The geometry of consumer preference aggregation

Fedor Sandomirskiy (Caltech) Philip Ushchev (ECARES, U.libre de Bruxelles)

Our questions

from individual to population behavior and back

- How do assumptions on individual characteristics of consumers preferences and incomes - restrict aggregate demand?

Our questions

from individual to population behavior and back

- How do assumptions on individual characteristics of consumers preferences and incomes - restrict aggregate demand?
- How does observed aggregate demand restrict individual characteristics?

Our questions

from individual to population behavior and back

- How do assumptions on individual characteristics of consumers preferences and incomes - restrict aggregate demand?
- How does observed aggregate demand restrict individual characteristics?
- > 100 papers since Sonnenschein (1973), two chapters in MWG...

Our questions

from individual to population behavior and back

- How do assumptions on individual characteristics of consumers preferences and incomes - restrict aggregate demand?
- How does observed aggregate demand restrict individual characteristics?
- > 100 papers since Sonnenschein (1973), two chapters in MWG...
- D. Kreps (2020):

So what can we say about aggregate demand based on the hypothesis that individuals are preference/utility maximizers? Unless we are able to make strong assumptions about the distribution of preferences or income throughout the economy (e.g., everyone has the same preferences) there is little we can say.

Our questions

from individual to population behavior and back

- How do assumptions on individual characteristics of consumers preferences and incomes - restrict aggregate demand?
- How does observed aggregate demand restrict individual characteristics?
- > 100 papers since Sonnenschein (1973), two chapters in MWG...
- D. Kreps (2020):

So what can we say about aggregate demand based on the hypothesis that individuals are preference/utility maximizers? Unless we are able to make strong assumptions about the distribution of preferences or income throughout the economy (e.g., everyone has the same preferences) there is little we can say.

- The two extremes:

1. Sonnenschein-Mantel-Debreu theorem and related results
2. Gorman's representative consumer

Our questions

from individual to population behavior and back

- How do assumptions on individual characteristics of consumers preferences and incomes - restrict aggregate demand?
- How does observed aggregate demand restrict individual characteristics?
- > 100 papers since Sonnenschein (1973), two chapters in MWG...
- D. Greps (2020):

So what can we say about aggregate demand based on the hypothesis that individuals are preference/utility maximizers? Unless we are able to make strong assumptions about the distribution of preferences or income throughout the economy (e.g., everyone has the same preferences) there is little we can say.

- The two extremes:

1. Sonnenschein-Mantel-Debreu theorem and related results
2. Gorman's representative consumer

- Our paper is a middle ground: a rich enough tractable setting

Our paper

Brings information economic tools to the classical problem

Our paper

Brings information economic tools to the classical problem
Key Contribution:
a method linking individual characteristics and market demand properties

Our paper

Brings information economic tools to the classical problem

Key Contribution:

a method linking individual characteristics and market demand properties

- works for homothetic preferences (linear, Leontief, CES, etc)

Our paper

Brings information economic tools to the classical problem
Key Contribution:
a method linking individual characteristics and market demand properties

- works for homothetic preferences (linear, Leontief, CES, etc)

Key Insights:

Our paper

Brings information economic tools to the classical problem

Key Contribution:

a method linking individual characteristics and market demand properties

- works for homothetic preferences (linear, Leontief, CES, etc)

Key Insights:

- utility functions NO, log(expenditure functions) YES

Our paper

Brings information economic tools to the classical problem

Key Contribution:

a method linking individual characteristics and market demand properties

- works for homothetic preferences (linear, Leontief, CES, etc)

Key Insights:

- utility functions NO, log(expenditure functions) YES
- a heterogeneous population \simeq a single consumer whose $\log ($ expenditure function $)=$ a weighted average of individual ones

Our paper

Brings information economic tools to the classical problem

Key Contribution:

a method linking individual characteristics and market demand properties

- works for homothetic preferences (linear, Leontief, CES, etc)

Key Insights:

- utility functions NO, log(expenditure functions) YES
- a heterogeneous population \simeq a single consumer whose $\log ($ expenditure function $)=$ a weighted average of individual ones

- enables extreme-point and convexification tools

Applications

Robust welfare analysis

- Observe market demand, estimate a welfare change caused by a price change

Applications

Robust welfare analysis

- Observe market demand, estimate a welfare change caused by a price change
- Representative consumer approach:

Applications

Robust welfare analysis

- Observe market demand, estimate a welfare change caused by a price change
- Representative consumer approach:
- postulate a representative, use her utility as proxy for welfare

Applications

Robust welfare analysis

- Observe market demand, estimate a welfare change caused by a price change
- Representative consumer approach:
- postulate a representative, use her utility as proxy for welfare
- hence, market demand is a sufficient statistic

Applications

Robust welfare analysis

- Observe market demand, estimate a welfare change caused by a price change
- Representative consumer approach:
- postulate a representative, use her utility as proxy for welfare
- hence, market demand is a sufficient statistic
- The same market demand can be generated by different populations

Applications

Robust welfare analysis

- Observe market demand, estimate a welfare change caused by a price change
- Representative consumer approach:
- postulate a representative, use her utility as proxy for welfare
- hence, market demand is a sufficient statistic
- The same market demand can be generated by different populations
- Get a range of welfare levels for the equivalent variation

Applications

Robust welfare analysis

- Observe market demand, estimate a welfare change caused by a price change
- Representative consumer approach:
- postulate a representative, use her utility as proxy for welfare
- hence, market demand is a sufficient statistic
- The same market demand can be generated by different populations
- Get a range of welfare levels for the equivalent variation
- We compute the range via Bayesian persuasion

Applications

Robust welfare analysis

- The same market demand can be generated by different populations
- Get a range of welfare levels for the equivalent variation
- We compute the range via Bayesian persuasion

Rationalizable aggregate behaviors

Applications

Robust welfare analysis

- The same market demand can be generated by different populations
- Get a range of welfare levels for the equivalent variation
- We compute the range via Bayesian persuasion

Rationalizable aggregate behaviors

- Given a domain of individual preferences (e.g. linear, Leontief), what aggregate behaviors can we get?

Applications

Robust welfare analysis

- The same market demand can be generated by different populations
- Get a range of welfare levels for the equivalent variation
- We compute the range via Bayesian persuasion

Rationalizable aggregate behaviors

- Given a domain of individual preferences (e.g. linear, Leontief), what aggregate behaviors can we get?
- Rationalizable behaviors \simeq the convex hull in \log (expenditure)-space

Applications

Robust welfare analysis

- The same market demand can be generated by different populations
- Get a range of welfare levels for the equivalent variation
- We compute the range via Bayesian persuasion

Rationalizable aggregate behaviors

- Given a domain of individual preferences (e.g. linear, Leontief), what aggregate behaviors can we get?
- Rationalizable behaviors \simeq the convex hull in
 \log (expenditure)-space
Complexity of pseudo-market mechanisms

Applications

Robust welfare analysis

- The same market demand can be generated by different populations
- Get a range of welfare levels for the equivalent variation
- We compute the range via Bayesian persuasion

Rationalizable aggregate behaviors

- Given a domain of individual preferences (e.g. linear, Leontief), what aggregate behaviors can we get?
- Rationalizable behaviors \simeq the convex hull in $\log ($ expenditure)-space

Complexity of pseudo-market mechanisms

- Emulate market outcomes in non-monetary settings, e.g., charity

Applications

Robust welfare analysis

- The same market demand can be generated by different populations
- Get a range of welfare levels for the equivalent variation
- We compute the range via Bayesian persuasion

Rationalizable aggregate behaviors

- Given a domain of individual preferences (e.g. linear, Leontief), what aggregate behaviors can we get?
- Rationalizable behaviors \simeq the convex hull in \log (expenditure)-space

Complexity of pseudo-market mechanisms

- Emulate market outcomes in non-monetary settings, e.g., charity
- We design bidding languages for efficient outcome computation

Applications

Robust welfare analysis

- The same market demand can be generated by different populations
- Get a range of welfare levels for the equivalent variation
- We compute the range via Bayesian persuasion

Rationalizable aggregate behaviors

- Given a domain of individual preferences (e.g. linear, Leontief), what aggregate behaviors can we get?
- Rationalizable behaviors \simeq the convex hull in \log (expenditure)-space

Complexity of pseudo-market mechanisms

- Emulate market outcomes in non-monetary settings, e.g., charity
- We design bidding languages for efficient outcome computation

Identification of preference distributions

Applications

Robust welfare analysis

- The same market demand can be generated by different populations
- Get a range of welfare levels for the equivalent variation
- We compute the range via Bayesian persuasion

Rationalizable aggregate behaviors

- Given a domain of individual preferences (e.g. linear, Leontief), what aggregate behaviors can we get?
- Rationalizable behaviors \simeq the convex hull in \log (expenditure)-space

Complexity of pseudo-market mechanisms

- Emulate market outcomes in non-monetary settings, e.g., charity
- We design bidding languages for efficient outcome computation

Identification of preference distributions

- Aggregate behavior pins down preference distributions for "simplex domains"

Related literature more

- Representative agents
- almost never exist: Gorman (1961), Jackson \& Yariv (2019)

Related literature more

- Representative agents
- almost never exist: Gorman (1961), Jackson \& Yariv (2019)
- exist if income-dependent: Eisenberg (1961), Eisenberg \& Gale (1959), Jerrison (1984)

Related literature more

- Representative agents
- almost never exist: Gorman (1961), Jackson \& Yariv (2019)
- exist if income-dependent: Eisenberg (1961), Eisenberg \& Gale (1959), Jerrison (1984)

Related literature

- Representative agents
- almost never exist: Gorman (1961), Jackson \& Yariv (2019)
- exist if income-dependent: Eisenberg (1961), Eisenberg \& Gale (1959), Jerrison (1984)
- Robust welfare analysis
- Kang and Vasserman (2022), Steiner et al. (2022)
- Representative agents
- almost never exist: Gorman (1961), Jackson \& Yariv (2019)
- exist if income-dependent: Eisenberg (1961), Eisenberg \& Gale (1959), Jerrison (1984)
- Robust welfare analysis
- Kang and Vasserman (2022), Steiner et al. (2022)
- Pseudo-markets and complexity of exchange economies
- Pycia (2022), Moulin (2019), Nisan et al. (2007)

Related literature

- Representative agents
- almost never exist: Gorman (1961), Jackson \& Yariv (2019)
- exist if income-dependent: Eisenberg (1961), Eisenberg \& Gale (1959), Jerrison (1984)
- Robust welfare analysis
- Kang and Vasserman (2022), Steiner et al. (2022)
- Pseudo-markets and complexity of exchange economies
- Pycia (2022), Moulin (2019), Nisan et al. (2007)
- Economic applications of extreme points, Choquet theory, and convexification
- Kleiner et al. (2021), Arieli et al. (2020), Manelli \& Vincent (2010), Kamenica \& Gentzkow (2011), Aumann et al. (1995)

Individual consumer

Single consumer's choice

Individual consumer

Single consumer's choice

- n divisible goods

Individual consumer

Single consumer's choice

- n divisible goods
- a consumer with a preference \succsim over \mathbb{R}_{+}^{n} and budget b

Individual consumer

Single consumer's choice

- n divisible goods
- a consumer with a preference \succsim over \mathbb{R}_{+}^{n} and budget b
- \succsim is homothetic: $\mathbf{x} \succsim \mathbf{y} \Leftrightarrow \lambda \mathbf{x} \succsim \lambda \mathbf{y}, \quad \lambda>0$

Individual consumer

Single consumer's choice

- n divisible goods
- a consumer with a preference \succsim over \mathbb{R}_{+}^{n} and budget b
- \succsim is homothetic: $\mathbf{x} \succsim \mathbf{y} \Leftrightarrow \lambda \mathbf{x} \succsim \lambda \mathbf{y}, \quad \lambda>0$
- and convex, continuous, monotone

$$
\succsim \Longleftrightarrow \text { concave utility } u \text { s.t. } \quad u(\alpha \cdot \mathbf{x})=\alpha \cdot u(\mathbf{x})
$$

Individual consumer

Single consumer's choice

- n divisible goods
- a consumer with a preference \succsim over \mathbb{R}_{+}^{n} and budget b
- \succsim is homothetic: $\mathbf{x} \succsim \mathbf{y} \Leftrightarrow \lambda \mathbf{x} \succsim \lambda \mathbf{y}, \lambda>0$
- and convex, continuous, monotone

$$
\succsim \Longleftrightarrow \text { concave utility } \quad u \text { s.t. } \quad u(\alpha \cdot \mathbf{x})=\alpha \cdot u(\mathbf{x})
$$

- demand as a function of prices \mathbf{p}

$$
D(\mathbf{p}, b)=\underset{\mathbf{x} \in \mathbb{R}_{+}^{n}:\langle\mathbf{p}, \mathbf{x}\rangle \leq b}{\arg \max } u(\mathbf{x})
$$

Aggregate consumer

- Consider a population of m consumers $\left(\succsim_{k}, b_{k}\right)_{k=1, \ldots, m}$

Aggregate consumer

- Consider a population of m consumers $\left(\succsim_{k}, b_{k}\right)_{k=1, \ldots, m}$
- Total income $B=\sum_{k} b_{k}$ and $\beta_{k}=b_{k} / B$ the relative income of k

Aggregate consumer

- Consider a population of m consumers $\left(\succsim_{k}, b_{k}\right)_{k=1, \ldots, m}$
- Total income $B=\sum_{k} b_{k}$ and $\beta_{k}=b_{k} / B$ the relative income of k

Definition

$\succsim_{\text {aggr }}$ is the aggregate preference for this population if

$$
D_{\text {aggr }}(\mathbf{p}, B)=D_{1}\left(\mathbf{p}, b_{1}\right)+\ldots+D_{m}\left(\mathbf{p}, b_{m}\right) \quad \text { for any price } \mathbf{p}
$$

Aggregate consumer

- Consider a population of m consumers $\left(\succsim_{k}, b_{k}\right)_{k=1, \ldots, m}$
- Total income $B=\sum_{k} b_{k}$ and $\beta_{k}=b_{k} / B$ the relative income of k

Definition

$\succsim_{\text {aggr }}$ is the aggregate preference for this population if

$$
D_{\text {aggr }}(\mathbf{p}, B)=D_{1}\left(\mathbf{p}, b_{1}\right)+\ldots+D_{m}\left(\mathbf{p}, b_{m}\right) \quad \text { for any price } \mathbf{p}
$$

Eisenberg (1961), Eisenberg and Gale (1959):

- The aggregate preference exists

Aggregate consumer

- Consider a population of m consumers $\left(\succsim_{k}, b_{k}\right)_{k=1, \ldots, m}$
- Total income $B=\sum_{k} b_{k}$ and $\beta_{k}=b_{k} / B$ the relative income of k

Definition

$\succsim_{\text {aggr }}$ is the aggregate preference for this population if

$$
D_{\text {aggr }}(\mathbf{p}, B)=D_{1}\left(\mathbf{p}, b_{1}\right)+\ldots+D_{m}\left(\mathbf{p}, b_{m}\right) \quad \text { for any price } \mathbf{p}
$$

Eisenberg (1961), Eisenberg and Gale (1959):

- The aggregate preference exists
- Aggregate consumers' utility \Leftrightarrow the Nash product maximization:

$$
u_{\mathrm{aggr}}\left(\mathbf{x},\left(\succsim_{k}, \beta_{k}\right)_{k=1}^{m}\right)=\max _{\sum_{k=1}^{m} \mathbf{x}_{k}=\mathbf{x}} \prod_{k=1}^{m}\left(u_{k}\left(\mathbf{x}_{k}\right)\right)^{\beta_{k}}
$$

Aggregate consumer

- Consider a population of m consumers $\left(\succsim_{k}, b_{k}\right)_{k=1, \ldots, m}$
- Total income $B=\sum_{k} b_{k}$ and $\beta_{k}=b_{k} / B$ the relative income of k

Definition

$\succsim_{\text {aggr }}$ is the aggregate preference for this population if

$$
D_{\text {aggr }}(\mathbf{p}, B)=D_{1}\left(\mathbf{p}, b_{1}\right)+\ldots+D_{m}\left(\mathbf{p}, b_{m}\right) \quad \text { for any price } \mathbf{p}
$$

Eisenberg (1961), Eisenberg and Gale (1959):

- The aggregate preference exists
- Aggregate consumers' utility \Leftrightarrow the Nash product maximization:

$$
u_{\mathrm{aggr}}\left(\mathbf{x},\left(\succsim_{k}, \beta_{k}\right)_{k=1}^{m}\right)=\max _{\sum_{k=1}^{m} \mathbf{x}_{k}=\mathbf{x}} \prod_{k=1}^{m}\left(u_{k}\left(\mathbf{x}_{k}\right)\right)^{\beta_{k}}
$$

Challenging problem, no structural insights

Aggregate consumer: a major simplification

- Aggregation is hard in the space of utilities \Rightarrow let's try a dual space

Aggregate consumer: a major simplification

- Aggregation is hard in the space of utilities \Rightarrow let's try a dual space
- The expenditure function:

$$
E(\mathbf{p})=\min _{x: u(x) \geq 1}\langle\mathbf{p}, \mathbf{x}\rangle
$$

Aggregate consumer: a major simplification

- Aggregation is hard in the space of utilities \Rightarrow let's try a dual space
- The expenditure function:

$$
E(\mathbf{p})=\min _{x: u(x) \geq 1}\langle\mathbf{p}, \mathbf{x}\rangle
$$

- Preferences \Longleftrightarrow logarithmic expenditure function (LEF): $\log E(\mathbf{p})$

Aggregate consumer: a major simplification

- Aggregation is hard in the space of utilities \Rightarrow let's try a dual space
- The expenditure function:

$$
E(\mathbf{p})=\min _{\mathbf{x}: u(\mathbf{x}) \geq 1}\langle\mathbf{p}, \mathbf{x}\rangle
$$

- Preferences \Longleftrightarrow logarithmic expenditure function (LEF): $\log E(\mathbf{p})$

Theorem 1

LEF of the aggregate is the average of individual LEFs

$$
\log E_{\mathrm{aggr}}\left(\mathbf{p},\left(\succsim_{k}, \beta_{k}\right)_{k=1}^{m}\right)=\sum_{k=1}^{m} \beta_{k} \cdot \log E_{k}(\mathbf{p})
$$

Aggregate consumer: a major simplification

- Aggregation is hard in the space of utilities \Rightarrow let's try a dual space
- The expenditure function:

$$
E(\mathbf{p})=\min _{x: u(\mathbf{x}) \geq 1}\langle\mathbf{p}, \mathbf{x}\rangle
$$

- Preferences \Longleftrightarrow logarithmic expenditure function (LEF): $\log E(\mathbf{p})$

Theorem 1

LEF of the aggregate is the average of individual LEFs

$$
\log E_{\mathrm{aggr}}\left(\mathbf{p},\left(\succsim_{k}, \beta_{k}\right)_{k=1}^{m}\right)=\sum_{k=1}^{m} \beta_{k} \cdot \log E_{k}(\mathbf{p})
$$

- The dual to Eisenberg-Gale

Aggregate consumer: a major simplification

- Aggregation is hard in the space of utilities \Rightarrow let's try a dual space
- The expenditure function:

$$
E(\mathbf{p})=\min _{x: u(\mathbf{x}) \geq 1}\langle\mathbf{p}, \mathbf{x}\rangle
$$

- Preferences \Longleftrightarrow logarithmic expenditure function (LEF): $\log E(\mathbf{p})$

Theorem 1

LEF of the aggregate is the average of individual LEFs

$$
\log E_{\mathrm{aggr}}\left(\mathbf{p},\left(\succsim_{k}, \beta_{k}\right)_{k=1}^{m}\right)=\sum_{k=1}^{m} \beta_{k} \cdot \log E_{k}(\mathbf{p})
$$

- The dual to Eisenberg-Gale
- A simple result with numerous implications

Aggregate consumer: the geometric mean(ing)

Aggregate consumer: the geometric mean(ing)

- How to define the geometric mean of convex sets?

Aggregate consumer: the geometric mean(ing)

- How to define the geometric mean of convex sets?
- The support function of a convex set $X \subset \mathbb{R}^{n}$ is

$$
h_{X}(\mathbf{p})=\min _{x \in X}\langle\mathbf{p}, \mathbf{x}\rangle
$$

Aggregate consumer: the geometric mean(ing)

- How to define the geometric mean of convex sets?
- The support function of a convex set $X \subset \mathbb{R}^{n}$ is

$$
h_{X}(\mathbf{p})=\min _{\mathbf{x} \in X}\langle\mathbf{p}, \mathbf{x}\rangle
$$

Definition (Boroczky et al. 2012, Milman and Rotem 2017)
$Z=X^{\alpha} \otimes Y^{1-\alpha}$ is the convex set such that

$$
h_{Z}=\left|h_{X}\right|^{\alpha} \cdot\left|h_{Y}\right|^{1-\alpha}
$$

Aggregate consumer: the geometric mean(ing)

- How to define the geometric mean of convex sets?
- The support function of a convex set $X \subset \mathbb{R}^{n}$ is

$$
h_{X}(\mathbf{p})=\min _{\mathbf{x} \in X}\langle\mathbf{p}, \mathbf{x}\rangle
$$

Definition (Boroczky et al. 2012, Milman and Rotem 2017)
$Z=X^{\alpha} \otimes Y^{1-\alpha}$ is the convex set such that

$$
h_{Z}=\left|h_{X}\right|^{\alpha} \cdot\left|h_{Y}\right|^{1-\alpha}
$$

- E is the support function of the upper contour set

$$
E(\mathbf{p})=\min _{\mathbf{x} \in X}\langle\mathbf{p}, \mathbf{x}\rangle, \quad X=\left\{\mathbf{x} \in \mathbb{R}_{+}^{n}: u(\mathbf{x}) \geq 1\right\}
$$

Aggregate consumer: the geometric mean(ing)

- How to define the geometric mean of convex sets?
- The support function of a convex set $X \subset \mathbb{R}^{n}$ is

$$
h_{X}(\mathbf{p})=\min _{\mathbf{x} \in X}\langle\mathbf{p}, \mathbf{x}\rangle
$$

Definition (Boroczky et al. 2012, Milman and Rotem 2017)

$Z=X^{\alpha} \otimes Y^{1-\alpha}$ is the convex set such that

$$
h_{Z}=\left|h_{X}\right|^{\alpha} \cdot\left|h_{Y}\right|^{1-\alpha}
$$

- E is the support function of the upper contour set

$$
E(\mathbf{p})=\min _{\mathbf{x} \in X}\langle\mathbf{p}, \mathbf{x}\rangle, \quad X=\left\{\mathbf{x} \in \mathbb{R}_{+}^{n}: u(\mathbf{x}) \geq 1\right\}
$$

Corollary

The upper contour set of the aggregate consumer is the geometric mean of individual upper contour sets

$$
\left\{u_{\text {aggr }}(\mathbf{x}) \geq 1\right\}=\left\{u_{1}(\mathbf{x}) \geq 1\right\}^{\beta_{1}} \otimes\left\{u_{2}(\mathbf{x}) \geq 1\right\}^{\beta_{2}} \otimes \ldots \otimes\left\{u_{m}(\mathbf{x}) \geq 1\right\}^{\beta_{k}}
$$

Example: single-minded consumers

Example: single-minded consumers

- Geometry: the geometric mean of the two orthogonal halfspaces is the set above the hyperbola

Example: single-minded consumers

- Geometry: the geometric mean of the two orthogonal halfspaces is the set above the hyperbola
- Algebra: $\alpha \cdot \log p_{1}+(1-\alpha) \cdot \log p_{2}=\log \left(p_{1}^{\alpha} \cdot p_{2}^{1-\alpha}\right)$

Example: single-minded consumers

- Geometry: the geometric mean of the two orthogonal halfspaces is the set above the hyperbola
- Algebra: $\alpha \cdot \log p_{1}+(1-\alpha) \cdot \log p_{2}=\log \left(p_{1}^{\alpha} \cdot p_{2}^{1-\alpha}\right)$
- Economics: two single-minded consumers generate the same demand as one Cobb-Douglas consumer $u(\mathbf{x})=x_{1}^{\alpha} \cdot x_{2}^{1-\alpha}$

Robust welfare analysis

- An analyst observes market demand, aims to estimate a functional depending on individual characteristics

$$
W=W\left[\left(\succsim_{k}, b_{k}\right)_{k=1, \ldots]}\right]
$$

Robust welfare analysis

- An analyst observes market demand, aims to estimate a functional depending on individual characteristics

$$
W=W\left[\left(\succsim_{k}, b_{k}\right)_{k=1, \ldots]}\right]
$$

- Example: a change in welfare induced by a change in prices $\mathbf{p} \rightarrow \mathbf{p}^{\prime}$

Robust welfare analysis

- An analyst observes market demand, aims to estimate a functional depending on individual characteristics

$$
W=W\left[\left(\succsim_{k}, b_{k}\right)_{k=1, \ldots]}\right]
$$

- Example: a change in welfare induced by a change in prices $\mathbf{p} \rightarrow \mathbf{p}^{\prime}$
- Representative consumer approach:
- postulate a representative, use her utility as proxy for welfare
- hence, market demand is a sufficient statistic

Robust welfare analysis

- An analyst observes market demand, aims to estimate a functional depending on individual characteristics

$$
W=W\left[\left(\succsim_{k}, b_{k}\right)_{k=1, \ldots]}\right]
$$

- Example: a change in welfare induced by a change in prices $\mathbf{p} \rightarrow \mathbf{p}^{\prime}$
- Representative consumer approach:
- postulate a representative, use her utility as proxy for welfare
- hence, market demand is a sufficient statistic

Observation

- The same market demand can be generated by different populations
- Compatible with a range of welfare levels $[\underline{W}, \bar{W}]$

Robust welfare analysis

- An analyst observes market demand, aims to estimate a functional depending on individual characteristics

$$
W=W\left[\left(\succsim_{k}, b_{k}\right)_{k=1, \ldots]}\right]
$$

- Example: a change in welfare induced by a change in prices $\mathbf{p} \rightarrow \mathbf{p}^{\prime}$
- Representative consumer approach:
- postulate a representative, use her utility as proxy for welfare
- hence, market demand is a sufficient statistic

Observation

- The same market demand can be generated by different populations
- Compatible with a range of welfare levels $[\underline{W}, \bar{W}]$
- Get a non-trivial range even for the equivalent variation ($W_{E V}$) $W_{E V}=$ [the change in incomes equivalent to the change in prices]

Robust welfare analysis

- An analyst observes market demand, aims to estimate a functional depending on individual characteristics

$$
W=W\left[\left(\succsim_{k}, b_{k}\right)_{k=1, \ldots]}\right]
$$

- Example: a change in welfare induced by a change in prices $\mathbf{p} \rightarrow \mathbf{p}^{\prime}$
- Representative consumer approach:
- postulate a representative, use her utility as proxy for welfare
- hence, market demand is a sufficient statistic

Observation

- The same market demand can be generated by different populations
- Compatible with a range of welfare levels $[\underline{W}, \bar{W}]$
- Get a non-trivial range even for the equivalent variation ($W_{E V}$) $W_{E V}=$ [the change in incomes equivalent to the change in prices]

Robust welfare analysis

- An analyst observes market demand, aims to estimate a functional depending on individual characteristics

$$
W=W\left[\left(\succsim_{k}, b_{k}\right)_{k=1, \ldots]}\right]
$$

- Example: a change in welfare induced by a change in prices $\mathbf{p} \rightarrow \mathbf{p}^{\prime}$
- Representative consumer approach:
- postulate a representative, use her utility as proxy for welfare
- hence, market demand is a sufficient statistic

Observation

- The same market demand can be generated by different populations
- Compatible with a range of welfare levels $[\underline{W}, \bar{W}]$
- Get a non-trivial range even for the equivalent variation ($W_{E V}$) $W_{E V}=$ [the change in incomes equivalent to the change in prices]

Robust welfare analysis

- An analyst observes market demand, aims to estimate a functional depending on individual characteristics

$$
W=W\left[\left(\succsim_{k}, b_{k}\right)_{k=1, \ldots]}\right]
$$

- Example: a change in welfare induced by a change in prices $\mathbf{p} \rightarrow \mathbf{p}^{\prime}$
- Representative consumer approach:
- postulate a representative, use her utility as proxy for welfare
- hence, market demand is a sufficient statistic

Observation

- The same market demand can be generated by different populations
- Compatible with a range of welfare levels $[\underline{W}, \bar{W}]$
- Get a non-trivial range even for the equivalent variation ($W_{E V}$)

$$
\begin{aligned}
W_{E V} & =[\text { the change in incomes equivalent to the change in prices }] \\
& =\sum_{k}\left(b_{k} \cdot \frac{E_{k}(\mathbf{p})}{E_{k}\left(\mathbf{p}^{\prime}\right)}-b_{k}\right)
\end{aligned}
$$

Toy example

- a population \simeq a Cobb-Douglas consumer

$$
u(\mathbf{p})=x_{1}^{\alpha} \cdot x_{2}^{1-\alpha} \quad E(\mathbf{p})=p_{1}^{\alpha} \cdot p_{2}^{1-\alpha}
$$

with $\alpha_{\text {aggr }}=1 / 3$ and unit budget

Toy example

- a population $\simeq a$ Cobb-Douglas consumer

$$
u(\mathbf{p})=x_{1}^{\alpha} \cdot x_{2}^{1-\alpha} \quad E(\mathbf{p})=p_{1}^{\alpha} \cdot p_{2}^{1-\alpha}
$$

with $\alpha_{\text {aggr }}=1 / 3$ and unit budget

- price change $\mathbf{p}=(1,64) \rightarrow \mathbf{p}^{\prime}=(32,32)$

Toy example

- a population $\simeq a$ Cobb-Douglas consumer

$$
u(\mathbf{p})=x_{1}^{\alpha} \cdot x_{2}^{1-\alpha} \quad E(\mathbf{p})=p_{1}^{\alpha} \cdot p_{2}^{1-\alpha}
$$

with $\alpha_{\text {aggr }}=1 / 3$ and unit budget

- price change $\mathbf{p}=(1,64) \rightarrow \mathbf{p}^{\prime}=(32,32)$

Question: what is welfare change: $W_{E V}=\sum_{k} b_{k}\left(\frac{E_{k}(\mathbf{p})}{E_{k}\left(\mathbf{p}^{\prime}\right)}-1\right)$?

Toy example

- a population $\simeq a$ Cobb-Douglas consumer

$$
u(\mathbf{p})=x_{1}^{\alpha} \cdot x_{2}^{1-\alpha} \quad E(\mathbf{p})=p_{1}^{\alpha} \cdot p_{2}^{1-\alpha}
$$

with $\alpha_{\text {aggr }}=1 / 3$ and unit budget

- price change $\mathbf{p}=(1,64) \rightarrow \mathbf{p}^{\prime}=(32,32)$

Question: what is welfare change: $W_{E V}=\sum_{k} b_{k}\left(\frac{E_{k}(\mathbf{p})}{E_{k}\left(\mathbf{p}^{\prime}\right)}-1\right)$?
$W_{E V}$ for a C-D agent with unit budget: $w(\alpha)=\frac{E(\mathbf{p})}{E\left(\mathbf{p}^{\prime}\right)}-1=2 \cdot 2^{-6 \alpha}-1$

Toy example

- a population $\simeq a$ Cobb-Douglas consumer

$$
u(\mathbf{p})=x_{1}^{\alpha} \cdot x_{2}^{1-\alpha} \quad E(\mathbf{p})=p_{1}^{\alpha} \cdot p_{2}^{1-\alpha}
$$

with $\alpha_{\text {aggr }}=1 / 3$ and unit budget

- price change $\mathbf{p}=(1,64) \rightarrow \mathbf{p}^{\prime}=(32,32)$

Question: what is welfare change: $W_{E V}=\sum_{k} b_{k}\left(\frac{E_{k}(\mathbf{p})}{E_{k}\left(\mathbf{p}^{\prime}\right)}-1\right)$?
$W_{E V}$ for a C-D agent with unit budget: $w(\alpha)=\frac{E(\mathbf{p})}{E\left(\mathbf{p}^{\prime}\right)}-1=2 \cdot 2^{-6 \alpha}-1$

Toy example

- a population $\simeq a$ Cobb-Douglas consumer

$$
u(\mathbf{p})=x_{1}^{\alpha} \cdot x_{2}^{1-\alpha} \quad E(\mathbf{p})=p_{1}^{\alpha} \cdot p_{2}^{1-\alpha}
$$

with $\alpha_{\text {aggr }}=1 / 3$ and unit budget

- price change $\mathbf{p}=(1,64) \rightarrow \mathbf{p}^{\prime}=(32,32)$

Question: what is welfare change: $W_{E V}=\sum_{k} b_{k}\left(\frac{E_{k}(\mathbf{p})}{E_{k}\left(\mathbf{p}^{\prime}\right)}-1\right)$?
$W_{E V}$ for a C-D agent with unit budget: $w(\alpha)=\frac{E(\mathbf{p})}{E\left(\mathbf{p}^{\prime}\right)}-1=2 \cdot 2^{-6 \alpha}-1$

Representative-agent population:
all agents are C-D with $\alpha_{\text {aggr }}=1 / 3$

$$
W_{E V}=w\left(\alpha_{\mathrm{aggr}}\right)<0
$$

Toy example

- a population $\simeq a$ Cobb-Douglas consumer

$$
u(\mathbf{p})=x_{1}^{\alpha} \cdot x_{2}^{1-\alpha} \quad E(\mathbf{p})=p_{1}^{\alpha} \cdot p_{2}^{1-\alpha}
$$

with $\alpha_{\text {aggr }}=1 / 3$ and unit budget

- price change $\mathbf{p}=(1,64) \rightarrow \mathbf{p}^{\prime}=(32,32)$

Question: what is welfare change: $W_{E V}=\sum_{k} b_{k}\left(\frac{E_{k}(\mathbf{p})}{E_{k}\left(\mathbf{p}^{\prime}\right)}-1\right)$?
$W_{E V}$ for a C-D agent with unit budget: $w(\alpha)=\frac{E(\mathbf{p})}{E\left(\mathbf{p}^{\prime}\right)}-1=2 \cdot 2^{-6 \alpha}-1$

Representative-agent population:
all agents are C-D with $\alpha_{\text {aggr }}=1 / 3$

$$
W_{E V}=w\left(\alpha_{\mathrm{aggr}}\right)<0
$$

Toy example

- a population $\simeq a$ Cobb-Douglas consumer

$$
u(\mathbf{p})=x_{1}^{\alpha} \cdot x_{2}^{1-\alpha} \quad E(\mathbf{p})=p_{1}^{\alpha} \cdot p_{2}^{1-\alpha}
$$

with $\alpha_{\text {aggr }}=1 / 3$ and unit budget

- price change $\mathbf{p}=(1,64) \rightarrow \mathbf{p}^{\prime}=(32,32)$

Question: what is welfare change: $W_{E V}=\sum_{k} b_{k}\left(\frac{E_{k}(\mathbf{p})}{E_{k}\left(\mathbf{p}^{\prime}\right)}-1\right)$?
$W_{E V}$ for a C-D agent with unit budget: $w(\alpha)=\frac{E(\mathbf{p})}{E\left(\mathbf{p}^{\prime}\right)}-1=2 \cdot 2^{-6 \alpha}-1$

Representative-agent population:
all agents are C-D with $\alpha_{\text {aggr }}=1 / 3$

$$
W_{E V}=w\left(\alpha_{\mathrm{aggr}}\right)<0
$$

The most heterogeneous population:
$\frac{2}{3}$ of agents have $\alpha=0$ and $1 / 3$ have $\alpha=1$

$$
W_{E V}=\frac{2}{3} w(0)+\frac{1}{3} w(1)>0
$$

Toy example

- a population $\simeq a$ Cobb-Douglas consumer

$$
u(\mathbf{p})=x_{1}^{\alpha} \cdot x_{2}^{1-\alpha} \quad E(\mathbf{p})=p_{1}^{\alpha} \cdot p_{2}^{1-\alpha}
$$

with $\alpha_{\text {aggr }}=1 / 3$ and unit budget

- price change $\mathbf{p}=(1,64) \rightarrow \mathbf{p}^{\prime}=(32,32)$

Question: what is welfare change: $W_{E V}=\sum_{k} b_{k}\left(\frac{E_{k}(\mathbf{p})}{E_{k}\left(\mathbf{p}^{\prime}\right)}-1\right)$?
$W_{E V}$ for a C-D agent with unit budget: $w(\alpha)=\frac{E(\mathbf{p})}{E\left(\mathbf{p}^{\prime}\right)}-1=2 \cdot 2^{-6 \alpha}-1$

Representative-agent population:
all agents are C-D with $\alpha_{\text {aggr }}=1 / 3$

$$
W_{E V}=w\left(\alpha_{\mathrm{aggr}}\right)<0
$$

The most heterogeneous population:
$\frac{2}{3}$ of agents have $\alpha=0$ and $1 / 3$ have $\alpha=1$

$$
W_{E V}=\frac{2}{3} w(0)+\frac{1}{3} w(1)>0
$$

Robust welfare analysis: general result

Goal: find the range $W \in[\underline{W}, \bar{W}]$ compatible with aggregate behavior

Robust welfare analysis: general result

Goal: find the range $W \in[\underline{W}, \bar{W}]$ compatible with aggregate behavior

- $\log E_{\text {aggr }}$ is given

Robust welfare analysis: general result

Goal: find the range $W \in[\underline{W}, \bar{W}]$ compatible with aggregate behavior

- $\log E_{\text {aggr }}$ is given
- minimize/maximize W over representations
$\log E_{\mathrm{aggr}}=\sum_{k} \beta_{k} \log E_{k}$

Robust welfare analysis: general result

Goal: find the range $W \in[\underline{W}, \bar{W}]$ compatible with aggregate behavior

- $\log E_{\text {aggr }}$ is given
- minimize/maximize W over
representations
$\log E_{\mathrm{aggr}}=\sum_{k} \beta_{k} \log E_{k}$

- Reduces to Bayesian Persuasion (Kamenica, Gentzkow 2011) for

$$
W=\sum_{k} b_{k} \cdot w(\succsim k)
$$

Robust welfare analysis: general result

Goal: find the range $W \in[\underline{W}, \bar{W}]$ compatible with aggregate behavior

- $\log E_{\text {aggr }}$ is given
- minimize/maximize W over representations
$\log E_{\mathrm{aggr}}=\sum_{k} \beta_{k} \log E_{k}$

- Reduces to Bayesian Persuasion (Kamenica, Gentzkow 2011) for

$$
W=\sum_{k} b_{k} \cdot w\left(\succsim_{k}\right)
$$

Theorem 2

For $\begin{aligned} & \text { aggr } \\ & \text {, total budget } B \text {, individual }\end{aligned}$ preference domain \mathcal{D},
$\bar{W}=B \cdot \operatorname{conCAVification~}_{\mathcal{D}}[w]\left(\succsim_{\text {aggr }}\right)$
$\underline{W}=B \cdot$ conVEXification $_{\mathcal{D}}[w]\left(\succsim_{\text {aggr }}\right)$

Robust welfare analysis: general result

Theorem 2

For $\succsim_{\text {aggr }}$, total budget B, individual preference domain \mathcal{D},
$\bar{W}=B \cdot$ conCAVification $_{\mathcal{D}}[w]\left(\succsim_{\text {aggr }}\right)$
$\underline{W}=B \cdot \operatorname{conVEXification~}_{\mathcal{D}}[w]\left(\succsim_{\text {aggr }}\right)$

Economic implications:

Robust welfare analysis: general result

Theorem 2

For $\succsim_{\text {aggr }}$, total budget B, individual preference domain \mathcal{D},
$\bar{W}=B \cdot$ conCAVification $_{\mathcal{D}}[w]\left(\succsim_{\text {aggr }}\right)$
$\underline{W}=B \cdot \operatorname{conVEXification}{ }_{\mathcal{D}}[w]\left(\succsim_{\text {aggr }}\right)$

Economic implications:

- EV is convex \Rightarrow representative-agent approach gives $\underline{W_{E V}}$

Robust welfare analysis: general result

Theorem 2

For $\succsim_{\text {aggr }}$, total budget B, individual preference domain \mathcal{D},

$$
\bar{W}=B \cdot \operatorname{conCAVification~}_{\mathcal{D}}[w]\left(\succsim_{\text {aggr }}\right)
$$

$\underline{W}=B \cdot \operatorname{conVEXification}{ }_{\mathcal{D}}[w]\left(\succsim_{\text {aggr }}\right)$

Economic implications:

- EV is convex \Rightarrow representative-agent approach gives $W_{E V}$
- possible explanation for low gains from trade (Arkolakis et al., 2012)

Robust welfare analysis: general result

Theorem 2

For $\succsim_{\text {aggr }}$, total budget B, individual preference domain \mathcal{D},
$\bar{W}=B \cdot$ conCAVification $_{\mathcal{D}}[w]\left(\succsim_{\text {aggr }}\right)$
$\underline{W}=B \cdot \operatorname{conVEXification}{ }_{\mathcal{D}}[w]\left(\succsim_{\text {aggr }}\right)$

Economic implications:

- EV is convex \Rightarrow representative-agent approach gives $W_{E V}$
- possible explanation for low gains from trade (Arkolakis et al., 2012)
- $\overline{W_{E V}}$ corresponds to the maximally diverse tastes

Robust welfare analysis: general result

Theorem 2

For $\succsim_{\text {aggr }}$, total budget B, individual preference domain \mathcal{D},
$\bar{W}=B \cdot$ conCAVification $_{\mathcal{D}}[w]\left(\succsim_{\text {aggr }}\right)$
$\underline{W}=B \cdot \operatorname{conVEXification}{ }_{\mathcal{D}}[w]\left(\succsim_{\text {aggr }}\right)$

Economic implications:

- EV is convex \Rightarrow representative-agent approach gives $W_{E V}$
- possible explanation for low gains from trade (Arkolakis et al., 2012)
- $\overline{W_{E V}}$ corresponds to the maximally diverse tastes
- can be computed explicitly when we know extreme points

Robust welfare analysis: general result

Theorem 2

For $\succsim_{\text {aggr }}$, total budget B, individual preference domain \mathcal{D},
$\bar{W}=B \cdot$ conCAVification $_{\mathcal{D}}[w]\left(\succsim_{\text {aggr }}\right)$
$\underline{W}=B \cdot \operatorname{conVEXification}{ }_{\mathcal{D}}[w]\left(\succsim_{\text {aggr }}\right)$

Economic implications:

- EV is convex \Rightarrow representative-agent approach gives $W_{E V}$
- possible explanation for low gains from trade (Arkolakis et al., 2012)
- $\overline{W_{E V}}$ corresponds to the maximally diverse tastes
- can be computed explicitly when we know extreme points
- The range $\overline{W_{E V}}-\underline{W_{E V}}$ is of the order of $\left\|\mathbf{p}-\mathbf{p}^{\prime}\right\|^{2}$

Robust welfare analysis: general result

Theorem 2

For $\succsim_{\text {aggr }}$, total budget B, individual preference domain \mathcal{D},
$\bar{W}=B \cdot$ conCAVification $_{\mathcal{D}}[w]\left(\succsim_{\text {aggr }}\right)$
$\underline{W}=B \cdot \operatorname{conVEXification}{ }_{\mathcal{D}}[w]\left(\succsim_{\text {aggr }}\right)$

Economic implications:

- EV is convex \Rightarrow representative-agent approach gives $W_{E V}$
- possible explanation for low gains from trade (Arkolakis et al., 2012)
- $\overline{W_{E V}}$ corresponds to the maximally diverse tastes
- can be computed explicitly when we know extreme points
- The range $\overline{W_{E V}}-\underline{W_{E V}}$ is of the order of $\left\|\mathbf{p}-\mathbf{p}^{\prime}\right\|^{2}$
- second-order concern unless the price change is big

Rationalizable aggregate behaviors

Individuals have preferences from a domain \mathcal{D} (e.g., linear, Leontief). What are possible aggregate behaviors?

Rationalizable aggregate behaviors

Individuals have preferences from a domain \mathcal{D} (e.g., linear, Leontief).
What are possible aggregate behaviors?

Definition

the completion of \mathcal{D} is the closure of the set of all preferences that can be obtained by aggregation

Rationalizable aggregate behaviors

Individuals have preferences from a domain \mathcal{D} (e.g., linear, Leontief). What are possible aggregate behaviors?

Definition

the completion of \mathcal{D} is the closure of the set of all preferences that can be obtained by aggregation

- Cobb-Douglas $=$ the completion of single-minded pref. $u_{i}(\mathbf{x})=x_{i}$

Rationalizable aggregate behaviors

Individuals have preferences from a domain \mathcal{D} (e.g., linear, Leontief). What are possible aggregate behaviors?

Definition

the completion of \mathcal{D} is the closure of the set of all preferences that can be obtained by aggregation

- Cobb-Douglas $=$ the completion of single-minded pref. $u_{i}(\mathbf{x})=x_{i}$

Corollary of Theorem 1

the completion of \mathcal{D} consists of all preferences with LEF from the convex hull

$$
\operatorname{conv}\left\{\ln E_{\succsim}: \succsim \in \mathcal{D}\right\}
$$

Space of $\angle E F$:
$\operatorname{conv}[D]$
D

Rationalizable aggregate behaviors

Individuals have preferences from a domain \mathcal{D} (e.g., linear, Leontief). What are possible aggregate behaviors?

Definition

the completion of \mathcal{D} is the closure of the set of all preferences that can be obtained by aggregation

- Cobb-Douglas $=$ the completion of single-minded pref. $u_{i}(\mathbf{x})=x_{i}$

Corollary of Theorem 1

the completion of \mathcal{D} consists of all preferences
with LEF from the convex hull

$$
\operatorname{conv}\left\{\ln E_{\succsim}: \succsim \in \mathcal{D}\right\}
$$

Space of LEF:
$\operatorname{conv}[D]$
D

- A domain is aggregation-invariant if any population behaves like a single agent from the same domain

Rationalizable aggregate behaviors

Individuals have preferences from a domain \mathcal{D} (e.g., linear, Leontief). What are possible aggregate behaviors?

Definition

the completion of \mathcal{D} is the closure of the set of all preferences that can be obtained by aggregation

- Cobb-Douglas $=$ the completion of single-minded pref. $u_{i}(\mathbf{x})=x_{i}$

Corollary of Theorem 1

the completion of \mathcal{D} consists of all preferences
with LEF from the convex hull

$$
\operatorname{conv}\left\{\ln E_{\succsim}: \succsim \in \mathcal{D}\right\}
$$

Space of LEF:
$\operatorname{conv}[\mathcal{D}]$
D

- A domain is aggregation-invariant if any population behaves like a single agent from the same domain
- The completion of $\mathcal{D}=$ the minimal invariant domain containing \mathcal{D}

Rationalizable aggregate behaviors: examples

Finitely-generated domains

- For $\mathcal{D}=\left\{\succsim_{1}, \ldots, \succsim_{m}\right\}$, the completion consists of all preferences with LEF

$$
\ln E=\sum_{k=1}^{m} \beta_{k} \cdot \ln E_{k}
$$

Rationalizable aggregate behaviors: examples

Finitely-generated domains

- For $\mathcal{D}=\left\{\succsim_{1}, \ldots, \succsim_{m}\right\}$, the completion consists of all preferences with LEF

$$
\ln E=\sum_{k=1}^{m} \beta_{k} \cdot \ln E_{k}
$$

- A recipe for invariant parametric domains

Rationalizable aggregate behaviors: examples

Finitely-generated domains

- For $\mathcal{D}=\left\{\succsim_{1}, \ldots, \succsim_{m}\right\}$, the completion consists of all preferences with LEF

$$
\ln E=\sum_{k=1}^{m} \beta_{k} \cdot \ln E_{k}
$$

- A recipe for invariant parametric domains

Linear preferences $u(\mathbf{x})=\langle\mathbf{v}, \mathbf{x}\rangle$ over n goods

Rationalizable aggregate behaviors: examples

Finitely-generated domains

- For $\mathcal{D}=\left\{\succsim_{1}, \ldots, \succsim_{m}\right\}$, the completion consists of all preferences with LEF

$$
\ln E=\sum_{k=1}^{m} \beta_{k} \cdot \ln E_{k}
$$

- A recipe for invariant parametric domains

Linear preferences $u(\mathbf{x})=\langle\mathbf{v}, \mathbf{x}\rangle$ over n goods

- $n=2$: the completion $=$ domain of substitutes
- domain of substitutes $\Leftrightarrow D_{i}(\mathbf{p})$ increases in $\mathbf{p}_{-\mathbf{i}}$

Rationalizable aggregate behaviors: examples

Finitely-generated domains

- For $\mathcal{D}=\left\{\succsim_{1}, \ldots, \succsim_{m}\right\}$, the completion consists of all preferences with LEF

$$
\ln E=\sum_{k=1}^{m} \beta_{k} \cdot \ln E_{k}
$$

- A recipe for invariant parametric domains

Linear preferences $u(\mathbf{x})=\langle\mathbf{v}, \mathbf{x}\rangle$ over n goods

- $n=2$: the completion $=$ domain of substitutes
- domain of substitutes $\Leftrightarrow D_{i}(\mathbf{p})$ increases in $\mathbf{p}_{-\mathbf{i}}$
- $n \geq 3$: extra constraints on demand's
 cross-derivatives (related to ARUM) datails

Rationalizable aggregate behaviors: examples

Finitely-generated domains

- For $\mathcal{D}=\left\{\succsim_{1}, \ldots, \succsim_{m}\right\}$, the completion consists of all preferences with LEF

$$
\ln E=\sum_{k=1}^{m} \beta_{k} \cdot \ln E_{k}
$$

- A recipe for invariant parametric domains

Linear preferences $u(\mathbf{x})=\langle\mathbf{v}, \mathbf{x}\rangle$ over n goods

- $n=2$: the completion $=$ domain of substitutes
- domain of substitutes $\Leftrightarrow D_{i}(\mathbf{p})$ increases in $\mathbf{p}_{-\mathbf{i}}$
- $n \geq 3$: extra constraints on demand's
 cross-derivatives (related to ARUM)

Leontief preferences $u(\mathbf{x})=\min _{i} x_{i} / v_{i}$ details

Rationalizable aggregate behaviors: examples

Finitely-generated domains

- For $\mathcal{D}=\left\{\succsim_{1}, \ldots, \succsim_{m}\right\}$, the completion consists of all preferences with LEF

$$
\ln E=\sum_{k=1}^{m} \beta_{k} \cdot \ln E_{k}
$$

- A recipe for invariant parametric domains

Linear preferences $u(\mathbf{x})=\langle\mathbf{v}, \mathbf{x}\rangle$ over n goods

- $n=2$: the completion $=$ domain of substitutes
- domain of substitutes $\Leftrightarrow D_{i}(\mathbf{p})$ increases in $\mathbf{p}_{-\mathbf{i}}$
- $n \geq 3$: extra constraints on demand's
 cross-derivatives (related to ARUM)

Leontief preferences $u(\mathbf{x})=\min _{i} x_{i} / v_{i}$ detatils

- The completion \subset all complements with a complete-monotonicity constraint on the demand

Rationalizable aggregate behaviors: examples

Finitely-generated domains

- For $\mathcal{D}=\left\{\succsim_{1}, \ldots, \succsim_{m}\right\}$, the completion consists of all preferences with LEF

$$
\ln E=\sum_{k=1}^{m} \beta_{k} \cdot \ln E_{k}
$$

- A recipe for invariant parametric domains

Linear preferences $u(\mathbf{x})=\langle\mathbf{v}, \mathbf{x}\rangle$ over n goods

- $n=2$: the completion $=$ domain of substitutes detatils
- domain of substitutes $\Leftrightarrow D_{i}(\mathbf{p})$ increases in $\mathbf{p}_{-\mathbf{i}}$
- $n \geq 3$: extra constraints on demand's
 cross-derivatives (related to ARUM)

Leontief preferences $u(\mathbf{x})=\min _{i} x_{i} / v_{i}$ details

- The completion \subset all complements with a complete-monotonicity constraint on the demand

Conclusion

Parameters are not aligned with aggregation \Rightarrow large completion

Pseudo-market mechanisms

- Pseudo-markets aka CEEI are mechanisms for fair allocation without transfers (Varian 1974, Hylland \& Zeckhauser 1979)

Pseudo-market mechanisms

- Pseudo-markets aka CEEI are mechanisms for fair allocation without transfers (Varian 1974, Hylland \& Zeckhauser 1979)
- Example (Budish et al. 2017):

How Wharton allocates seats in over-demanded courses?

Pseudo-market mechanisms

- Pseudo-markets aka CEEI are mechanisms for fair allocation without transfers (Varian 1974, Hylland \& Zeckhauser 1979)
- Example (Budish et al. 2017):

How Wharton allocates seats in over-demanded courses?

- students submit preferences to a "black box"

Pseudo-market mechanisms

- Pseudo-markets aka CEEI are mechanisms for fair allocation without transfers (Varian 1974, Hylland \& Zeckhauser 1979)
- Example (Budish et al. 2017):

How Wharton allocates seats in over-demanded courses?

- students submit preferences to a "black box"
- the box simulates an exchange economy with equal endowments

Pseudo-market mechanisms

- Pseudo-markets aka CEEI are mechanisms for fair allocation without transfers (Varian 1974, Hylland \& Zeckhauser 1979)
- Example (Budish et al. 2017):

How Wharton allocates seats in over-demanded courses?

- students submit preferences to a "black box"
- the box simulates an exchange economy with equal endowments
- the equilibrium allocation tells who gets what

Pseudo-market mechanisms

- Pseudo-markets aka CEEI are mechanisms for fair allocation without transfers (Varian 1974, Hylland \& Zeckhauser 1979)
- Example (Budish et al. 2017):

How Wharton allocates seats in over-demanded courses?

- students submit preferences to a "black box"
- the box simulates an exchange economy with equal endowments
- the equilibrium allocation tells who gets what

- Outstanding fairness and efficiency properties in a various settings
- Many applications: Ashlagi \& Shi (2016), Bogomolnaia et al. (2017), Devanur et al. (2018), Echenique et al. (2021), Conitzer et al. (2022), Gao \& Kroer (2022), Gul \& Pesendorfer (2022)

Pseudo-market mechanisms

- Pseudo-markets aka CEEI are mechanisms for fair allocation without transfers (Varian 1974, Hylland \& Zeckhauser 1979)
- Example (Budish et al. 2017):

How Wharton allocates seats in over-demanded courses?

- students submit preferences to a "black box"
- the box simulates an exchange economy with equal endowments
- the equilibrium allocation tells who gets what

- Outstanding fairness and efficiency properties in a various settings
- Many applications: Ashlagi \& Shi (2016), Bogomolnaia et al. (2017), Devanur et al. (2018), Echenique et al. (2021), Conitzer et al. (2022), Gao \& Kroer (2022), Gul \& Pesendorfer (2022)
- Main criticism: computationally challenging

Pseudo-market mechanisms

- Pseudo-markets aka CEEI are mechanisms for fair allocation without transfers (Varian 1974, Hylland \& Zeckhauser 1979)
- Example (Budish et al. 2017):

How Wharton allocates seats in over-demanded courses?

- students submit preferences to a "black box"
- the box simulates an exchange economy with equal endowments
- the equilibrium allocation tells who gets what

- Outstanding fairness and efficiency properties in a various settings
- Many applications: Ashlagi \& Shi (2016), Bogomolnaia et al. (2017), Devanur et al. (2018), Echenique et al. (2021), Conitzer et al. (2022), Gao \& Kroer (2022), Gul \& Pesendorfer (2022)
- Main criticism: computationally challenging
- Our goal: find preference domains where easy to compute

Pseudo-market mechanisms

A basic exchange economy (aka Fisher market in algorithmic econ.):

Pseudo-market mechanisms

A basic exchange economy (aka Fisher market in algorithmic econ.):

- Consumers $\succsim_{1}, \ldots, \succsim_{m}$ with equal incomes $b_{1}=\ldots=b_{m}=b$

Pseudo-market mechanisms

A basic exchange economy (aka Fisher market in algorithmic econ.):

- Consumers $\succsim_{1}, \ldots, \succsim_{m}$ with equal incomes $b_{1}=\ldots=b_{m}=b$
- Fixed supply $\mathbf{x} \in \mathbb{R}_{++}^{n}$

Pseudo-market mechanisms

A basic exchange economy (aka Fisher market in algorithmic econ.):

- Consumers $\succsim_{1}, \ldots, \succsim_{m}$ with equal incomes $b_{1}=\ldots=b_{m}=b$
- Fixed supply $\mathbf{x} \in \mathbb{R}_{++}^{n}$

Definition

$\left(\mathbf{x}_{\mathbf{1}}, \ldots \mathbf{x}_{\mathbf{m}}, \mathbf{p}\right)$ is an equilibrium if $\mathbf{x}_{\mathbf{k}} \in D_{k}(\mathbf{p}, b)$ and $\mathbf{x}_{\mathbf{1}}+\ldots \mathbf{x}_{\mathbf{m}}=\mathbf{x}$

Pseudo-market mechanisms

A basic exchange economy (aka Fisher market in algorithmic econ.):

- Consumers $\succsim_{1}, \ldots, \succsim_{m}$ with equal incomes $b_{1}=\ldots=b_{m}=b$
- Fixed supply $\mathbf{x} \in \mathbb{R}_{++}^{n}$

Definition

($\mathbf{x}_{\mathbf{1}}, \ldots \mathbf{x}_{\mathbf{m}}, \mathbf{p}$) is an equilibrium if $\mathbf{x}_{\mathbf{k}} \in D_{k}(\mathbf{p}, b)$ and $\mathbf{x}_{\mathbf{1}}+\ldots \mathbf{x}_{\mathbf{m}}=\mathbf{x}$

- Computing equilibrium is challenging even for linear preferences
- e.g., Devanur et al. (2002), Orlin (2010), Vegh (2012)

Pseudo-market mechanisms

A basic exchange economy (aka Fisher market in algorithmic econ.):

- Consumers $\succsim_{1}, \ldots, \succsim_{m}$ with equal incomes $b_{1}=\ldots=b_{m}=b$
- Fixed supply $\mathbf{x} \in \mathbb{R}_{++}^{n}$

Definition

($\mathbf{x}_{\mathbf{1}}, \ldots \mathbf{x}_{\mathbf{m}}, \mathbf{p}$) is an equilibrium if $\mathbf{x}_{\mathbf{k}} \in D_{k}(\mathbf{p}, b)$ and $\mathbf{x}_{\mathbf{1}}+\ldots \mathbf{x}_{\mathbf{m}}=\mathbf{x}$

- Computing equilibrium is challenging even for linear preferences
- e.g., Devanur et al. (2002), Orlin (2010), Vegh (2012)

Theorem (informal)

- Complexity in \mathcal{D} is lower-bounded by that in the completion

Pseudo-market mechanisms

A basic exchange economy (aka Fisher market in algorithmic econ.):

- Consumers $\succsim_{1}, \ldots, \succsim_{m}$ with equal incomes $b_{1}=\ldots=b_{m}=b$
- Fixed supply $\mathbf{x} \in \mathbb{R}_{++}^{n}$

Definition

($\mathbf{x}_{\mathbf{1}}, \ldots \mathbf{x}_{\mathbf{m}}, \mathbf{p}$) is an equilibrium if $\mathbf{x}_{\mathbf{k}} \in D_{k}(\mathbf{p}, b)$ and $\mathbf{x}_{\mathbf{1}}+\ldots \mathbf{x}_{\mathbf{m}}=\mathbf{x}$

- Computing equilibrium is challenging even for linear preferences
- e.g., Devanur et al. (2002), Orlin (2010), Vegh (2012)

Theorem (informal)

- Complexity in \mathcal{D} is lower-bounded by that in the completion
- For finitely-generated \mathcal{D}, equilibrium can be computed efficiently

Pseudo-market mechanisms

A basic exchange economy (aka Fisher market in algorithmic econ.):

- Consumers $\succsim_{1}, \ldots, \succsim_{m}$ with equal incomes $b_{1}=\ldots=b_{m}=b$
- Fixed supply $\mathbf{x} \in \mathbb{R}_{++}^{n}$

Definition

($\mathbf{x}_{\mathbf{1}}, \ldots \mathbf{x}_{\mathbf{m}}, \mathbf{p}$) is an equilibrium if $\mathbf{x}_{\mathbf{k}} \in D_{k}(\mathbf{p}, b)$ and $\mathbf{x}_{\mathbf{1}}+\ldots \mathbf{x}_{\mathbf{m}}=\mathbf{x}$

- Computing equilibrium is challenging even for linear preferences
- e.g., Devanur et al. (2002), Orlin (2010), Vegh (2012)

Theorem (informal)

- Complexity in \mathcal{D} is lower-bounded by that in the completion
- For finitely-generated \mathcal{D}, equilibrium can be computed efficiently
- The linear domain has large completion \Rightarrow hardness

Pseudo-market mechanisms

A basic exchange economy (aka Fisher market in algorithmic econ.):

- Consumers $\succsim_{1}, \ldots, \succsim_{m}$ with equal incomes $b_{1}=\ldots=b_{m}=b$
- Fixed supply $\mathbf{x} \in \mathbb{R}_{++}^{n}$

Definition

$\left(\mathbf{x}_{1}, \ldots \mathbf{x}_{\mathbf{m}}, \mathbf{p}\right)$ is an equilibrium if $\mathbf{x}_{\mathbf{k}} \in D_{k}(\mathbf{p}, b)$ and $\mathbf{x}_{\mathbf{1}}+\ldots \mathbf{x}_{\mathbf{m}}=\mathbf{x}$

- Computing equilibrium is challenging even for linear preferences
- e.g., Devanur et al. (2002), Orlin (2010), Vegh (2012)

Theorem (informal)

- Complexity in \mathcal{D} is lower-bounded by that in the completion
- For finitely-generated \mathcal{D}, equilibrium can be computed efficiently
- The linear domain has large completion \Rightarrow hardness

Conclusion

Use finitely-generated \mathcal{D} as bidding languages in large-scale applications

Identification of preference distribution

- Aggregate behavior may be compatible with various populations

Identification of preference distribution

- Aggregate behavior may be compatible with various populations
- What are domains \mathcal{D} of individual preferences s.t. aggregate demand is a sufficient statistic for preference distribution?

Identification of preference distribution

- Aggregate behavior may be compatible with various populations
- What are domains \mathcal{D} of individual preferences s.t. aggregate demand is a sufficient statistic for preference distribution?
- Example: single-minded preferences $u_{i}(\mathbf{x})=x_{i}, i=1, \ldots, n$

Identification of preference distribution

- Aggregate behavior may be compatible with various populations
- What are domains \mathcal{D} of individual preferences s.t. aggregate demand is a sufficient statistic for preference distribution?
- Example: single-minded preferences $u_{i}(\mathbf{x})=x_{i}, i=1, \ldots, n$
- A convex set is a simplex if each point can be represented as an average of extreme points in a unique way

Identification of preference distribution

- Aggregate behavior may be compatible with various populations
- What are domains \mathcal{D} of individual preferences s.t. aggregate demand is a sufficient statistic for preference distribution?
- Example: single-minded preferences $u_{i}(\mathbf{x})=x_{i}, i=1, \ldots, n$
- A convex set is a simplex if each point can be represented as an average of extreme points in a unique way

Corollary of Theorem 1

Aggregate behavior is a sufficient statistic for preference distribution $\Leftrightarrow \mathcal{D}$ is the set of extreme points of a simplex in the LEF space

Identification of preference distribution

- Aggregate behavior may be compatible with various populations
- What are domains \mathcal{D} of individual preferences s.t. aggregate demand is a sufficient statistic for preference distribution?
- Example: single-minded preferences $u_{i}(\mathbf{x})=x_{i}, i=1, \ldots, n$
- A convex set is a simplex if each point can be represented as an average of extreme points in a unique way

Corollary of Theorem 1

Aggregate behavior is a sufficient statistic for preference distribution $\Leftrightarrow \mathcal{D}$ is the set of extreme points of a simplex in the LEF space

Linear for $n \geq 2$ goods
Examples:

Leontief for $n=2$ goods

Key takeaways

To handle aggregation, represent preferences by LEF

- All preferences \simeq a compact convex set
- Aggregation \simeq weighted average
- Optimization over populations with given aggregate behavior \simeq Bayesian persuasion
- Domain completion \simeq convex hull
- Domain completion reflects complexity of equilibrium
- Indecomposable preferences \simeq extreme points

Key takeaways

To handle aggregation, represent preferences by LEF

- All preferences \simeq a compact convex set
- Aggregation \simeq weighted average
- Optimization over populations with given aggregate behavior \simeq Bayesian persuasion
- Domain completion \simeq convex hull
- Domain completion reflects complexity of equilibrium
- Indecomposable preferences \simeq extreme points

This project \subset a broader agenda on connections between information economics and economic design

Key takeaways

To handle aggregation, represent preferences by LEF

- All preferences \simeq a compact convex set
- Aggregation \simeq weighted average
- Optimization over populations with given aggregate behavior \simeq Bayesian persuasion
- Domain completion \simeq convex hull
- Domain completion reflects complexity of equilibrium
- Indecomposable preferences \simeq extreme points

This project \subset a broader agenda on connections between information economics and economic design

> Thank you!

Indecomposable preferences back

- A preference $\succsim \in \mathcal{D}$ is indecomposable in \mathcal{D} if it cannot be represented as an aggregation of $\succsim_{1}, \succsim_{2} \in \mathcal{D}$ with $\succsim_{1} \neq \succsim_{2}$

Indecomposable preferences back

- A preference $\succsim \in \mathcal{D}$ is indecomposable in \mathcal{D} if it cannot be represented as an aggregation of $\succsim_{1}, \succsim_{2} \in \mathcal{D}$ with $\succsim_{1} \neq \succsim_{2}$
- Linear and Leontief are indecomposable in all homothetic

Indecomposable preferences back

- A preference $\succsim \in \mathcal{D}$ is indecomposable in \mathcal{D} if it cannot be represented as an aggregation of $\succsim_{1}, \succsim_{2} \in \mathcal{D}$ with $\succsim_{1} \neq \succsim_{2}$
- Linear and Leontief are indecomposable in all homothetic
- Correspond to extreme points of $\left\{\ln E_{\succsim}: \succsim \in \mathcal{D}\right\}$

Indecomposable preferences back

- A preference $\succsim \in \mathcal{D}$ is indecomposable in \mathcal{D} if it cannot be represented as an aggregation of $\succsim_{1}, \succsim_{2} \in \mathcal{D}$ with $\succsim_{1} \neq \succsim_{2}$
- Linear and Leontief are indecomposable in all homothetic
- Correspond to extreme points of $\left\{\ln E_{\succsim}: \succsim \in \mathcal{D}\right\}$

Example: indecomposable preferences over 2 goods
All homothetic

Indecomposable preferences

- A preference $\succsim \in \mathcal{D}$ is indecomposable in \mathcal{D} if it cannot be represented as an aggregation of $\succsim_{1}, \succsim_{2} \in \mathcal{D}$ with $\succsim_{1} \neq \succsim_{2}$
- Linear and Leontief are indecomposable in all homothetic
- Correspond to extreme points of $\left\{\ln E_{\succsim}: \succsim \in \mathcal{D}\right\}$

Example: indecomposable preferences over 2 goods

All homothetic Substitutes: $D_{i} \uparrow \mathbf{p}_{-i}$

Indecomposable preferences

- A preference $\succsim \in \mathcal{D}$ is indecomposable in \mathcal{D} if it cannot be represented as an aggregation of $\succsim_{1}, \succsim_{2} \in \mathcal{D}$ with $\succsim_{1} \neq \succsim_{2}$
- Linear and Leontief are indecomposable in all homothetic
- Correspond to extreme points of $\left\{\ln E_{\succsim}: \succsim \in \mathcal{D}\right\}$

Example: indecomposable preferences over 2 goods
All homothetic Substitutes: $D_{i} \uparrow \mathbf{p}_{-i}$ Complements: $D_{i} \downarrow \mathbf{p}_{-i}$

Indecomposable preferences

- A preference $\succsim \in \mathcal{D}$ is indecomposable in \mathcal{D} if it cannot be represented as an aggregation of $\succsim_{1}, \succsim_{2} \in \mathcal{D}$ with $\succsim_{1} \neq \succsim_{2}$
- Linear and Leontief are indecomposable in all homothetic
- Correspond to extreme points of $\left\{\ln E_{\succsim}: \succsim \in \mathcal{D}\right\}$

Example: indecomposable preferences over 2 goods
All homothetic Substitutes: $D_{i} \uparrow \mathbf{p}_{-i}$ Complements: $D_{i} \downarrow \mathbf{p}_{-i}$

- Any aggregate preference of a population from \mathcal{D} can be generated by a population with indecomposable preferences \Leftarrow Choquet theory

Indecomposable preferences

- A preference $\succsim \in \mathcal{D}$ is indecomposable in \mathcal{D} if it cannot be represented as an aggregation of $\succsim_{1}, \succsim_{2} \in \mathcal{D}$ with $\succsim_{1} \neq \succsim_{2}$
- Linear and Leontief are indecomposable in all homothetic
- Correspond to extreme points of $\left\{\ln E_{\succsim}: \succsim \in \mathcal{D}\right\}$

Example: indecomposable preferences over 2 goods All homothetic Substitutes: $D_{i} \uparrow \mathbf{p}_{-i}$ Complements: $D_{i} \downarrow \mathbf{p}_{-i}$

- Any aggregate preference of a population from \mathcal{D} can be generated by a population with indecomposable preferences \Leftarrow Choquet theory

Conclusion

Indecomposable preferences are "elementary building blocks"

Example: linear preferences over 2 goods back

- $u(\mathbf{x})=v_{1} \cdot x_{1}+v_{2} \cdot x_{2}$,

Example: linear preferences over 2 goods bat

- $u(\mathbf{x})=v_{1} \cdot x_{1}+v_{2} \cdot x_{2}, \quad E(\mathbf{p})=\min \left\{p_{1} / v_{1}, p_{2} / v_{2}\right\}$

Example: linear preferences over 2 goods bat

- $u(\mathbf{x})=v_{1} \cdot x_{1}+v_{2} \cdot x_{2}, \quad E(\mathbf{p})=\min \left\{p_{1} / v_{1}, p_{2} / v_{2}\right\}$
- The completion $=$ preferences s.t.

$$
\log E(\mathbf{p})=\int_{\mathbb{R}_{+}^{2}} \log \left(\min \left\{p_{1} / v_{1}, p_{2} / v_{2}\right\}\right) \mathrm{d} \mu\left(v_{1}, v_{2}\right)
$$

Example: linear preferences over 2 goods

- $u(\mathbf{x})=v_{1} \cdot x_{1}+v_{2} \cdot x_{2}, \quad E(\mathbf{p})=\min \left\{p_{1} / v_{1}, p_{2} / v_{2}\right\}$
- The completion $=$ preferences s.t.

$$
\log E(\mathbf{p})=\int_{\mathbb{R}_{+}^{2}} \log \left(\min \left\{p_{1} / v_{1}, p_{2} / v_{2}\right\}\right) \mathrm{d} \mu\left(v_{1}, v_{2}\right)
$$

- What is the image of all probability measures under this integral operator?

Example: linear preferences over 2 goods

- $u(\mathbf{x})=v_{1} \cdot x_{1}+v_{2} \cdot x_{2}, \quad E(\mathbf{p})=\min \left\{p_{1} / v_{1}, p_{2} / v_{2}\right\}$
- The completion $=$ preferences s.t.

$$
\log E(\mathbf{p})=\int_{\mathbb{R}_{+}^{2}} \log \left(\min \left\{p_{1} / v_{1}, p_{2} / v_{2}\right\}\right) \mathrm{d} \mu\left(v_{1}, v_{2}\right)
$$

- What is the image of all probability measures under this integral operator?
- Definition: goods are substitutes if D_{i} is increasing in p_{-i}

Example: linear preferences over 2 goods

- $u(\mathbf{x})=v_{1} \cdot x_{1}+v_{2} \cdot x_{2}, \quad E(\mathbf{p})=\min \left\{p_{1} / v_{1}, p_{2} / v_{2}\right\}$
- The completion $=$ preferences s.t.

$$
\log E(\mathbf{p})=\int_{\mathbb{R}_{+}^{2}} \log \left(\min \left\{p_{1} / v_{1}, p_{2} / v_{2}\right\}\right) \mathrm{d} \mu\left(v_{1}, v_{2}\right)
$$

- What is the image of all probability measures under this integral operator?
- Definition: goods are substitutes if D_{i} is increasing in p_{-i}

Proposition

The completion of linear over 2 goods $=$ the domain of substitutes

Example: linear preferences over 2 goods

- $u(\mathbf{x})=v_{1} \cdot x_{1}+v_{2} \cdot x_{2}, \quad E(\mathbf{p})=\min \left\{p_{1} / v_{1}, p_{2} / v_{2}\right\}$
- The completion $=$ preferences s.t.

$$
\log E(\mathbf{p})=\int_{\mathbb{R}_{+}^{2}} \log \left(\min \left\{p_{1} / v_{1}, p_{2} / v_{2}\right\}\right) \mathrm{d} \mu\left(v_{1}, v_{2}\right)
$$

- What is the image of all probability measures under this integral operator?
- Definition: goods are substitutes if D_{i} is increasing in p_{-i}

Proposition

The completion of linear over 2 goods $=$ the domain of substitutes

- E pins down μ, i.e., the market demand is a sufficient statistic for the distribution of linear preferences over the population

Example: linear preferences over 2 goods

- $u(\mathbf{x})=v_{1} \cdot x_{1}+v_{2} \cdot x_{2}, \quad E(\mathbf{p})=\min \left\{p_{1} / v_{1}, p_{2} / v_{2}\right\}$
- The completion $=$ preferences s.t.

$$
\log E(\mathbf{p})=\int_{\mathbb{R}_{+}^{2}} \log \left(\min \left\{p_{1} / v_{1}, p_{2} / v_{2}\right\}\right) \mathrm{d} \mu\left(v_{1}, v_{2}\right)
$$

- What is the image of all probability measures under this integral operator?
- Definition: goods are substitutes if D_{i} is increasing in p_{-i}

Proposition

The completion of linear over 2 goods $=$ the domain of substitutes

- E pins down μ, i.e., the market demand is a sufficient statistic for the distribution of linear preferences over the population
- Geometric meaning: the domain of substitutes is a "simplex" and linear preferences are extreme points

Example: linear preferences for $n \geq 3$ goods mats

- the completion $=$ preferences s.t. LEF satisfies

$$
\log E(\mathbf{p})=\int_{\mathbb{R}_{+}^{n}} \log \left(\min _{i} \frac{p_{i}}{v_{i}}\right) \mathrm{d} \mu(\mathbf{v})
$$

Example: linear preferences for $n \geq 3$ goods

- the completion $=$ preferences s.t. LEF satisfies

$$
\log E(\mathbf{p})=\int_{\mathbb{R}_{+}^{n}} \log \left(\min _{i} \frac{p_{i}}{v_{i}}\right) \mathrm{d} \mu(\mathbf{v})
$$

- ARUM: a decision-maker chooses an alternative with the highest value $w_{i}+\varepsilon_{i}$ (deterministic + stochastic components).

Example: linear preferences for $n \geq 3$ goods

- the completion $=$ preferences s.t. LEF satisfies

$$
\log E(\mathbf{p})=\int_{\mathbb{R}_{+}^{n}} \log \left(\min _{i} \frac{p_{i}}{v_{i}}\right) \mathrm{d} \mu(\mathbf{v})
$$

- ARUM: a decision-maker chooses an alternative with the highest value $w_{i}+\varepsilon_{i}$ (deterministic + stochastic components). Her utility:

$$
U(\mathbf{w})=\mathbb{E}\left[\max _{i=1, \ldots n}\left(w_{i}+\varepsilon_{i}\right)\right] .
$$

Example: linear preferences for $n \geq 3$ goods

- the completion $=$ preferences s.t. LEF satisfies

$$
\log E(\mathbf{p})=\int_{\mathbb{R}_{+}^{n}} \log \left(\min _{i} \frac{p_{i}}{v_{i}}\right) \mathrm{d} \mu(\mathbf{v})
$$

- ARUM: a decision-maker chooses an alternative with the highest value $w_{i}+\varepsilon_{i}$ (deterministic + stochastic components). Her utility:

$$
U(\mathbf{w})=\mathbb{E}\left[\max _{i=1, \ldots n}\left(w_{i}+\varepsilon_{i}\right)\right] .
$$

- For any ARUM and any subset of distinct alternatives $j_{1}, j_{2}, \ldots, j_{q}$ with $q \leq n$, the following inequality holds

$$
\frac{\partial^{q} U(\mathbf{w})}{\partial w_{j_{1}} \partial w_{j_{2}} \ldots \partial w_{j_{q}}} \cdot(-1)^{q} \leq 0
$$

Example: linear preferences for $n \geq 3$ goods

- the completion $=$ preferences s.t. LEF satisfies

$$
\log E(\mathbf{p})=\int_{\mathbb{R}_{+}^{n}} \log \left(\min _{i} \frac{p_{i}}{v_{i}}\right) \mathrm{d} \mu(\mathbf{v})
$$

- ARUM: a decision-maker chooses an alternative with the highest value $w_{i}+\varepsilon_{i}$ (deterministic + stochastic components). Her utility:

$$
U(\mathbf{w})=\mathbb{E}\left[\max _{i=1, \ldots n}\left(w_{i}+\varepsilon_{i}\right)\right] .
$$

- For any ARUM and any subset of distinct alternatives $j_{1}, j_{2}, \ldots, j_{q}$ with $q \leq n$, the following inequality holds

$$
\frac{\partial^{q} U(\mathbf{w})}{\partial w_{j_{1}} \partial w_{j_{2}} \ldots \partial w_{j_{q}}} \cdot(-1)^{q} \leq 0
$$

- Interpret μ as a distribution of preferences of a single decision-maker

Example: linear preferences for $n \geq 3$ goods

- the completion $=$ preferences s.t. LEF satisfies

$$
\log E(\mathbf{p})=\int_{\mathbb{R}_{+}^{n}} \log \left(\min _{i} \frac{p_{i}}{v_{i}}\right) \mathrm{d} \mu(\mathbf{v})
$$

- ARUM: a decision-maker chooses an alternative with the highest value $w_{i}+\varepsilon_{i}$ (deterministic + stochastic components). Her utility:

$$
U(\mathbf{w})=\mathbb{E}\left[\max _{i=1, \ldots n}\left(w_{i}+\varepsilon_{i}\right)\right] .
$$

- For any ARUM and any subset of distinct alternatives $j_{1}, j_{2}, \ldots, j_{q}$ with $q \leq n$, the following inequality holds

$$
\frac{\partial^{q} U(\mathbf{w})}{\partial w_{j_{1}} \partial w_{j_{2}} \ldots \partial w_{j_{q}}} \cdot(-1)^{q} \leq 0
$$

- Interpret μ as a distribution of preferences of a single decision-maker

Corollary

- the completion $=\left\{\succsim: \exists \operatorname{ARUM} U(\mathbf{w})=-\log \left(E\left(e^{-w_{1}}, \ldots, e^{-w_{n}}\right)\right\}\right.$

Example: linear preferences for $n \geq 3$ goods

- the completion $=$ preferences s.t. LEF satisfies

$$
\log E(\mathbf{p})=\int_{\mathbb{R}_{+}^{n}} \log \left(\min _{i} \frac{p_{i}}{v_{i}}\right) \mathrm{d} \mu(\mathbf{v})
$$

- ARUM: a decision-maker chooses an alternative with the highest value $w_{i}+\varepsilon_{i}$ (deterministic + stochastic components). Her utility:

$$
U(\mathbf{w})=\mathbb{E}\left[\max _{i=1, \ldots n}\left(w_{i}+\varepsilon_{i}\right)\right] .
$$

- For any ARUM and any subset of distinct alternatives $j_{1}, j_{2}, \ldots, j_{q}$ with $q \leq n$, the following inequality holds

$$
\frac{\partial^{q} U(\mathbf{w})}{\partial w_{j_{1}} \partial w_{j_{2}} \ldots \partial w_{j_{q}}} \cdot(-1)^{q} \leq 0
$$

- Interpret μ as a distribution of preferences of a single decision-maker

Corollary

- the completion $=\left\{\succsim\right.$: $\exists \operatorname{ARUM} U(\mathbf{w})=-\log \left(E\left(e^{-w_{1}}, \ldots, e^{-w_{n}}\right)\right\}$
- the completion \neq the domain of substitutes for $n \geq 3$

Example: Leontief preferences over 2 goods

- The domain of Leontief preferences over $n=2$ goods

$$
u(\mathbf{x})=\min \left\{x_{1} / v_{1}, x_{2} / v_{2}\right\}
$$

Example: Leontief preferences over 2 goods

- The domain of Leontief preferences over $n=2$ goods

$$
u(\mathbf{x})=\min \left\{x_{1} / v_{1}, x_{2} / v_{2}\right\}, \quad E(\mathbf{p})=v_{1} \cdot p_{1}+v_{2} \cdot p_{2}
$$

Example: Leontief preferences over 2 goods

- The domain of Leontief preferences over $n=2$ goods

$$
u(\mathbf{x})=\min \left\{x_{1} / v_{1}, x_{2} / v_{2}\right\}, \quad E(\mathbf{p})=v_{1} \cdot p_{1}+v_{2} \cdot p_{2}
$$

exhibit complementarity: D_{i} is decreasing in p_{-i}

Example: Leontief preferences over 2 goods

- The domain of Leontief preferences over $n=2$ goods

$$
u(\mathbf{x})=\min \left\{x_{1} / v_{1}, x_{2} / v_{2}\right\}, \quad E(\mathbf{p})=v_{1} \cdot p_{1}+v_{2} \cdot p_{2}
$$

exhibit complementarity: D_{i} is decreasing in p_{-i}

- the completion $=$ preferences s.t. expenditure function satisfies

$$
\log E(\mathbf{p})=\int_{\mathbb{R}_{+}^{2}} \log \left(v_{1} \cdot p_{1}+v_{2} \cdot p_{2}\right) \mathrm{d} \mu\left(v_{1}, v_{2}\right)
$$

Example: Leontief preferences over 2 goods

- The domain of Leontief preferences over $n=2$ goods

$$
u(\mathbf{x})=\min \left\{x_{1} / v_{1}, x_{2} / v_{2}\right\}, \quad E(\mathbf{p})=v_{1} \cdot p_{1}+v_{2} \cdot p_{2}
$$

exhibit complementarity: D_{i} is decreasing in p_{-i}

- the completion $=$ preferences s.t. expenditure function satisfies

$$
\log E(\mathbf{p})=\int_{\mathbb{R}_{+}^{2}} \log \left(v_{1} \cdot p_{1}+v_{2} \cdot p_{2}\right) \mathrm{d} \mu\left(v_{1}, v_{2}\right)
$$

- E is infinitely smooth

Example: Leontief preferences over 2 goods

- The domain of Leontief preferences over $n=2$ goods

$$
u(\mathbf{x})=\min \left\{x_{1} / v_{1}, x_{2} / v_{2}\right\}, \quad E(\mathbf{p})=v_{1} \cdot p_{1}+v_{2} \cdot p_{2}
$$

exhibit complementarity: D_{i} is decreasing in p_{-i}

- the completion $=$ preferences s.t. expenditure function satisfies

$$
\log E(\mathbf{p})=\int_{\mathbb{R}_{+}^{2}} \log \left(v_{1} \cdot p_{1}+v_{2} \cdot p_{2}\right) \mathrm{d} \mu\left(v_{1}, v_{2}\right)
$$

- E is infinitely smooth \Rightarrow the completion \neq the complements domain

Example: Leontief preferences over 2 goods

- The domain of Leontief preferences over $n=2$ goods

$$
u(\mathbf{x})=\min \left\{x_{1} / v_{1}, x_{2} / v_{2}\right\}, \quad E(\mathbf{p})=v_{1} \cdot p_{1}+v_{2} \cdot p_{2}
$$

exhibit complementarity: D_{i} is decreasing in p_{-i}

- the completion $=$ preferences s.t. expenditure function satisfies

$$
\log E(\mathbf{p})=\int_{\mathbb{R}_{+}^{2}} \log \left(v_{1} \cdot p_{1}+v_{2} \cdot p_{2}\right) \mathrm{d} \mu\left(v_{1}, v_{2}\right)
$$

- E is infinitely smooth \Rightarrow the completion \neq the complements domain
- E.g., $u\left(x_{1}, x_{2}\right)=\min \left\{\sqrt{x_{1} \cdot x_{2}}, x_{1}\right\}$ is beyond

Example: Leontief preferences over 2 goods

- The domain of Leontief preferences over $n=2$ goods

$$
u(\mathbf{x})=\min \left\{x_{1} / v_{1}, x_{2} / v_{2}\right\}, \quad E(\mathbf{p})=v_{1} \cdot p_{1}+v_{2} \cdot p_{2}
$$

exhibit complementarity: D_{i} is decreasing in p_{-i}

- the completion $=$ preferences s.t. expenditure function satisfies

$$
\log E(\mathbf{p})=\int_{\mathbb{R}_{+}^{2}} \log \left(v_{1} \cdot p_{1}+v_{2} \cdot p_{2}\right) \mathrm{d} \mu\left(v_{1}, v_{2}\right)
$$

- E is infinitely smooth \Rightarrow the completion \neq the complements domain
- E.g., $u\left(x_{1}, x_{2}\right)=\min \left\{\sqrt{x_{1} \cdot x_{2}}, x_{1}\right\}$ is beyond
- Definition: $S[\nu](\lambda)=\int_{\mathbb{R}_{+}} 1 /(\lambda+z) \mathrm{d} \nu(z)$ is the Stieltjes transform

Example: Leontief preferences over 2 goods

- The domain of Leontief preferences over $n=2$ goods

$$
u(\mathbf{x})=\min \left\{x_{1} / v_{1}, x_{2} / v_{2}\right\}, \quad E(\mathbf{p})=v_{1} \cdot p_{1}+v_{2} \cdot p_{2}
$$

exhibit complementarity: D_{i} is decreasing in p_{-i}

- the completion $=$ preferences s.t. expenditure function satisfies

$$
\log E(\mathbf{p})=\int_{\mathbb{R}_{+}^{2}} \log \left(v_{1} \cdot p_{1}+v_{2} \cdot p_{2}\right) \mathrm{d} \mu\left(v_{1}, v_{2}\right)
$$

- E is infinitely smooth \Rightarrow the completion \neq the complements domain
- E.g., $u\left(x_{1}, x_{2}\right)=\min \left\{\sqrt{x_{1} \cdot x_{2}}, x_{1}\right\}$ is beyond
- Definition: $S[\nu](\lambda)=\int_{\mathbb{R}_{+}} 1 /(\lambda+z) \mathrm{d} \nu(z)$ is the Stieltjes transform

Proposition

The completion is the set of preferences such that $D_{1}(\lambda, 1)$ is the Stieltjes transform of a positive measure ν (the distribution on v_{2} / v_{1}).

Example: Leontief preferences over 2 goods

- The domain of Leontief preferences over $n=2$ goods

$$
u(\mathbf{x})=\min \left\{x_{1} / v_{1}, x_{2} / v_{2}\right\}, \quad E(\mathbf{p})=v_{1} \cdot p_{1}+v_{2} \cdot p_{2}
$$

exhibit complementarity: D_{i} is decreasing in p_{-i}

- the completion $=$ preferences s.t. expenditure function satisfies

$$
\log E(\mathbf{p})=\int_{\mathbb{R}_{+}^{2}} \log \left(v_{1} \cdot p_{1}+v_{2} \cdot p_{2}\right) \mathrm{d} \mu\left(v_{1}, v_{2}\right)
$$

- E is infinitely smooth \Rightarrow the completion \neq the complements domain
- E.g., $u\left(x_{1}, x_{2}\right)=\min \left\{\sqrt{x_{1} \cdot x_{2}}, x_{1}\right\}$ is beyond
- Definition: $S[\nu](\lambda)=\int_{\mathbb{R}_{+}} 1 /(\lambda+z) \mathrm{d} \nu(z)$ is the Stieltjes transform

Proposition

The completion is the set of preferences such that $D_{1}(\lambda, 1)$ is the Stieltjes transform of a positive measure ν (the distribution on v_{2} / v_{1}).

- Remark: S is invertible (Stieltjes-Perron formula). Hence,

Example: Leontief preferences over 2 goods

- The domain of Leontief preferences over $n=2$ goods

$$
u(\mathbf{x})=\min \left\{x_{1} / v_{1}, x_{2} / v_{2}\right\}, \quad E(\mathbf{p})=v_{1} \cdot p_{1}+v_{2} \cdot p_{2}
$$

exhibit complementarity: D_{i} is decreasing in p_{-i}

- the completion $=$ preferences s.t. expenditure function satisfies

$$
\log E(\mathbf{p})=\int_{\mathbb{R}_{+}^{2}} \log \left(v_{1} \cdot p_{1}+v_{2} \cdot p_{2}\right) \mathrm{d} \mu\left(v_{1}, v_{2}\right)
$$

- E is infinitely smooth \Rightarrow the completion \neq the complements domain
- E.g., $u\left(x_{1}, x_{2}\right)=\min \left\{\sqrt{x_{1} \cdot x_{2}}, x_{1}\right\}$ is beyond
- Definition: $S[\nu](\lambda)=\int_{\mathbb{R}_{+}} 1 /(\lambda+z) \mathrm{d} \nu(z)$ is the Stieltjes transform

Proposition

The completion is the set of preferences such that $D_{1}(\lambda, 1)$ is the Stieltjes transform of a positive measure ν (the distribution on v_{2} / v_{1}).

- Remark: S is invertible (Stieltjes-Perron formula). Hence,
- market demand is sufficient to pin down preference distributions

More Related Literature

- Endogenous incomes and general preferences \Rightarrow "anything goes" for aggregate demand:
- Sonnenschein (1973), Mantel (1974, 1976), Debreu (1974), Chiappori and Ekeland (1999), Kirman and Koch (1986), Hildenbrand (2014)
- Representative agent approach
- Criticism of representative agents: Caselli \& Ventura (2000), Carroll (2000), Kirman (1992)
- Household behavior: Samuelson (1956), Chambers and Hayashi (2018), Browning \& Chiappori (1998)
- PIGLOG, AIDS, and similar functional forms
- Muellbauer $(1975,1976)$, Deaton \& Muellbauer (1980), Lewbel \& Pendakur (2009)

Integral representation of the completion

For infinite domains, we need to allow "continual" convex combinations

Integral representation of the completion

For infinite domains, we need to allow "continual" convex combinations

Theorem 3

The completion of $\mathcal{D}=$ preferences with expenditure functions E s.t.

$$
\log E(\mathbf{p})=\int_{\overline{\mathcal{D}}} \log E_{\succsim}(\mathbf{p}) \mathrm{d} \mu(\succsim),
$$

where μ is a Borel probability measure supported on the closure $\overline{\mathcal{D}}$ of \mathcal{D}

Integral representation of the completion

For infinite domains, we need to allow "continual" convex combinations

Theorem 3

The completion of $\mathcal{D}=$ preferences with expenditure functions E s.t.

$$
\log E(\mathbf{p})=\int_{\overline{\mathcal{D}}} \log E_{\succsim}(\mathbf{p}) \mathrm{d} \mu(\succsim)
$$

where μ is a Borel probability measure supported on the closure $\overline{\mathcal{D}}$ of \mathcal{D}

- Closure and the Borel structure are w.r.t. the distance

$$
d\left(\succsim, \succsim^{\prime}\right)=\max _{\mathbf{p} \in \Delta_{n-1}}\left|\frac{(\ln E(\mathbf{p})-\ln E((1, \ldots, 1)))-\left(\ln E^{\prime}(\mathbf{p})-\ln E^{\prime}((1, \ldots, 1))\right)}{\left(1+\max _{i}\left|\ln p_{i}\right|\right)^{2}}\right|
$$

Integral representation of the completion

For infinite domains, we need to allow "continual" convex combinations

Theorem 3

The completion of $\mathcal{D}=$ preferences with expenditure functions E s.t.

$$
\log E(\mathbf{p})=\int_{\overline{\mathcal{D}}} \log E_{\succsim}(\mathbf{p}) \mathrm{d} \mu(\succsim),
$$

where μ is a Borel probability measure supported on the closure $\overline{\mathcal{D}}$ of \mathcal{D}

- Closure and the Borel structure are w.r.t. the distance

$$
d\left(\succsim, \succsim^{\prime}\right)=\max _{\mathbf{p} \in \Delta_{n-1}}\left|\frac{\left(\ln E(\mathbf{p})-\ln E(((1, \ldots, 1)))-\left(\ln E^{\prime}(\mathbf{p})-\ln E^{\prime}((1, \ldots, 1))\right)\right.}{\left(1+\max _{i} \mid \ln p_{i}\right)^{2}}\right|
$$

- Preferences form a compact set \simeq convex subset of $C\left(\Delta_{n-1}\right)$

Integral representation of the completion

For infinite domains, we need to allow "continual" convex combinations

Theorem 3

The completion of $\mathcal{D}=$ preferences with expenditure functions E s.t.

$$
\log E(\mathbf{p})=\int_{\overline{\mathcal{D}}} \log E_{\succsim}(\mathbf{p}) \mathrm{d} \mu(\succsim),
$$

where μ is a Borel probability measure supported on the closure $\overline{\mathcal{D}}$ of \mathcal{D}

- Closure and the Borel structure are w.r.t. the distance

$$
d\left(\succsim, \succsim^{\prime}\right)=\max _{\mathbf{p} \in \Delta_{n-1}}\left|\frac{\left(\ln E(\mathbf{p})-\ln E(((1, \ldots, 1)))-\left(\ln E^{\prime}(\mathbf{p})-\ln E^{\prime}((1, \ldots, 1))\right)\right.}{\left(1+\max _{i} \mid \ln p_{i}\right)^{2}}\right|
$$

- Preferences form a compact set \simeq convex subset of $C\left(\Delta_{n-1}\right)$
- Choquet theory \Rightarrow Theorem 3

