate preference exists
- Aggregate consumers' utility \Leftrightarrow the Nash product maximization:

$$u_{\operatorname{aggr}}(\mathbf{x}, (\succeq_k, \beta_k)_{k=1}^m) = \max_{\sum_{k=1}^m \mathbf{x}_k = \mathbf{x}} \prod_{k=1}^m \left(u_k(\mathbf{x}_k) \right)^{\beta_k}$$

- Consider a population of m consumers $(\succeq_k, b_k)_{k=1,...,m}$
- Total income $B = \sum_k b_k$ and $\beta_k = b_k/B$ the relative income of k

Definition

 $\gtrsim_{
m aggr}$ is the aggregate preference for this population if

$$D_{\mathrm{aggr}}\left(\mathbf{p},B
ight)=D_{1}(\mathbf{p},b_{1})+\ldots+D_{m}(\mathbf{p},b_{m})$$
 for any price \mathbf{p}

Eisenberg (1961), Eisenberg and Gale (1959):

- The aggregate preference exists
- Aggregate consumers' utility \Leftrightarrow the Nash product maximization:

$$u_{\operatorname{aggr}}(\mathbf{x}, (\succeq_k, \beta_k)_{k=1}^m) = \max_{\sum_{k=1}^m \mathbf{x}_k = \mathbf{x}} \prod_{k=1}^m (u_k(\mathbf{x}_k))^{\beta_k}$$

Challenging problem, no structural insights

• Aggregation is hard in the space of utilities \Rightarrow let's try a dual space

- Aggregation is hard in the space of utilities \Rightarrow let's try a dual space
- The expenditure function:

$$E(\mathbf{p}) = \min_{\mathbf{x} : u(\mathbf{x}) > 1} \langle \mathbf{p}, \mathbf{x} \rangle$$

- Aggregation is hard in the space of utilities \Rightarrow let's try a dual space
- The expenditure function:

$$E(\mathbf{p}) = \min_{\mathbf{x} : u(\mathbf{x}) \ge 1} \langle \mathbf{p}, \mathbf{x} \rangle$$

• Preferences \iff logarithmic expenditure function (LEF): log $E(\mathbf{p})$

- Aggregation is hard in the space of utilities \Rightarrow let's try a dual space
- The expenditure function:

$$E(\mathbf{p}) = \min_{\mathbf{x} : u(\mathbf{x}) \ge 1} \langle \mathbf{p}, \mathbf{x} \rangle$$

• Preferences \iff logarithmic expenditure function (LEF): log $E(\mathbf{p})$

LEF of the aggregate is the average of individual LEFs

$$\log E_{\mathrm{aggr}}(\mathbf{p},\,(\succeq_k,\beta_k)_{k=1}^m) = \sum_{k=1}^m \beta_k \cdot \log E_k(\mathbf{p})$$

- Aggregation is hard in the space of utilities \Rightarrow let's try a dual space
- The expenditure function:

$$E(\mathbf{p}) = \min_{\mathbf{x} : u(\mathbf{x}) \ge 1} \langle \mathbf{p}, \mathbf{x} \rangle$$

• Preferences \iff logarithmic expenditure function (LEF): log $E(\mathbf{p})$

LEF of the aggregate is the average of individual LEFs

$$\log E_{\mathrm{aggr}}(\mathbf{p},\,(\succeq_k,\beta_k)_{k=1}^m) = \sum_{k=1}^m \beta_k \cdot \log E_k(\mathbf{p})$$

• The dual to Eisenberg-Gale

- Aggregation is hard in the space of utilities \Rightarrow let's try a dual space
- The expenditure function:

$$E(\mathbf{p}) = \min_{\mathbf{x} : u(\mathbf{x}) \ge 1} \langle \mathbf{p}, \mathbf{x} \rangle$$

• Preferences \iff logarithmic expenditure function (LEF): log $E(\mathbf{p})$

Theorem 1

LEF of the aggregate is the average of individual LEFs

$$\log E_{\mathrm{aggr}}(\mathbf{p},\,(\succeq_k,\beta_k)_{k=1}^m) = \sum_{k=1}^m \beta_k \cdot \log E_k(\mathbf{p})$$

- The dual to Eisenberg-Gale
- A simple result with numerous implications

• How to define the geometric mean of convex sets?

- How to define the geometric mean of convex sets?
- The support function of a convex set $X \subset \mathbb{R}^n$ is

$$h_X(\mathbf{p}) = \min_{\mathbf{x} \in X} \langle \mathbf{p}, \mathbf{x} \rangle$$

- How to define the geometric mean of convex sets?
- The support function of a convex set $X \subset \mathbb{R}^n$ is

$$h_X(\mathbf{p}) = \min_{\mathbf{x} \in X} \langle \mathbf{p}, \mathbf{x}
angle$$

Definition (Boroczky et al. 2012, Milman and Rotem 2017) $Z = X^{\alpha} \otimes Y^{1-\alpha}$ is the convex set such that

$$h_Z = |h_X|^{\alpha} \cdot |h_Y|^{1-\alpha}$$

- How to define the geometric mean of convex sets?
- The support function of a convex set $X \subset \mathbb{R}^n$ is

$$h_X(\mathbf{p}) = \min_{\mathbf{x} \in X} \langle \mathbf{p}, \mathbf{x} \rangle$$

Definition (Boroczky et al. 2012, Milman and Rotem 2017) $Z = X^{\alpha} \otimes Y^{1-\alpha}$ is the convex set such that

$$h_Z = |h_X|^{\alpha} \cdot |h_Y|^{1-\alpha}$$

• E is the support function of the upper contour set

$$E(\mathbf{p}) = \min_{\mathbf{x} \in X} \langle \mathbf{p}, \mathbf{x} \rangle, \qquad X = \{\mathbf{x} \in \mathbb{R}^n_+ : u(\mathbf{x}) \ge 1\}$$

- How to define the geometric mean of convex sets?
- The support function of a convex set $X \subset \mathbb{R}^n$ is

$$h_X(\mathbf{p}) = \min_{\mathbf{x} \in X} \langle \mathbf{p}, \mathbf{x}
angle$$

Definition (Boroczky et al. 2012, Milman and Rotem 2017)

 $Z = X^{lpha} \otimes Y^{1-lpha}$ is the convex set such that

$$h_Z = |h_X|^{\alpha} \cdot |h_Y|^{1-\alpha}$$

• E is the support function of the upper contour set

$$E(\mathbf{p}) = \min_{\mathbf{x} \in X} \langle \mathbf{p}, \mathbf{x} \rangle, \qquad X = \{\mathbf{x} \in \mathbb{R}^n_+ : u(\mathbf{x}) \ge 1\}$$

Corollary

The upper contour set of the aggregate consumer is the geometric mean of individual upper contour sets

$$ig\{u_{ ext{aggr}}(\mathsf{x}) \geq 1ig\} = ig\{u_1(\mathsf{x}) \geq 1ig\}^{eta_1} \otimes ig\{u_2(\mathsf{x}) \geq 1ig\}^{eta_2} \otimes \ldots \otimes ig\{u_m(\mathsf{x}) \geq 1ig\}^{eta_k}$$

q

• **Geometry:** the geometric mean of the two orthogonal halfspaces is the set above the hyperbola

- **Geometry:** the geometric mean of the two orthogonal halfspaces is the set above the hyperbola
- Algebra: $\alpha \cdot \log p_1 + (1 \alpha) \cdot \log p_2 = \log \left(p_1^{\alpha} \cdot p_2^{1 \alpha} \right)$

- **Geometry:** the geometric mean of the two orthogonal halfspaces is the set above the hyperbola
- Algebra: $\alpha \cdot \log p_1 + (1 \alpha) \cdot \log p_2 = \log \left(p_1^{\alpha} \cdot p_2^{1 \alpha} \right)$
- Economics: two single-minded consumers generate the same demand as one Cobb-Douglas consumer u(x) = x₁^α · x₂^{1-α}

• An analyst observes market demand, aims to estimate a functional depending on individual characteristics

$$W = W\left[(\succeq_k, b_k)_{k=1,\ldots}\right]$$

• An analyst observes market demand, aims to estimate a functional depending on individual characteristics

$$W = W\left[(\succeq_k, b_k)_{k=1,\ldots}\right]$$

 \bullet Example: a change in welfare induced by a change in prices $p \to p'$

• An analyst observes market demand, aims to estimate a functional depending on individual characteristics

$$W = W \left[(\succeq_k, b_k)_{k=1,\ldots} \right]$$

- \bullet Example: a change in welfare induced by a change in prices $p \to p'$
- Representative consumer approach:
 - postulate a representative, use her utility as proxy for welfare
 - hence, market demand is a sufficient statistic

• An analyst observes market demand, aims to estimate a functional depending on individual characteristics

$$W = W \left[(\succeq_k, b_k)_{k=1,\ldots} \right]$$

- \bullet Example: a change in welfare induced by a change in prices $p \to p'$
- Representative consumer approach:
 - postulate a representative, use her utility as proxy for welfare
 - hence, market demand is a sufficient statistic

Observation

- The same market demand can be generated by different populations
- Compatible with a range of welfare levels $[\underline{W}, \overline{W}]$

• An analyst observes market demand, aims to estimate a functional depending on individual characteristics

 $W = W \left[(\succeq_k, b_k)_{k=1,\ldots} \right]$

- \bullet Example: a change in welfare induced by a change in prices $p \to p'$
- Representative consumer approach:
 - postulate a representative, use her utility as proxy for welfare
 - hence, market demand is a sufficient statistic

Observation

- The same market demand can be generated by different populations
- Compatible with a range of welfare levels $[\underline{W}, \overline{W}]$
- Get a non-trivial range even for the equivalent variation (W_{EV})

 $W_{EV} =$ [the change in incomes equivalent to the change in prices]

• An analyst observes market demand, aims to estimate a functional depending on individual characteristics

 $W = W \left[(\succeq_k, b_k)_{k=1,\ldots} \right]$

- \bullet Example: a change in welfare induced by a change in prices $p \to p'$
- Representative consumer approach:
 - postulate a representative, use her utility as proxy for welfare
 - hence, market demand is a sufficient statistic

Observation

- The same market demand can be generated by different populations
- Compatible with a range of welfare levels $[\underline{W}, \overline{W}]$
- Get a non-trivial range even for the equivalent variation (W_{EV})

 $W_{EV} =$ [the change in incomes equivalent to the change in prices]

• An analyst observes market demand, aims to estimate a functional depending on individual characteristics

 $W = W \left[(\succeq_k, b_k)_{k=1,\ldots} \right]$

- \bullet Example: a change in welfare induced by a change in prices $p \to p'$
- Representative consumer approach:
 - postulate a representative, use her utility as proxy for welfare
 - hence, market demand is a sufficient statistic

Observation

- The same market demand can be generated by different populations
- Compatible with a range of welfare levels $[\underline{W}, \overline{W}]$
- Get a non-trivial range even for the equivalent variation (W_{EV})

 $W_{EV} =$ [the change in incomes equivalent to the change in prices]

• An analyst observes market demand, aims to estimate a functional depending on individual characteristics

$$W = W \left[(\succeq_k, b_k)_{k=1,\ldots} \right]$$

- \bullet Example: a change in welfare induced by a change in prices $p \to p'$
- Representative consumer approach:
 - postulate a representative, use her utility as proxy for welfare
 - hence, market demand is a sufficient statistic

Observation

- The same market demand can be generated by different populations
- Compatible with a range of welfare levels $[\underline{W}, \overline{W}]$
- Get a non-trivial range even for the equivalent variation (W_{EV})

 $W_{EV} = [\text{the change in incomes equivalent to the change in prices}]$ $= \sum_{k} \left(b_k \cdot \frac{E_k(\mathbf{p})}{E_k(\mathbf{p}')} - b_k \right)$

Toy example

• a population \simeq a Cobb-Douglas consumer

$$u(\mathbf{p}) = x_1^{\alpha} \cdot x_2^{1-\alpha} \qquad E(\mathbf{p}) = p_1^{\alpha} \cdot p_2^{1-\alpha}$$

with $\alpha_{\rm aggr}=1/3$ and unit budget
$\bullet\,$ a population \simeq a Cobb-Douglas consumer

$$u(\mathbf{p}) = x_1^{\alpha} \cdot x_2^{1-\alpha}$$
 $E(\mathbf{p}) = p_1^{\alpha} \cdot p_2^{1-\alpha}$

with $lpha_{
m aggr}=1/3$ and unit budget

• price change $\mathbf{p} = (1, 64) \rightarrow \mathbf{p}' = (32, 32)$

• a population \simeq a Cobb-Douglas consumer

$$u(\mathbf{p}) = x_1^{\alpha} \cdot x_2^{1-\alpha}$$
 $E(\mathbf{p}) = p_1^{\alpha} \cdot p_2^{1-\alpha}$

with $\alpha_{\rm aggr}=1/3$ and unit budget

• price change $\textbf{p}=(1,64)\rightarrow \textbf{p}'=(32,32)$

Question: what is welfare change: $W_{EV} = \sum_{k} b_k \left(\frac{E_k(\mathbf{p})}{E_k(\mathbf{p}')} - 1 \right)$?

• a population \simeq a Cobb-Douglas consumer

$$u(\mathbf{p}) = x_1^{\alpha} \cdot x_2^{1-\alpha}$$
 $E(\mathbf{p}) = p_1^{\alpha} \cdot p_2^{1-\alpha}$

with $\alpha_{\rm aggr}=1/3$ and unit budget

• price change $\mathbf{p} = (1, 64) \rightarrow \mathbf{p}' = (32, 32)$

Question: what is welfare change: $W_{EV} = \sum_{k} b_k \left(\frac{E_k(\mathbf{p})}{E_k(\mathbf{p}')} - 1 \right)$?

 W_{EV} for a C-D agent with unit budget: $w(\alpha) = \frac{E(\mathbf{p})}{E(\mathbf{p}')} - 1 = 2 \cdot 2^{-6\alpha} - 1$

• a population \simeq a Cobb-Douglas consumer

$$u(\mathbf{p}) = x_1^{\alpha} \cdot x_2^{1-\alpha}$$
 $E(\mathbf{p}) = p_1^{\alpha} \cdot p_2^{1-\alpha}$

with $\alpha_{\rm aggr}=1/3$ and unit budget

• price change $\mathbf{p} = (1, 64) \rightarrow \mathbf{p}' = (32, 32)$

Question: what is welfare change: $W_{EV} = \sum_{k} b_k \left(\frac{E_k(\mathbf{p})}{E_k(\mathbf{p}')} - 1 \right)$?

 W_{EV} for a C-D agent with unit budget: $w(\alpha) = \frac{E(\mathbf{p})}{E(\mathbf{p}')} - 1 = 2 \cdot 2^{-6\alpha} - 1$

• a population \simeq a Cobb-Douglas consumer

$$u(\mathbf{p}) = x_1^{\alpha} \cdot x_2^{1-\alpha}$$
 $E(\mathbf{p}) = p_1^{\alpha} \cdot p_2^{1-\alpha}$

with $\alpha_{\rm aggr}=1/3$ and unit budget

• price change $\mathbf{p} = (1, 64) \rightarrow \mathbf{p}' = (32, 32)$

Question: what is welfare change: $W_{EV} = \sum_{k} b_k \left(\frac{E_k(\mathbf{p})}{E_k(\mathbf{p}')} - 1 \right)$?

 W_{EV} for a C-D agent with unit budget: $w(\alpha) = \frac{E(\mathbf{p})}{E(\mathbf{p}')} - 1 = 2 \cdot 2^{-6\alpha} - 1$

Representative-agent population: all agents are C-D with $\alpha_{aggr} = 1/3$

$$W_{EV} = w(\alpha_{aggr}) < 0$$

• a population \simeq a Cobb-Douglas consumer

$$u(\mathbf{p}) = x_1^{\alpha} \cdot x_2^{1-\alpha}$$
 $E(\mathbf{p}) = p_1^{\alpha} \cdot p_2^{1-\alpha}$

with $\alpha_{\rm aggr}=1/3$ and unit budget

• price change $\mathbf{p} = (1, 64) \rightarrow \mathbf{p}' = (32, 32)$

Question: what is welfare change: $W_{EV} = \sum_{k} b_k \left(\frac{E_k(\mathbf{p})}{E_k(\mathbf{p}')} - 1 \right)$?

 W_{EV} for a C-D agent with unit budget: $w(\alpha) = \frac{E(\mathbf{p})}{E(\mathbf{p}')} - 1 = 2 \cdot 2^{-6\alpha} - 1$

Representative-agent population: all agents are C-D with $\alpha_{aggr} = 1/3$

$$W_{EV} = w(\alpha_{aggr}) < 0$$

• a population \simeq a Cobb-Douglas consumer

$$u(\mathbf{p}) = x_1^{\alpha} \cdot x_2^{1-\alpha}$$
 $E(\mathbf{p}) = p_1^{\alpha} \cdot p_2^{1-\alpha}$

with $\alpha_{\rm aggr}=1/3$ and unit budget

• price change $\textbf{p}=(1,64)\rightarrow \textbf{p}'=(32,32)$

Question: what is welfare change: $W_{EV} = \sum_{k} b_k \left(\frac{E_k(\mathbf{p})}{E_k(\mathbf{p}')} - 1 \right)$?

 W_{EV} for a C-D agent with unit budget: $w(\alpha) = \frac{E(\mathbf{p})}{E(\mathbf{p}')} - 1 = 2 \cdot 2^{-6\alpha} - 1$

12

• a population \simeq a Cobb-Douglas consumer

$$u(\mathbf{p}) = x_1^{\alpha} \cdot x_2^{1-\alpha}$$
 $E(\mathbf{p}) = p_1^{\alpha} \cdot p_2^{1-\alpha}$

with $\alpha_{\rm aggr}=1/3$ and unit budget

• price change $\mathbf{p} = (1, 64) \rightarrow \mathbf{p}' = (32, 32)$

Question: what is welfare change: $W_{EV} = \sum_{k} b_k \left(\frac{E_k(\mathbf{p})}{E_k(\mathbf{p}')} - 1 \right)$?

 W_{EV} for a C-D agent with unit budget: $w(\alpha) = \frac{E(\mathbf{p})}{E(\mathbf{p}')} - 1 = 2 \cdot 2^{-6\alpha} - 1$

Representative-agent population: all agents are C-D with $\alpha_{aggr} = 1/3$

$$W_{EV} = w(\alpha_{aggr}) < 0$$

The most heterogeneous population: $\frac{2}{2}$ of agents have $\alpha = 0$ and 1/3 have $\alpha = 1$

$$W_{EV} = \frac{2}{3}w(0) + \frac{1}{3}w(1) > 0$$

Goal: find the range $W \in [\underline{W}, \overline{W}]$ compatible with aggregate behavior

Goal: find the range $W \in [\underline{W}, \overline{W}]$ compatible with aggregate behavior

• $\log E_{\rm aggr}$ is given

Goal: find the range $W \in [\underline{W}, \overline{W}]$ compatible with aggregate behavior

- $\log E_{\rm aggr}$ is given
- minimize/maximize *W* over representations

 $\log E_{\mathrm{aggr}} = \sum_k \beta_k \log E_k$

Goal: find the range $W \in [\underline{W}, \overline{W}]$ compatible with aggregate behavior

- $\log E_{\rm aggr}$ is given
- minimize/maximize *W* over representations

$$\log E_{\text{aggr}} = \sum_k \beta_k \log E_k$$

• Reduces to Bayesian Persuasion (Kamenica, Gentzkow 2011) for

$$W = \sum_k b_k \cdot w(\succeq_k)$$

Goal: find the range $W \in [\underline{W}, \overline{W}]$ compatible with aggregate behavior

- $\log E_{\rm aggr}$ is given
- minimize/maximize W over representations $\log E_{\text{aggr}} = \sum_{k} \beta_k \log E_k$

• Reduces to Bayesian Persuasion (Kamenica, Gentzkow 2011) for

$$W = \sum_k b_k \cdot w(\succeq_k)$$

Theorem 2

For \gtrsim_{aggr} , total budget *B*, individual preference domain \mathcal{D} ,

$$\overline{W} = B \cdot \text{conCAVification }_{\mathcal{D}} [w] (\succeq_{\text{aggr}})$$
$$\underline{W} = B \cdot \text{conVEXification }_{\mathcal{D}} [w] (\succeq_{\text{aggr}})$$

Theorem 2

For \gtrsim_{aggr} , total budget *B*, individual preference domain \mathcal{D} ,

$$\begin{split} \overline{W} &= B \cdot \operatorname{conCAVification}_{\mathcal{D}} \left[w \right] \left(\succsim_{\operatorname{aggr}} \right) \\ \underline{W} &= B \cdot \operatorname{conVEXification}_{\mathcal{D}} \left[w \right] \left(\succsim_{\operatorname{aggr}} \right) \end{split}$$

Theorem 2

For \gtrsim_{aggr} , total budget *B*, individual preference domain \mathcal{D} ,

$$\overline{W} = B \cdot \text{conCAVification }_{\mathcal{D}} [w] (\succeq_{\text{aggr}} \\ \underline{W} = B \cdot \text{conVEXification }_{\mathcal{D}} [w] (\succeq_{\text{aggr}} \\ \end{cases}$$

Economic implications:

• EV is convex \Rightarrow representative-agent approach gives W_{EV}

Theorem 2

For \gtrsim_{aggr} , total budget *B*, individual preference domain \mathcal{D} ,

$$\overline{W} = B \cdot \text{conCAVification }_{\mathcal{D}} [w] (\succeq_{\text{aggr}} \\ \underline{W} = B \cdot \text{conVEXification }_{\mathcal{D}} [w] (\succeq_{\text{aggr}} \\ \end{cases}$$

- EV is convex \Rightarrow representative-agent approach gives W_{EV}
 - possible explanation for low gains from trade (Arkolakis et al., 2012)

Theorem 2

For \gtrsim_{aggr} , total budget *B*, individual preference domain \mathcal{D} ,

 $\overline{W} = B \cdot \operatorname{conCAVification}_{\mathcal{D}} [w] (\succeq_{\operatorname{aggr}})$ $\underline{W} = B \cdot \operatorname{conVEXification}_{\mathcal{D}} [w] (\succeq_{\operatorname{aggr}})$

- EV is convex \Rightarrow representative-agent approach gives $\underline{W_{EV}}$
 - possible explanation for low gains from trade (Arkolakis et al., 2012)
- $\overline{W_{EV}}$ corresponds to the maximally diverse tastes

Theorem 2

For \gtrsim_{aggr} , total budget *B*, individual preference domain D,

 $\overline{W} = B \cdot \operatorname{conCAVification}_{\mathcal{D}} [w] (\succeq_{\operatorname{aggr}})$ $\underline{W} = B \cdot \operatorname{conVEXification}_{\mathcal{D}} [w] (\succeq_{\operatorname{aggr}})$

- EV is convex \Rightarrow representative-agent approach gives $\underline{W_{EV}}$
 - possible explanation for low gains from trade (Arkolakis et al., 2012)
- $\overline{W_{EV}}$ corresponds to the maximally diverse tastes
 - can be computed explicitly when we know extreme points details

Theorem 2

For \gtrsim_{aggr} , total budget *B*, individual preference domain \mathcal{D} ,

 $\overline{W} = B \cdot \text{conCAVification}_{\mathcal{D}} [w] (\succeq_{\text{aggr}})$ $\underline{W} = B \cdot \text{conVEXification}_{\mathcal{D}} [w] (\succeq_{\text{aggr}})$

- EV is convex \Rightarrow representative-agent approach gives $\underline{W_{EV}}$
 - possible explanation for low gains from trade (Arkolakis et al., 2012)
- $\overline{W_{EV}}$ corresponds to the maximally diverse tastes
 - can be computed explicitly when we know extreme points details
- The range $\overline{W_{EV}} \underline{W_{EV}}$ is of the order of $\|\mathbf{p} \mathbf{p}'\|^2$

Theorem 2

For \succeq_{aggr} , total budget *B*, individual preference domain \mathcal{D} ,

$$\begin{split} \overline{W} &= B \cdot \operatorname{conCAVification}_{\mathcal{D}} \left[w \right] \left(\succsim_{\operatorname{aggr}} \right) \\ \underline{W} &= B \cdot \operatorname{conVEXification}_{\mathcal{D}} \left[w \right] \left(\succsim_{\operatorname{aggr}} \right) \end{split}$$

- EV is convex \Rightarrow representative-agent approach gives $\underline{W_{EV}}$
 - possible explanation for low gains from trade (Arkolakis et al., 2012)
- $\overline{W_{EV}}$ corresponds to the maximally diverse tastes
 - can be computed explicitly when we know extreme points details
- The range $\overline{W_{EV}} \underline{W_{EV}}$ is of the order of $\|\mathbf{p} \mathbf{p}'\|^2$
 - second-order concern unless the price change is big

Definition

the completion of $\ensuremath{\mathcal{D}}$ is the closure of the set of all preferences that can be obtained by aggregation

Definition

the completion of $\ensuremath{\mathcal{D}}$ is the closure of the set of all preferences that can be obtained by aggregation

• Cobb-Douglas = the completion of single-minded pref. $u_i(\mathbf{x}) = x_i$

Definition

the completion of $\ensuremath{\mathcal{D}}$ is the closure of the set of all preferences that can be obtained by aggregation

• Cobb-Douglas = the completion of single-minded pref. $u_i(\mathbf{x}) = x_i$

Corollary of Theorem 1

the completion of $\ensuremath{\mathcal{D}}$ consists of all preferences with LEF from the convex hull

$$\operatorname{conv}\left\{ \mathsf{ln}\, E_{\succeq}\,:\,\succeq\in\mathcal{D}\right\}$$

Definition

the completion of $\ensuremath{\mathcal{D}}$ is the closure of the set of all preferences that can be obtained by aggregation

• Cobb-Douglas = the completion of single-minded pref. $u_i(\mathbf{x}) = x_i$

Corollary of Theorem 1

the completion of $\ensuremath{\mathcal{D}}$ consists of all preferences with LEF from the convex hull

$$\operatorname{conv}\left\{ \mathsf{In}\, E_{\succeq}\,:\,\succeq\in\mathcal{D}\right\}$$

• A domain is **aggregation-invariant** if any population behaves like a single agent from the same domain

Definition

the completion of $\ensuremath{\mathcal{D}}$ is the closure of the set of all preferences that can be obtained by aggregation

• Cobb-Douglas = the completion of single-minded pref. $u_i(\mathbf{x}) = x_i$

Corollary of Theorem 1

the completion of $\ensuremath{\mathcal{D}}$ consists of all preferences with LEF from the convex hull

$$\operatorname{conv}\left\{ \mathsf{ln}\, E_{\succeq}\,:\,\succeq\in\mathcal{D}\right\}$$

- A domain is **aggregation-invariant** if any population behaves like a single agent from the same domain
- The completion of ${\cal D}=$ the minimal invariant domain containing ${\cal D}=$ 14

Finitely-generated domains

 For D = {≿1,..., ≿m}, the completion consists of all preferences with LEF

ln
$$E = \sum_{k=1}^m eta_k \cdot \ln E_k$$

Finitely-generated domains

 For D = {≿1,..., ≿m}, the completion consists of all preferences with LEF

$$\ln E = \sum_{k=1}^{m} \beta_k \cdot \ln E_k$$

• A recipe for invariant parametric domains

Finitely-generated domains

 For D = {≿1,..., ≿m}, the completion consists of all preferences with LEF

$$\ln E = \sum_{k=1}^{m} \beta_k \cdot \ln E_k$$

• A recipe for invariant parametric domains

Linear preferences $u(\mathbf{x}) = \langle \mathbf{v}, \mathbf{x} \rangle$ over *n* goods

Finitely-generated domains

 For D = {≿1,..., ≿m}, the completion consists of all preferences with LEF

$$\ln E = \sum_{k=1}^{m} \beta_k \cdot \ln E_k$$

• A recipe for invariant parametric domains

Linear preferences $u(\mathbf{x}) = \langle \mathbf{v}, \mathbf{x} \rangle$ over *n* goods

- n = 2: the completion = domain of substitutes details
 - domain of substitutes $\Leftrightarrow D_i(\mathbf{p})$ increases in $\mathbf{p}_{-\mathbf{i}}$

Finitely-generated domains

 For D = {≿1,..., ≿m}, the completion consists of all preferences with LEF

$$\ln E = \sum_{k=1}^{m} \beta_k \cdot \ln E_k$$

• A recipe for invariant parametric domains

Linear preferences $u(\mathbf{x}) = \langle \mathbf{v}, \mathbf{x} \rangle$ over *n* goods

- n = 2: the completion = domain of substitutes details
 - domain of substitutes $\Leftrightarrow D_i(\mathbf{p})$ increases in $\mathbf{p}_{-\mathbf{i}}$
- n ≥ 3: extra constraints on demand's cross-derivatives (related to ARUM) details

Finitely-generated domains

 For D = {≿1,..., ≿m}, the completion consists of all preferences with LEF

$$\ln E = \sum_{k=1}^{m} \beta_k \cdot \ln E_k$$

• A recipe for invariant parametric domains

Linear preferences $u(\mathbf{x}) = \langle \mathbf{v}, \mathbf{x} \rangle$ over *n* goods

- n = 2: the completion = domain of substitutes details
 - domain of substitutes $\Leftrightarrow D_i(\mathbf{p})$ increases in $\mathbf{p}_{-\mathbf{i}}$
- n ≥ 3: extra constraints on demand's cross-derivatives (related to ARUM)

Leontief preferences $u(\mathbf{x}) = \min_i x_i / v_i$ details

Finitely-generated domains

 For D = {≿1,..., ≿m}, the completion consists of all preferences with LEF

$$\ln E = \sum_{k=1}^{m} \beta_k \cdot \ln E_k$$

• A recipe for invariant parametric domains

Linear preferences $u(\mathbf{x}) = \langle \mathbf{v}, \mathbf{x} \rangle$ over *n* goods

- n = 2: the completion = domain of substitutes details
 - domain of substitutes $\Leftrightarrow D_i(\mathbf{p})$ increases in $\mathbf{p}_{-\mathbf{i}}$
- n ≥ 3: extra constraints on demand's cross-derivatives (related to ARUM)

Leontief preferences $u(\mathbf{x}) = \min_i x_i / v_i$ details

 The completion ⊂ all complements with a complete-monotonicity constraint on the demand

Finitely-generated domains

 For D = {≿1,..., ≿m}, the completion consists of all preferences with LEF

$$\ln E = \sum_{k=1}^{m} \beta_k \cdot \ln E_k$$

• A recipe for invariant parametric domains

Linear preferences $u(\mathbf{x}) = \langle \mathbf{v}, \mathbf{x} \rangle$ over *n* goods

- n = 2: the completion = domain of substitutes details
 - domain of substitutes $\Leftrightarrow D_i(\mathbf{p})$ increases in $\mathbf{p}_{-\mathbf{i}}$
- n ≥ 3: extra constraints on demand's cross-derivatives (related to ARUM)

Leontief preferences $u(\mathbf{x}) = \min_i x_i / v_i$ details

 The completion ⊂ all complements with a complete-monotonicity constraint on the demand

Conclusion

Parameters are not aligned with aggregation \Rightarrow large completion

Pseudo-market mechanisms

• Pseudo-markets aka CEEI are mechanisms for fair allocation without transfers (Varian 1974, Hylland & Zeckhauser 1979)

Pseudo-market mechanisms

- **Pseudo-markets aka CEEI** are mechanisms for fair allocation without transfers (Varian 1974, Hylland & Zeckhauser 1979)
- Example (Budish et al. 2017):

How Wharton allocates seats in over-demanded courses?

- **Pseudo-markets aka CEEI** are mechanisms for fair allocation without transfers (Varian 1974, Hylland & Zeckhauser 1979)
- **Example** (Budish et al. 2017): How Wharton allocates seats in over-demanded courses?
 - students submit preferences to a "black box"

- **Pseudo-markets aka CEEI** are mechanisms for fair allocation without transfers (Varian 1974, Hylland & Zeckhauser 1979)
- **Example** (Budish et al. 2017): How Wharton allocates seats in over-demanded courses?
 - students submit preferences to a "black box"
 - the box simulates an exchange economy with equal endowments

- **Pseudo-markets aka CEEI** are mechanisms for fair allocation without transfers (Varian 1974, Hylland & Zeckhauser 1979)
- **Example** (Budish et al. 2017): How Wharton allocates seats in over-demanded courses?
 - students submit preferences to a "black box"
 - the box simulates an exchange economy with equal endowments
 - · the equilibrium allocation tells who gets what

- **Pseudo-markets aka CEEI** are mechanisms for fair allocation without transfers (Varian 1974, Hylland & Zeckhauser 1979)
- **Example** (Budish et al. 2017): How Wharton allocates seats in over-demanded courses?
 - students submit preferences to a "black box"
 - the box simulates an exchange economy with equal endowments
 - the equilibrium allocation tells who gets what

- Outstanding fairness and efficiency properties in a various settings
 - Many applications: Ashlagi & Shi (2016), Bogomolnaia et al. (2017), Devanur et al. (2018), Echenique et al. (2021), Conitzer et al. (2022), Gao & Kroer (2022), Gul & Pesendorfer (2022)

- **Pseudo-markets aka CEEI** are mechanisms for fair allocation without transfers (Varian 1974, Hylland & Zeckhauser 1979)
- **Example** (Budish et al. 2017): How Wharton allocates seats in over-demanded courses?
 - students submit preferences to a "black box"
 - the box simulates an exchange economy with equal endowments
 - the equilibrium allocation tells who gets what

- Outstanding fairness and efficiency properties in a various settings
 - Many applications: Ashlagi & Shi (2016), Bogomolnaia et al. (2017), Devanur et al. (2018), Echenique et al. (2021), Conitzer et al. (2022), Gao & Kroer (2022), Gul & Pesendorfer (2022)
- Main criticism: computationally challenging

- **Pseudo-markets aka CEEI** are mechanisms for fair allocation without transfers (Varian 1974, Hylland & Zeckhauser 1979)
- **Example** (Budish et al. 2017): How Wharton allocates seats in over-demanded courses?
 - students submit preferences to a "black box"
 - the box simulates an exchange economy with equal endowments
 - the equilibrium allocation tells who gets what

- Outstanding fairness and efficiency properties in a various settings
 - Many applications: Ashlagi & Shi (2016), Bogomolnaia et al. (2017), Devanur et al. (2018), Echenique et al. (2021), Conitzer et al. (2022), Gao & Kroer (2022), Gul & Pesendorfer (2022)
- Main criticism: computationally challenging
- Our goal: find preference domains where easy to compute

• Consumers $\succsim_1, \ldots, \succsim_m$ with equal incomes $b_1 = \ldots = b_m = b$

A basic exchange economy (aka Fisher market in algorithmic econ.):

- Consumers $\succsim_1, \ldots, \succsim_m$ with equal incomes $b_1 = \ldots = b_m = b$
- Fixed supply $\mathbf{x} \in \mathbb{R}^n_{++}$

A basic exchange economy (aka Fisher market in algorithmic econ.):

- Consumers $\succsim_1, \ldots, \succsim_m$ with equal incomes $b_1 = \ldots = b_m = b$
- Fixed supply $\mathbf{x} \in \mathbb{R}^n_{++}$

Definition

 $(x_1,\ldots x_m,p)$ is an equilibrium if $x_k\in {\it D}_k(p,b)$ and $x_1+\ldots x_m=x$

A basic exchange economy (aka Fisher market in algorithmic econ.):

- Consumers $\succsim_1, \ldots, \succsim_m$ with equal incomes $b_1 = \ldots = b_m = b$
- Fixed supply $\mathbf{x} \in \mathbb{R}^n_{++}$

Definition

 $(x_1,\ldots x_m,p)$ is an equilibrium if $x_k\in {\it D}_k(p,b)$ and $x_1+\ldots x_m=x$

- Computing equilibrium is challenging even for linear preferences
 - e.g., Devanur et al. (2002), Orlin (2010), Vegh (2012)

- Consumers $\succsim_1, \ldots, \succsim_m$ with equal incomes $b_1 = \ldots = b_m = b$
- Fixed supply $\mathbf{x} \in \mathbb{R}^n_{++}$

Definition

 $(x_1,\ldots x_m,p)$ is an equilibrium if $x_k\in {\it D}_k(p,b)$ and $x_1+\ldots x_m=x$

- Computing equilibrium is challenging even for linear preferences
 - e.g., Devanur et al. (2002), Orlin (2010), Vegh (2012)

Theorem (informal)

 \bullet Complexity in ${\mathcal D}$ is lower-bounded by that in the completion

- Consumers $\succsim_1, \ldots, \succsim_m$ with equal incomes $b_1 = \ldots = b_m = b$
- Fixed supply $\mathbf{x} \in \mathbb{R}^n_{++}$

Definition

 $(x_1,\ldots x_m,p)$ is an equilibrium if $x_k\in {\it D}_k(p,b)$ and $x_1+\ldots x_m=x$

- Computing equilibrium is challenging even for linear preferences
 - e.g., Devanur et al. (2002), Orlin (2010), Vegh (2012)

Theorem (informal)

- $\bullet\,$ Complexity in ${\mathcal D}$ is lower-bounded by that in the completion
- $\bullet\,$ For finitely-generated $\mathcal{D},$ equilibrium can be computed efficiently

- Consumers $\succsim_1, \ldots, \succsim_m$ with equal incomes $b_1 = \ldots = b_m = b$
- Fixed supply $\mathbf{x} \in \mathbb{R}^n_{++}$

Definition

 $(x_1,\ldots x_m,p)$ is an equilibrium if $x_k\in {\it D}_k(p,b)$ and $x_1+\ldots x_m=x$

- Computing equilibrium is challenging even for linear preferences
 - e.g., Devanur et al. (2002), Orlin (2010), Vegh (2012)

Theorem (informal)

- $\bullet\,$ Complexity in ${\mathcal D}$ is lower-bounded by that in the completion
- For finitely-generated \mathcal{D} , equilibrium can be computed efficiently
- The linear domain has large completion \Rightarrow hardness

- Consumers $\succsim_1, \ldots, \succsim_m$ with equal incomes $b_1 = \ldots = b_m = b$
- Fixed supply $\mathbf{x} \in \mathbb{R}^n_{++}$

Definition

 $(x_1,\ldots x_m,p)$ is an equilibrium if $x_k\in {\it D}_k(p,b)$ and $x_1+\ldots x_m=x$

- Computing equilibrium is challenging even for linear preferences
 - e.g., Devanur et al. (2002), Orlin (2010), Vegh (2012)

Theorem (informal)

- $\bullet\,$ Complexity in ${\mathcal D}$ is lower-bounded by that in the completion
- For finitely-generated \mathcal{D} , equilibrium can be computed efficiently
- The linear domain has large completion \Rightarrow hardness

Conclusion

Use finitely-generated $\ensuremath{\mathcal{D}}$ as bidding languages in large-scale applications

17

• Aggregate behavior may be compatible with various populations

- Aggregate behavior may be compatible with various populations
- What are domains \mathcal{D} of individual preferences s.t. aggregate demand is a sufficient statistic for preference distribution?

- Aggregate behavior may be compatible with various populations
- What are domains \mathcal{D} of individual preferences s.t. aggregate demand is a sufficient statistic for preference distribution?
 - **Example:** single-minded preferences $u_i(\mathbf{x}) = x_i$, i = 1, ..., n

- Aggregate behavior may be compatible with various populations
- What are domains \mathcal{D} of individual preferences s.t. aggregate demand is a sufficient statistic for preference distribution?
 - **Example:** single-minded preferences $u_i(\mathbf{x}) = x_i$, i = 1, ..., n
- A convex set is a **simplex** if each point can be represented as an average of extreme points in a unique way

- Aggregate behavior may be compatible with various populations
- What are domains \mathcal{D} of individual preferences s.t. aggregate demand is a sufficient statistic for preference distribution?
 - **Example:** single-minded preferences $u_i(\mathbf{x}) = x_i$, i = 1, ..., n
- A convex set is a **simplex** if each point can be represented as an average of extreme points in a unique way

Corollary of Theorem 1

Aggregate behavior is a sufficient statistic for preference distribution $\Leftrightarrow \mathcal{D}$ is the set of extreme points of a simplex in the LEF space

- Aggregate behavior may be compatible with various populations
- What are domains \mathcal{D} of individual preferences s.t. aggregate demand is a sufficient statistic for preference distribution?
 - **Example:** single-minded preferences $u_i(\mathbf{x}) = x_i$, i = 1, ..., n
- A convex set is a **simplex** if each point can be represented as an average of extreme points in a unique way

Corollary of Theorem 1

Aggregate behavior is a sufficient statistic for preference distribution $\Leftrightarrow \mathcal{D}$ is the set of extreme points of a simplex in the LEF space

Linear for
$$n \ge 2$$
 goods

Leontief for n = 2 goods

Examples:

18

Key takeaways

To handle aggregation, represent preferences by LEF

- All preferences \simeq a compact convex set
- Aggregation \simeq weighted average
- Optimization over populations with given aggregate behavior \simeq Bayesian persuasion
- Domain completion \simeq convex hull
- Domain completion reflects complexity of equilibrium
- Indecomposable preferences \simeq extreme points

Key takeaways

To handle aggregation, represent preferences by LEF

- All preferences \simeq a compact convex set
- Aggregation \simeq weighted average
- Optimization over populations with given aggregate behavior \simeq Bayesian persuasion
- Domain completion \simeq convex hull
- Domain completion reflects complexity of equilibrium
- Indecomposable preferences \simeq extreme points

This project \subset a broader agenda on connections between information economics and economic design

Key takeaways

To handle aggregation, represent preferences by LEF

- All preferences \simeq a compact convex set
- Aggregation \simeq weighted average
- Optimization over populations with given aggregate behavior \simeq Bayesian persuasion
- Domain completion \simeq convex hull
- Domain completion reflects complexity of equilibrium
- Indecomposable preferences \simeq extreme points

This project \subset a broader agenda on connections between information economics and economic design

A preference ≿∈ D is indecomposable in D if it cannot be represented as an aggregation of ≿1, ≿2∈ D with ≿1≠≿2

- A preference ≿∈ D is indecomposable in D if it cannot be represented as an aggregation of ≿1, ≿2∈ D with ≿1≠≿2
 - Linear and Leontief are indecomposable in all homothetic

- A preference ≿∈ D is indecomposable in D if it cannot be represented as an aggregation of ≿1, ≿2∈ D with ≿1≠≿2
 - Linear and Leontief are indecomposable in all homothetic
- Correspond to extreme points of $\{ \ln E_{\succeq} : \succeq \mathcal{D} \}$

- A preference ≿∈ D is indecomposable in D if it cannot be represented as an aggregation of ≿1, ≿2∈ D with ≿1≠≿2
 - Linear and Leontief are indecomposable in all homothetic
- Correspond to extreme points of $\{\ln E_{\succeq} : \succeq \in \mathcal{D}\}$

Example: indecomposable preferences over 2 goods

All homothetic

- A preference ≿∈ D is indecomposable in D if it cannot be represented as an aggregation of ≿1, ≿2∈ D with ≿1≠≿2
 - Linear and Leontief are indecomposable in all homothetic
- Correspond to extreme points of $\{\ln E_{\succeq} : \succeq \in \mathcal{D}\}$

- A preference ≿∈ D is indecomposable in D if it cannot be represented as an aggregation of ≿1, ≿2∈ D with ≿1≠≿2
 - Linear and Leontief are indecomposable in all homothetic
- Correspond to extreme points of $\{ \ln E_{\succ} : \succeq \in D \}$

- A preference ≿∈ D is indecomposable in D if it cannot be represented as an aggregation of ≿1, ≿2∈ D with ≿1≠≿2
 - Linear and Leontief are indecomposable in all homothetic
- Correspond to extreme points of $\{ \ln E_{\succ} : \succeq \in \mathcal{D} \}$

 Any aggregate preference of a population from D can be generated by a population with indecomposable preferences ⇐ Choquet theory

- A preference ≿∈ D is indecomposable in D if it cannot be represented as an aggregation of ≿1, ≿2∈ D with ≿1≠≿2
 - Linear and Leontief are indecomposable in all homothetic
- Correspond to extreme points of $\{ \ln E_{\succ} : \succeq \in \mathcal{D} \}$

 Any aggregate preference of a population from D can be generated by a population with indecomposable preferences ⇐ Choquet theory
Conclusion
Indecomposable preferences are "elementary building blocks"

Example: linear preferences over 2 goods **Lack**

•
$$u(\mathbf{x}) = v_1 \cdot x_1 + v_2 \cdot x_2$$

Example: linear preferences over 2 goods **Lack**

•
$$u(\mathbf{x}) = v_1 \cdot x_1 + v_2 \cdot x_2, \quad E(\mathbf{p}) = \min \{p_1/v_1, p_2/v_2\}$$

Example: linear preferences over 2 goods **Lack**

- $u(\mathbf{x}) = v_1 \cdot x_1 + v_2 \cdot x_2, \qquad E(\mathbf{p}) = \min \{p_1/v_1, p_2/v_2\}$
- The completion = preferences s.t.

$$\log E(\mathbf{p}) = \int_{\mathbb{R}^2_+} \log \left(\min \left\{ p_1 / v_1, \, p_2 / v_2 \right\} \right) \mathrm{d}\mu(v_1, v_2)$$

Example: linear preferences over 2 goods **back**

- $u(\mathbf{x}) = v_1 \cdot x_1 + v_2 \cdot x_2, \qquad E(\mathbf{p}) = \min \{p_1/v_1, p_2/v_2\}$
- The completion = preferences s.t.

$$\log E(\mathbf{p}) = \int_{\mathbb{R}^2_+} \log \left(\min \{ p_1/v_1, \, p_2/v_2 \} \right) \mathrm{d}\mu(v_1, v_2)$$

• What is the image of all probability measures under this integral operator?
- $u(\mathbf{x}) = v_1 \cdot x_1 + v_2 \cdot x_2, \qquad E(\mathbf{p}) = \min \{p_1/v_1, p_2/v_2\}$
- The completion = preferences s.t.

$$\log E(\mathbf{p}) = \int_{\mathbb{R}^2_+} \log \left(\min \left\{ p_1 / v_1, \ p_2 / v_2 \right\} \right) d\mu(v_1, v_2)$$

- What is the image of all probability measures under this integral operator?
- **Definition:** goods are substitutes if D_i is increasing in p_{-i}

- $u(\mathbf{x}) = v_1 \cdot x_1 + v_2 \cdot x_2, \qquad E(\mathbf{p}) = \min \{p_1/v_1, p_2/v_2\}$
- The completion = preferences s.t.

$$\log E(\mathbf{p}) = \int_{\mathbb{R}^2_+} \log \left(\min \{ p_1/v_1, \ p_2/v_2 \} \right) d\mu(v_1, v_2)$$

- What is the image of all probability measures under this integral operator?
- **Definition:** goods are substitutes if D_i is increasing in p_{-i}

Proposition

The completion of linear over 2 goods = the domain of substitutes

- $u(\mathbf{x}) = v_1 \cdot x_1 + v_2 \cdot x_2, \qquad E(\mathbf{p}) = \min \{p_1/v_1, p_2/v_2\}$
- The completion = preferences s.t.

$$\log E(\mathbf{p}) = \int_{\mathbb{R}^2_+} \log \left(\min \{ p_1/v_1, \ p_2/v_2 \} \right) \mathrm{d}\mu(v_1, v_2)$$

- What is the image of all probability measures under this integral operator?
- **Definition:** goods are substitutes if D_i is increasing in p_{-i}

Proposition

The completion of linear over 2 goods = the domain of substitutes

 E pins down μ, i.e., the market demand is a sufficient statistic for the distribution of linear preferences over the population

- $u(\mathbf{x}) = v_1 \cdot x_1 + v_2 \cdot x_2, \qquad E(\mathbf{p}) = \min \{p_1/v_1, p_2/v_2\}$
- The completion = preferences s.t.

$$\log E(\mathbf{p}) = \int_{\mathbb{R}^2_+} \log \left(\min \{ p_1/v_1, \ p_2/v_2 \} \right) \mathrm{d}\mu(v_1, v_2)$$

- What is the image of all probability measures under this integral operator?
- **Definition:** goods are substitutes if D_i is increasing in p_{-i}

Proposition

The completion of linear over 2 goods = the domain of substitutes

- E pins down μ, i.e., the market demand is a sufficient statistic for the distribution of linear preferences over the population
 - Geometric meaning: the domain of substitutes is a "simplex" and linear preferences are extreme points

• the completion = preferences s.t. LEF satisfies

$$\log E(\mathbf{p}) = \int_{\mathbb{R}^n_+} \log \left(\min_i \frac{p_i}{v_i} \right) \mathrm{d}\mu(\mathbf{v})$$

 \bullet the completion = preferences s.t. LEF satisfies

$$\log E(\mathbf{p}) = \int_{\mathbb{R}^n_+} \log \left(\min_i \frac{p_i}{v_i} \right) \mathrm{d}\mu(\mathbf{v})$$

ARUM: a decision-maker chooses an alternative with the highest value w_i + ε_i (deterministic + stochastic components).

 \bullet the completion = preferences s.t. LEF satisfies

$$\log E(\mathbf{p}) = \int_{\mathbb{R}^n_+} \log \left(\min_i \frac{p_i}{v_i} \right) \mathrm{d}\mu(\mathbf{v})$$

 ARUM: a decision-maker chooses an alternative with the highest value w_i + ε_i (deterministic + stochastic components). Her utility:

$$U(\mathbf{w}) = \mathbb{E}\left[\max_{i=1,\dots,n}(w_i + \varepsilon_i)\right].$$

• the completion = preferences s.t. LEF satisfies

$$\log E(\mathbf{p}) = \int_{\mathbb{R}^n_+} \log \left(\min_i \frac{p_i}{v_i} \right) \mathrm{d}\mu(\mathbf{v})$$

 ARUM: a decision-maker chooses an alternative with the highest value w_i + ε_i (deterministic + stochastic components). Her utility:

$$U(\mathbf{w}) = \mathbb{E}\left[\max_{i=1,\dots,n}(w_i + \varepsilon_i)\right]$$

 For any ARUM and any subset of distinct alternatives j₁, j₂,..., j_q with q ≤ n, the following inequality holds

$$\frac{\partial^{q} U(\mathbf{w})}{\partial w_{j_{1}} \partial w_{j_{2}} \dots \partial w_{j_{q}}} \cdot (-1)^{q} \leq 0$$

• the completion = preferences s.t. LEF satisfies

$$\log E(\mathbf{p}) = \int_{\mathbb{R}^n_+} \log \left(\min_i \frac{p_i}{v_i} \right) d\mu(\mathbf{v})$$

 ARUM: a decision-maker chooses an alternative with the highest value w_i + ε_i (deterministic + stochastic components). Her utility:

$$U(\mathbf{w}) = \mathbb{E}\left[\max_{i=1,\dots,n}(w_i + \varepsilon_i)\right]$$

For any ARUM and any subset of distinct alternatives j₁, j₂,..., j_q with q ≤ n, the following inequality holds

$$\frac{\partial^{q} U(\mathbf{w})}{\partial w_{j_{1}} \partial w_{j_{2}} \dots \partial w_{j_{q}}} \cdot (-1)^{q} \leq 0$$

• Interpret μ as a distribution of preferences of a single decision-maker

• the completion = preferences s.t. LEF satisfies

$$\log E(\mathbf{p}) = \int_{\mathbb{R}^n_+} \log \left(\min_i \frac{p_i}{v_i} \right) d\mu(\mathbf{v})$$

 ARUM: a decision-maker chooses an alternative with the highest value w_i + ε_i (deterministic + stochastic components). Her utility:

$$U(\mathbf{w}) = \mathbb{E}\left[\max_{i=1,\dots,n} (w_i + \varepsilon_i)\right].$$

For any ARUM and any subset of distinct alternatives j₁, j₂,..., j_q with q ≤ n, the following inequality holds

$$\frac{\partial^{q} U(\mathbf{w})}{\partial w_{j_{1}} \partial w_{j_{2}} \dots \partial w_{j_{q}}} \cdot (-1)^{q} \leq 0$$

• Interpret μ as a distribution of preferences of a single decision-maker

Corollary

• the completion= { \succeq : \exists ARUM $U(\mathbf{w}) = -\log (E(e^{-w_1}, \dots, e^{-w_n}))$

• the completion = preferences s.t. LEF satisfies

$$\log E(\mathbf{p}) = \int_{\mathbb{R}^n_+} \log \left(\min_i \frac{p_i}{v_i} \right) d\mu(\mathbf{v})$$

 ARUM: a decision-maker chooses an alternative with the highest value w_i + ε_i (deterministic + stochastic components). Her utility:

$$U(\mathbf{w}) = \mathbb{E}\left[\max_{i=1,\dots,n} (w_i + \varepsilon_i)\right].$$

For any ARUM and any subset of distinct alternatives j₁, j₂,..., j_q with q ≤ n, the following inequality holds

$$\frac{\partial^{q} U(\mathbf{w})}{\partial w_{j_{1}} \partial w_{j_{2}} \dots \partial w_{j_{q}}} \cdot (-1)^{q} \leq 0$$

• Interpret μ as a distribution of preferences of a single decision-maker

Corollary

- the completion= { \succeq : \exists ARUM $U(\mathbf{w}) = -\log (E(e^{-w_1}, \dots, e^{-w_n}))$
- the completion \neq the domain of substitutes for $n \ge 3$

• The domain of Leontief preferences over n = 2 goods

 $u(\mathbf{x}) = \min \{x_1/v_1, x_2/v_2\},\$

• The domain of Leontief preferences over n = 2 goods

 $u(\mathbf{x}) = \min \{x_1/v_1, x_2/v_2\}, \qquad E(\mathbf{p}) = v_1 \cdot p_1 + v_2 \cdot p_2$

• The domain of Leontief preferences over n = 2 goods

 $u(\mathbf{x}) = \min \{x_1/v_1, x_2/v_2\}, \qquad E(\mathbf{p}) = v_1 \cdot p_1 + v_2 \cdot p_2$

exhibit complementarity: D_i is decreasing in p_{-i}

• The domain of Leontief preferences over n = 2 goods

$$u(\mathbf{x}) = \min \{x_1/v_1, x_2/v_2\}, \qquad E(\mathbf{p}) = v_1 \cdot p_1 + v_2 \cdot p_2$$

exhibit complementarity: D_i is decreasing in p_{-i}

• the completion = preferences s.t. expenditure function satisfies

$$\log E(\mathbf{p}) = \int_{\mathbb{R}^2_+} \log \left(v_1 \cdot p_1 + v_2 \cdot p_2 \right) \mathrm{d}\mu(v_1, v_2)$$

• The domain of Leontief preferences over n = 2 goods

$$u(\mathbf{x}) = \min \{x_1/v_1, x_2/v_2\}, \qquad E(\mathbf{p}) = v_1 \cdot p_1 + v_2 \cdot p_2$$

exhibit complementarity: D_i is decreasing in p_{-i}

• the completion = preferences s.t. expenditure function satisfies

$$\log E(\mathbf{p}) = \int_{\mathbb{R}^2_+} \log \left(v_1 \cdot p_1 + v_2 \cdot p_2 \right) \mathrm{d}\mu(v_1, v_2)$$

• *E* is infinitely smooth

• The domain of Leontief preferences over n = 2 goods

$$u(\mathbf{x}) = \min \{x_1/v_1, x_2/v_2\}, \qquad E(\mathbf{p}) = v_1 \cdot p_1 + v_2 \cdot p_2$$

exhibit complementarity: D_i is decreasing in p_{-i}

• the completion = preferences s.t. expenditure function satisfies

$$\log E(\mathbf{p}) = \int_{\mathbb{R}^2_+} \log \left(v_1 \cdot p_1 + v_2 \cdot p_2 \right) \mathrm{d}\mu(v_1, v_2)$$

• *E* is infinitely smooth \Rightarrow the completion \neq the complements domain

• The domain of Leontief preferences over n = 2 goods

$$u(\mathbf{x}) = \min \{x_1/v_1, x_2/v_2\}, \qquad E(\mathbf{p}) = v_1 \cdot p_1 + v_2 \cdot p_2$$

exhibit complementarity: D_i is decreasing in p_{-i}

• the completion = preferences s.t. expenditure function satisfies

$$\log E(\mathbf{p}) = \int_{\mathbb{R}^2_+} \log \left(v_1 \cdot p_1 + v_2 \cdot p_2 \right) \mathrm{d}\mu(v_1, v_2)$$

- *E* is infinitely smooth \Rightarrow the completion \neq the complements domain
 - E.g., $u(x_1, x_2) = \min \{\sqrt{x_1 \cdot x_2}, x_1\}$ is beyond

• The domain of Leontief preferences over n = 2 goods

$$u(\mathbf{x}) = \min \{x_1/v_1, x_2/v_2\}, \qquad E(\mathbf{p}) = v_1 \cdot p_1 + v_2 \cdot p_2$$

exhibit complementarity: D_i is decreasing in p_{-i}

• the completion = preferences s.t. expenditure function satisfies

$$\log E(\mathbf{p}) = \int_{\mathbb{R}^2_+} \log \left(v_1 \cdot p_1 + v_2 \cdot p_2 \right) \mathrm{d}\mu(v_1, v_2)$$

- *E* is infinitely smooth \Rightarrow the completion \neq the complements domain
 - E.g., $u(x_1, x_2) = \min \{\sqrt{x_1 \cdot x_2}, x_1\}$ is beyond
- Definition: $S[\nu](\lambda) = \int_{\mathbb{R}_+} 1/(\lambda + z) d\nu(z)$ is the Stieltjes transform

• The domain of Leontief preferences over n = 2 goods

$$u(\mathbf{x}) = \min \{x_1/v_1, x_2/v_2\}, \qquad E(\mathbf{p}) = v_1 \cdot p_1 + v_2 \cdot p_2$$

exhibit complementarity: D_i is decreasing in p_{-i}

• the completion = preferences s.t. expenditure function satisfies

$$\log E(\mathbf{p}) = \int_{\mathbb{R}^2_+} \log \left(v_1 \cdot p_1 + v_2 \cdot p_2 \right) \mathrm{d}\mu(v_1, v_2)$$

- *E* is infinitely smooth \Rightarrow the completion \neq the complements domain
 - E.g., $u(x_1, x_2) = \min \{\sqrt{x_1 \cdot x_2}, x_1\}$ is beyond
- Definition: $S[\nu](\lambda) = \int_{\mathbb{R}_+} 1/(\lambda + z) d\nu(z)$ is the Stieltjes transform

Proposition

The completion is the set of preferences such that $D_1(\lambda, 1)$ is the Stieltjes transform of a positive measure ν (the distribution on v_2/v_1).

• The domain of Leontief preferences over n = 2 goods

$$u(\mathbf{x}) = \min \{x_1/v_1, x_2/v_2\}, \qquad E(\mathbf{p}) = v_1 \cdot p_1 + v_2 \cdot p_2$$

exhibit complementarity: D_i is decreasing in p_{-i}

• the completion = preferences s.t. expenditure function satisfies

$$\log E(\mathbf{p}) = \int_{\mathbb{R}^2_+} \log \left(v_1 \cdot p_1 + v_2 \cdot p_2 \right) \mathrm{d}\mu(v_1, v_2)$$

- *E* is infinitely smooth \Rightarrow the completion \neq the complements domain
 - E.g., $u(x_1, x_2) = \min \{\sqrt{x_1 \cdot x_2}, x_1\}$ is beyond
- Definition: $S[\nu](\lambda) = \int_{\mathbb{R}_+} 1/(\lambda + z) d\nu(z)$ is the Stieltjes transform

Proposition

The completion is the set of preferences such that $D_1(\lambda, 1)$ is the Stieltjes transform of a positive measure ν (the distribution on v_2/v_1).

• Remark: S is invertible (Stieltjes-Perron formula). Hence,

• The domain of Leontief preferences over n = 2 goods

$$u(\mathbf{x}) = \min \{x_1/v_1, x_2/v_2\}, \qquad E(\mathbf{p}) = v_1 \cdot p_1 + v_2 \cdot p_2$$

exhibit complementarity: D_i is decreasing in p_{-i}

• the completion = preferences s.t. expenditure function satisfies

$$\log E(\mathbf{p}) = \int_{\mathbb{R}^2_+} \log \left(v_1 \cdot p_1 + v_2 \cdot p_2 \right) \mathrm{d}\mu(v_1, v_2)$$

- *E* is infinitely smooth \Rightarrow the completion \neq the complements domain
 - E.g., $u(x_1, x_2) = \min \{\sqrt{x_1 \cdot x_2}, x_1\}$ is beyond
- Definition: $S[\nu](\lambda) = \int_{\mathbb{R}_+} 1/(\lambda + z) d\nu(z)$ is the Stieltjes transform

Proposition

The completion is the set of preferences such that $D_1(\lambda, 1)$ is the Stieltjes transform of a positive measure ν (the distribution on v_2/v_1).

- Remark: S is invertible (Stieltjes-Perron formula). Hence,
 - market demand is sufficient to pin down preference distributions

More Related Literature **back**

- Endogenous incomes and general preferences ⇒ "anything goes" for aggregate demand:
 - Sonnenschein (1973), Mantel (1974, 1976), Debreu (1974), Chiappori and Ekeland (1999), Kirman and Koch (1986), Hildenbrand (2014)
- Representative agent approach
 - Criticism of representative agents: Caselli & Ventura (2000), Carroll (2000), Kirman (1992)
 - Household behavior: Samuelson (1956), Chambers and Hayashi (2018), Browning & Chiappori (1998)
- PIGLOG, AIDS, and similar functional forms
 - Muellbauer (1975,1976), Deaton & Muellbauer (1980), Lewbel & Pendakur (2009)

Integral representation of the completion

For infinite domains, we need to allow "continual" convex combinations

Theorem 3

The completion of D = preferences with expenditure functions E s.t.

$$\log E(\mathbf{p}) = \int_{\overline{\mathcal{D}}} \log E_{\succeq}(\mathbf{p}) \mathrm{d}\mu(\succeq),$$

where μ is a Borel probability measure supported on the closure $\overline{\mathcal{D}}$ of \mathcal{D}

Theorem 3

The completion of D = preferences with expenditure functions E s.t.

$$\log E(\mathbf{p}) = \int_{\overline{\mathcal{D}}} \log E_{\succeq}(\mathbf{p}) \mathrm{d}\mu(\succeq),$$

where μ is a Borel probability measure supported on the closure $\overline{\mathcal{D}}$ of \mathcal{D}

• Closure and the Borel structure are w.r.t. the distance $d(\succsim,\succsim') = \max_{\mathbf{p}\in\Delta_{n-1}} \left| \frac{(\ln E(\mathbf{p}) - \ln E((1,...,1))) - (\ln E'(\mathbf{p}) - \ln E'((1,...,1)))}{(1 + \max_i |\ln \rho_i|)^2} \right|$

Theorem 3

The completion of D = preferences with expenditure functions E s.t.

$$\log E(\mathbf{p}) = \int_{\overline{\mathcal{D}}} \log E_{\succeq}(\mathbf{p}) \mathrm{d}\mu(\succeq),$$

where μ is a Borel probability measure supported on the closure $\overline{\mathcal{D}}$ of \mathcal{D}

• Closure and the Borel structure are w.r.t. the distance $d(\succsim,\succsim') = \max_{\mathbf{p}\in\Delta_{n-1}} \left| \frac{(\ln E(\mathbf{p}) - \ln E((1,...,1))) - \left(\ln E'(\mathbf{p}) - \ln E'((1,...,1))\right)}{(1 + \max_i |\ln p_i|)^2} \right|$

• Preferences form a compact set \simeq convex subset of $C(\Delta_{n-1})$

Theorem 3

The completion of D = preferences with expenditure functions E s.t.

$$\log E(\mathbf{p}) = \int_{\overline{\mathcal{D}}} \log E_{\succeq}(\mathbf{p}) \mathrm{d}\mu(\succeq),$$

where μ is a Borel probability measure supported on the closure $\overline{\mathcal{D}}$ of \mathcal{D}

- Closure and the Borel structure are w.r.t. the distance $d(\succsim,\succeq') = \max_{\mathbf{p}\in\Delta_{n-1}} \left| \frac{(\ln E(\mathbf{p}) - \ln E((1,...,1))) - (\ln E'(\mathbf{p}) - \ln E'((1,...,1)))}{(1 + \max_i | \ln p_i |)^2} \right|$
- Preferences form a compact set ≃ convex subset of C(Δ_{n-1})
- Choquet theory \Rightarrow Theorem 3