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Our questions

from individual to population behavior and back

• How do assumptions on individual characteristics of consumers —

preferences and incomes — restrict aggregate demand?

• How does observed aggregate demand restrict individual

characteristics?

• > 100 papers since Sonnenschein (1973), two chapters in MWG...

• D. Kreps (2020):
So what can we say about aggregate demand based on the hy-

pothesis that individuals are preference/utility maximizers? Un-

less we are able to make strong assumptions about the distri-

bution of preferences or income throughout the economy (e.g.,

everyone has the same preferences) there is little we can say.

• The two extremes:
1. Sonnenschein-Mantel-Debreu theorem and related results

2. Gorman’s representative consumer

• Our paper is a middle ground: a rich enough tractable setting
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Our paper

Brings information economic tools to the classical problem

Key Contribution:

a method linking individual characteristics and market demand properties

• works for homothetic preferences (linear, Leontief, CES, etc)

Key Insights:

• utility functions NO, log(expenditure functions) YES

• a heterogeneous population ≃ a single consumer

whose log(expenditure function) = a weighted

average of individual ones

• enables extreme-point and convexification tools
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Applications

Robust welfare analysis

• Observe market demand, estimate a welfare change caused by a

price change

• Representative consumer approach:

• postulate a representative, use her utility as proxy for welfare

• hence, market demand is a sufficient statistic

• The same market demand can be generated by different populations

• Get a range of welfare levels for the equivalent variation

• We compute the range via Bayesian persuasion

• Given a domain of individual preferences (e.g. linear,

Leontief), what aggregate behaviors can we get?

• Rationalizable behaviors ≃ the convex hull in

log(expenditure)-space

• Emulate market outcomes in non-monetary settings, e.g., charity

• We design bidding languages for efficient outcome computation

• Aggregate behavior pins down preference distributions for “simplex

domains”
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Related literature more

• Representative agents

• almost never exist: Gorman (1961), Jackson & Yariv (2019)

• exist if income-dependent: Eisenberg (1961), Eisenberg &

Gale (1959), Jerrison (1984)

• Robust welfare analysis

• Kang and Vasserman (2022), Steiner et al. (2022)

• Pseudo-markets and complexity of exchange economies

• Pycia (2022), Moulin (2019), Nisan et al. (2007)

• Economic applications of extreme points, Choquet theory, and
convexification

• Kleiner et al. (2021), Arieli et al. (2020), Manelli & Vincent (2010),

Kamenica & Gentzkow (2011), Aumann et al. (1995)
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Individual consumer

Single consumer’s choice

• n divisible goods

• a consumer with a preference ≿ over Rn
+ and budget b

• ≿ is homothetic: x ≿ y ⇔ λx ≿ λy, λ > 0

• and convex, continuous, monotone

≿ ⇐⇒ concave utility u s.t. u(α · x) = α · u(x)

• demand as a function of prices p

D(p, b) = argmax
x∈Rn

+ : ⟨p,x⟩≤b

u(x)
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Aggregate consumer

• Consider a population of m consumers (≿k , bk)k=1,...,m

• Total income B =
∑

k bk and βk = bk/B the relative income of k

Definition

≿aggr is the aggregate preference for this population if

Daggr (p,B) = D1(p, b1) + . . .+ Dm(p, bm) for any price p

Eisenberg (1961), Eisenberg and Gale (1959):

• The aggregate preference exists

• Aggregate consumers’ utility ⇔ the Nash product maximization:

uaggr
(
x, (≿k , βk)

m
k=1

)
= max∑m

k=1 xk=x

m∏
k=1

(
uk(xk)

)βk

Challenging problem, no structural insights
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Aggregate consumer: a major simplification

• Aggregation is hard in the space of utilities ⇒ let’s try a dual space

• The expenditure function:

E (p) = min
x : u(x)≥1

⟨p, x⟩

• Preferences ⇐⇒ logarithmic expenditure function (LEF): log E (p)

Theorem 1

LEF of the aggregate is the average of individual LEFs

log Eaggr

(
p, (≿k , βk)

m
k=1

)
=

m∑
k=1

βk · log Ek(p)

• The dual to Eisenberg-Gale

• A simple result with numerous implications
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Aggregate consumer: the geometric mean(ing)

• How to define the geometric mean of convex sets?

• The support function of a convex set X ⊂ Rn is

hX (p) = min
x∈X

⟨p, x⟩

Definition (Boroczky et al. 2012, Milman and Rotem 2017)

Z = Xα ⊗ Y 1−α is the convex set such that

hZ = |hX |α · |hY |1−α

• E is the support function of the upper contour set

E (p) = min
x∈X

⟨p, x⟩, X = {x ∈ Rn
+ : u(x) ≥ 1}

Corollary

The upper contour set of the aggregate consumer is the geometric

mean of individual upper contour sets{
uaggr(x) ≥ 1

}
=

{
u1(x) ≥ 1

}β1 ⊗
{
u2(x) ≥ 1

}β2 ⊗ . . .⊗
{
um(x) ≥ 1

}βk

9
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Example: single-minded consumers

α

⊗
1− α

=

• Geometry: the geometric mean of the two orthogonal halfspaces is

the set above the hyperbola

• Algebra: α · log p1 + (1− α) · log p2 = log
(
pα1 · p1−α

2

)
• Economics: two single-minded consumers generate the same

demand as one Cobb-Douglas consumer u(x) = xα1 · x1−α
2

10
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Robust welfare analysis

• An analyst observes market demand, aims to estimate a functional

depending on individual characteristics

W = W [(≿k , bk)k=1,...]

• Example: a change in welfare induced by a change in prices p → p′

• Representative consumer approach:
• postulate a representative, use her utility as proxy for welfare

• hence, market demand is a sufficient statistic

Observation

• The same market demand can be generated by different populations

• Compatible with a range of welfare levels [W ,W ]

• Get a non-trivial range even for the equivalent variation (WEV )

WEV = [the change in incomes equivalent to the change in prices]

=
∑
k

(
bk ·

Ek(p)

Ek(p′)
− bk

)

11
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Toy example

• a population ≃ a Cobb-Douglas consumer

u(p) = xα1 · x1−α
2 E (p) = pα1 · p1−α

2

with αaggr = 1/3 and unit budget

• price change p = (1, 64) → p′ = (32, 32)

Question: what is welfare change: WEV =
∑

k bk
(

Ek (p)
Ek (p′)

− 1
)
?

WEV for a C-D agent with unit budget: w(α) = E(p)
E(p′) − 1 = 2 · 2−6α − 1

Representative-agent population:

all agents are C-D with αaggr = 1/3

WEV = w(αaggr) < 0

The most heterogeneous population:
2
3 of agents have α = 0 and 1/3 have α = 1

WEV =
2

3
w(0) +

1

3
w(1) > 0

12
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Robust welfare analysis: general result

Goal: find the range W ∈ [W ,W ] compatible with aggregate behavior

• log Eaggr is given

• minimize/maximize W over

representations

log Eaggr =
∑

k βk log Ek

≿

• Reduces to Bayesian Persuasion (Kamenica, Gentzkow 2011) for

W =
∑
k

bk · w(≿k)

Economic implications:

• EV is convex ⇒ representative-agent approach gives WEV

• possible explanation for low gains from trade (Arkolakis et al., 2012)

• WEV corresponds to the maximally diverse tastes

• can be computed explicitly when we know extreme points details

• The range WEV −WEV is of the order of ∥p− p′∥2

• second-order concern unless the price change is big

13
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Rationalizable aggregate behaviors

Individuals have preferences from a domain D (e.g., linear, Leontief).

What are possible aggregate behaviors?

Definition

the completion of D is the closure of the set of all preferences that can

be obtained by aggregation

• Cobb-Douglas = the completion of single-minded pref. ui (x) = xi

Corollary of Theorem 1

the completion of D consists of all preferences

with LEF from the convex hull

conv
{
lnE≿ :≿∈ D

}
• A domain is aggregation-invariant if any population behaves like a

single agent from the same domain

• The completion of D = the minimal invariant domain containing D

14
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Rationalizable aggregate behaviors: examples

Finitely-generated domains

• For D = {≿1, . . . ,≿m}, the completion consists

of all preferences with LEF

lnE =
∑m

k=1 βk · lnEk

• A recipe for invariant parametric domains

Linear preferences u(x) = ⟨v, x⟩ over n goods

• n = 2: the completion = domain of substitutes details

• domain of substitutes ⇔ Di (p) increases in p−i

• n ≥ 3: extra constraints on demand’s

cross-derivatives (related to ARUM)

Leontief preferences u(x) = mini xi/vi details

• The completion ⊂ all complements with a

complete-monotonicity constraint on the demand

Conclusion

Parameters are not aligned with aggregation ⇒ large completion
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Pseudo-market mechanisms

• Pseudo-markets aka CEEI are mechanisms for fair allocation

without transfers (Varian 1974, Hylland & Zeckhauser 1979)

• Example (Budish et al. 2017):

How Wharton allocates seats in over-demanded courses?

• students submit preferences to a “black box”

• the box simulates an exchange economy with

equal endowments

• the equilibrium allocation tells who gets what

• Outstanding fairness and efficiency properties in a various settings

• Many applications: Ashlagi & Shi (2016), Bogomolnaia et al.

(2017), Devanur et al. (2018), Echenique et al. (2021), Conitzer et

al. (2022), Gao & Kroer (2022), Gul & Pesendorfer (2022)

• Main criticism: computationally challenging

• Our goal: find preference domains where easy to compute

16
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Pseudo-market mechanisms

A basic exchange economy (aka Fisher market in algorithmic econ.):

• Consumers ≿1, . . . ,≿m with equal incomes b1 = . . . = bm = b

• Fixed supply x ∈ Rn
++

Definition

(x1, . . . xm,p) is an equilibrium if xk ∈ Dk(p, b) and x1 + . . . xm = x

• Computing equilibrium is challenging even for linear preferences

• e.g., Devanur et al. (2002), Orlin (2010), Vegh (2012)

Theorem (informal)

• Complexity in D is lower-bounded by that in the completion

• For finitely-generated D, equilibrium can be computed efficiently

• The linear domain has large completion ⇒ hardness

Conclusion

Use finitely-generated D as bidding languages in large-scale applications
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Identification of preference distribution

• Aggregate behavior may be compatible with various populations

• What are domains D of individual preferences s.t. aggregate demand

is a sufficient statistic for preference distribution?

• Example: single-minded preferences ui (x) = xi , i = 1, . . . , n

• A convex set is a simplex if each point can be represented as an

average of extreme points in a unique way

Corollary of Theorem 1

Aggregate behavior is a sufficient statistic for

preference distribution ⇔ D is the set of

extreme points of a simplex in the LEF space

Examples:

Linear for n ≥ 2 goods Leontief for n = 2 goods
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Key takeaways

To handle aggregation, represent preferences by LEF

• All preferences ≃ a compact convex set

• Aggregation ≃ weighted average

• Optimization over populations with given

aggregate behavior ≃ Bayesian persuasion

• Domain completion ≃ convex hull

• Domain completion reflects complexity of

equilibrium

• Indecomposable preferences ≃ extreme points

This project ⊂ a broader agenda on connections between information

economics and economic design

Thank you!
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Indecomposable preferences back

• A preference ≿∈ D is indecomposable in D if it cannot be

represented as an aggregation of ≿1,≿2∈ D with ≿1 ̸=≿2

• Linear and Leontief are indecomposable in all homothetic

• Correspond to extreme points of
{
lnE≿ :≿∈ D

}
Example: indecomposable preferences over 2 goods

All homothetic

Substitutes: Di ↑ p−i Complements: Di ↓ p−i

• Any aggregate preference of a population from D can be generated

by a population with indecomposable preferences ⇐ Choquet theory

Conclusion

Indecomposable preferences are “elementary building blocks”

20
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Example: linear preferences over 2 goods back

• u(x) = v1 · x1 + v2 · x2,

E (p) = min {p1/v1, p2/v2}
• The completion = preferences s.t.

log E (p) =

∫
R2

+

log (min {p1/v1, p2/v2})dµ(v1, v2)

• What is the image of all probability measures under this integral

operator?

• Definition: goods are substitutes if Di is increasing in p−i

Proposition

The completion of linear over 2 goods = the domain of substitutes

• E pins down µ, i.e., the market demand is a sufficient statistic for

the distribution of linear preferences over the population

• Geometric meaning: the domain of substitutes is a “simplex” and

linear preferences are extreme points

21
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Example: linear preferences for n ≥ 3 goods back

• the completion = preferences s.t. LEF satisfies

log E (p) =

∫
Rn

+

log

(
min
i

pi
vi

)
dµ(v)

• ARUM: a decision-maker chooses an alternative with the highest

value wi + εi (deterministic + stochastic components). Her utility:

U(w) = E
[
max

i=1,...n
(wi + εi )

]
.

• For any ARUM and any subset of distinct alternatives j1, j2, . . . , jq
with q ≤ n, the following inequality holds

∂qU(w)

∂wj1∂wj2 . . . ∂wjq

· (−1)q ≤ 0

• Interpret µ as a distribution of preferences of a single decision-maker

Corollary

• the completion= {≿: ∃ ARUM U(w) = − log
(
E (e−w1 , . . . , e−wn

)
}

• the completion ̸= the domain of substitutes for n ≥ 3

22
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Example: Leontief preferences over 2 goods back

• The domain of Leontief preferences over n = 2 goods

u(x) = min {x1/v1, x2/v2} ,

E (p) = v1 · p1 + v2 · p2

exhibit complementarity: Di is decreasing in p−i

• the completion = preferences s.t. expenditure function satisfies

log E (p) =

∫
R2

+

log (v1 · p1 + v2 · p2)dµ(v1, v2)

• E is infinitely smooth ⇒ the completion ̸= the complements domain

• E.g., u(x1, x2) = min {√x1 · x2, x1} is beyond

• Definition: S [ν](λ) =
∫
R+

1/(λ+ z)dν(z) is the Stieltjes transform

Proposition

The completion is the set of preferences such that D1(λ, 1) is the

Stieltjes transform of a positive measure ν (the distribution on v2/v1).

• Remark: S is invertible (Stieltjes-Perron formula). Hence,

• market demand is sufficient to pin down preference distributions

23
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More Related Literature back

• Endogenous incomes and general preferences ⇒ “anything
goes” for aggregate demand:

• Sonnenschein (1973), Mantel (1974, 1976), Debreu (1974),

Chiappori and Ekeland (1999), Kirman and Koch (1986),

Hildenbrand (2014)

• Representative agent approach

• Criticism of representative agents: Caselli & Ventura (2000),

Carroll (2000), Kirman (1992)

• Household behavior: Samuelson (1956), Chambers and Hayashi

(2018), Browning & Chiappori (1998)

• PIGLOG, AIDS, and similar functional forms

• Muellbauer (1975,1976), Deaton & Muellbauer (1980), Lewbel &

Pendakur (2009)
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Integral representation of the completion

For infinite domains, we need to allow “continual” convex combinations

Theorem 3

The completion of D = preferences with expenditure functions E s.t.

log E (p) =

∫
D
log E≿(p)dµ(≿),

where µ is a Borel probability measure supported on the closure D of D

• Closure and the Borel structure are w.r.t. the distance

d(≿,≿′) = maxp∈∆n−1

∣∣∣∣ (ln E(p)−ln E((1,...,1)))−(ln E ′(p)−ln E ′((1,...,1)))
(1+maxi | ln pi |)2

∣∣∣∣
• Preferences form a compact set ≃ convex subset of C (∆n−1)

• Choquet theory ⇒ Theorem 3
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