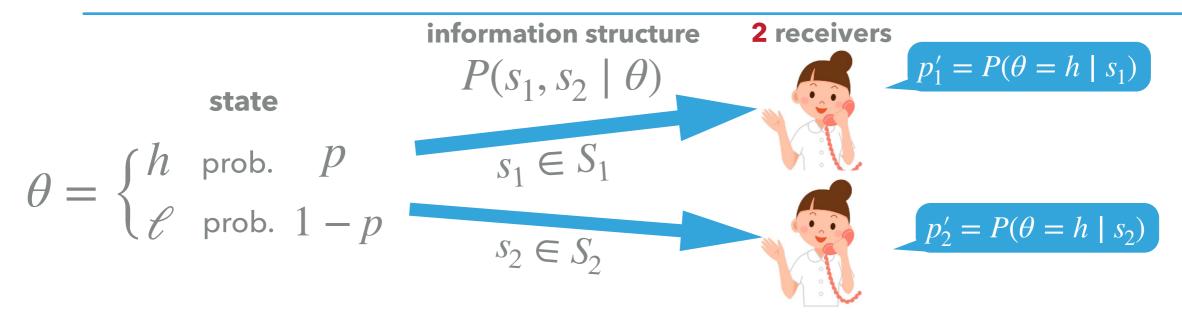


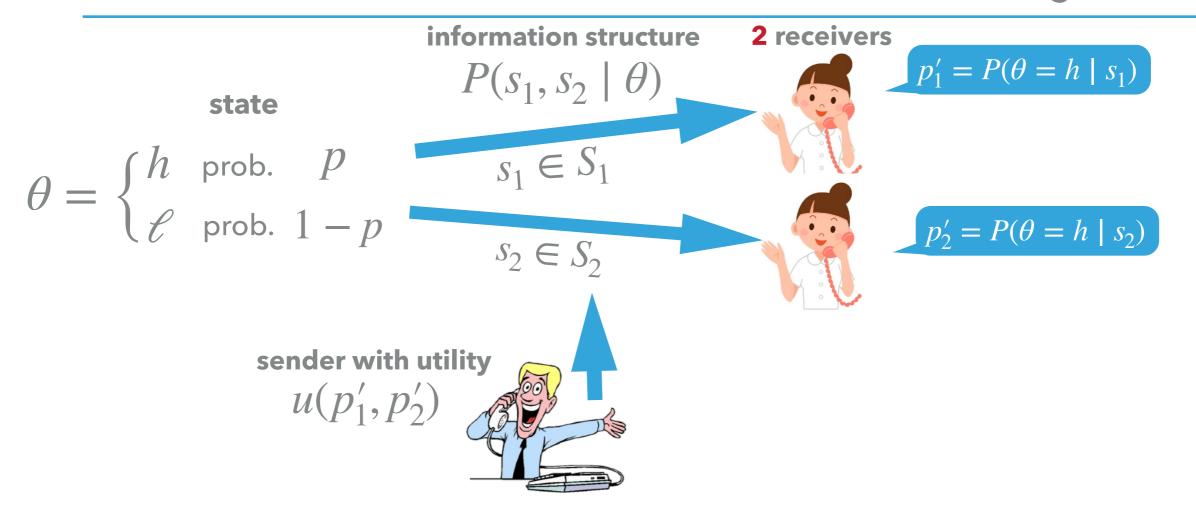
ITAI ARIELI (TECHNION) YAKOV BABICHENKO (TECHNION) FEDOR SANDOMIRSKIY (CALTECH)

HOW TO SUPPLY INFORMATION OPTIMALLY TO MULTIPLE AGENTS? two agents, bir

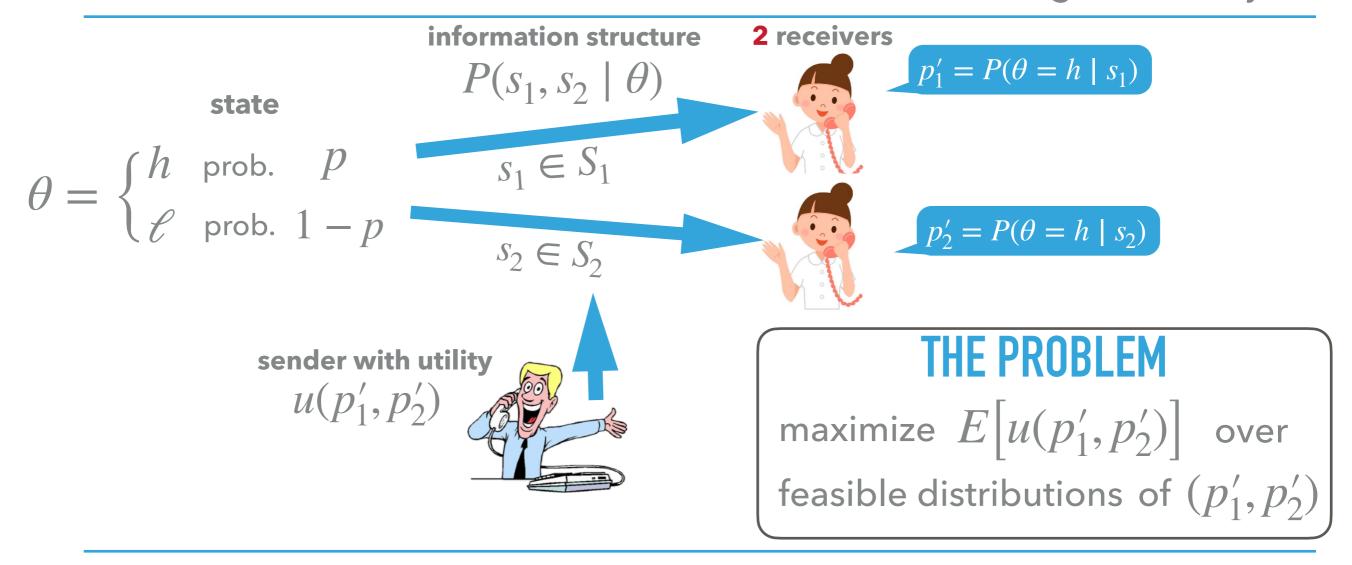
HOW TO SUPPLY INFORMATION OPTIMALLY TO MULTIPLE AGENTS?



HOW TO SUPPLY INFORMATION OPTIMALLY TO MULTIPLE AGENTS?

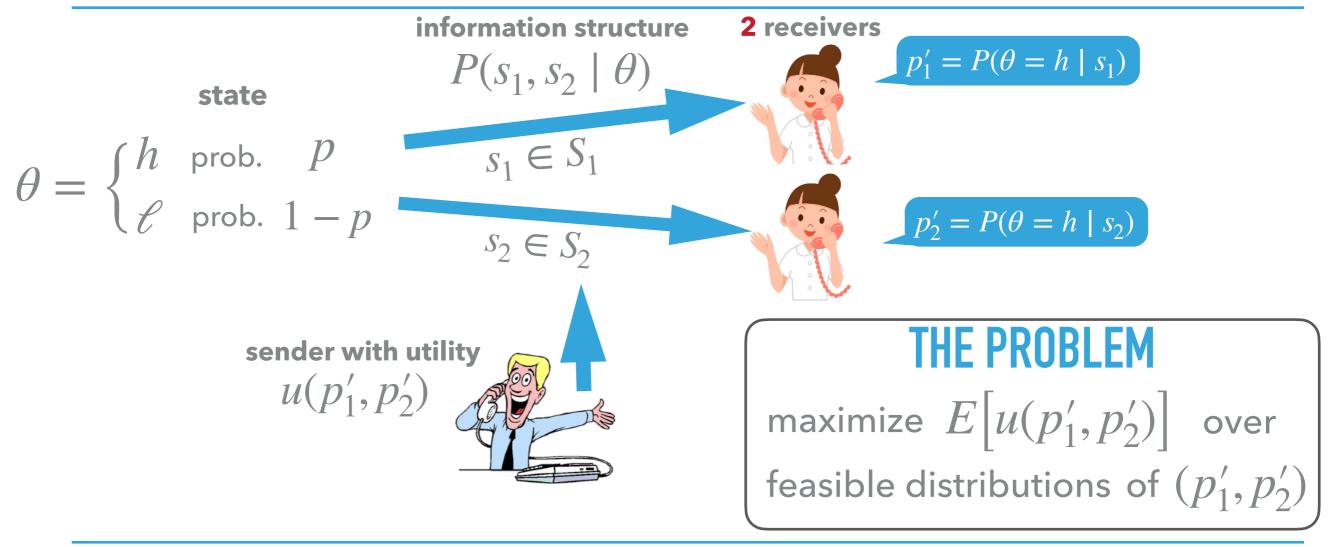


HOW TO SUPPLY INFORMATION OPTIMALLY TO MULTIPLE AGENTS?



HOW TO SUPPLY INFORMATION OPTIMALLY TO MULTIPLE AGENTS?

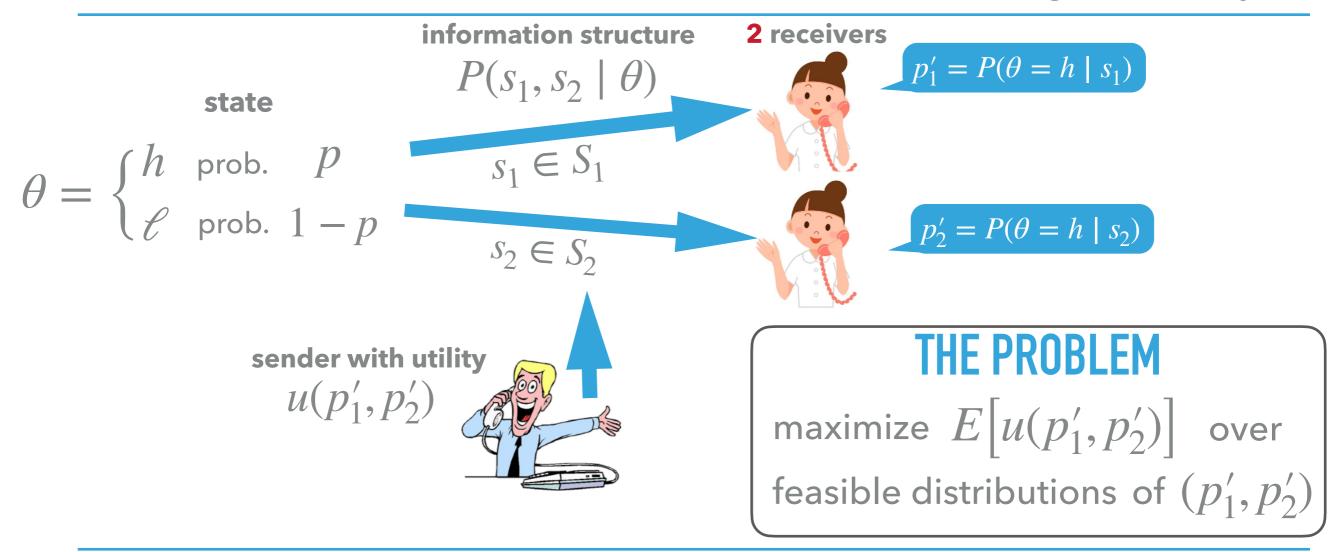
today: two agents, binary state



WHAT IS KNOWN?

HOW TO SUPPLY INFORMATION OPTIMALLY TO MULTIPLE AGENTS?

today: two agents, binary state

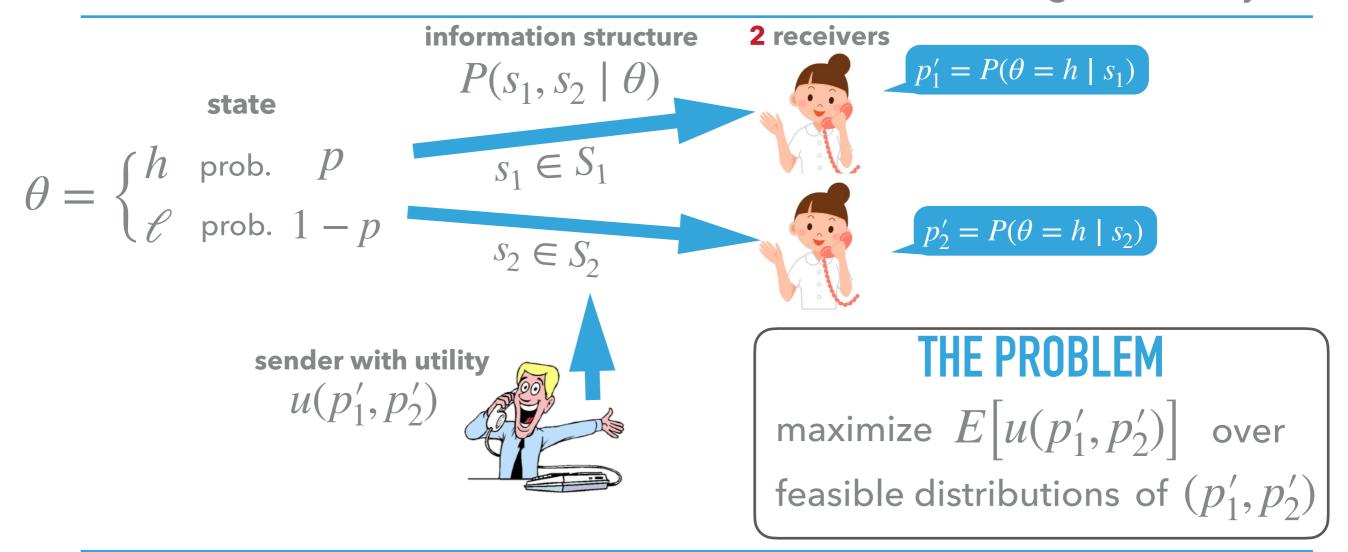


WHAT IS KNOWN?

- N = 1 is easy: sender's value = cav[u](p)
 - Kamenica, Gentzkow (2011)

HOW TO SUPPLY INFORMATION OPTIMALLY TO MULTIPLE AGENTS?

today: two agents, binary state



WHAT IS KNOWN?

- N = 1 is easy: sender's value = cav[u](p)
 - Kamenica, Gentzkow (2011)
- $\sim N \ge 2$ is hard: feasible distributions can be complex
 - Arieli, Babichenko, Sandomirskiy, Tamuz (2021), Brooks, Frankel, Kamenica (2022)

CONDITIONING ON THE STATE SIMPLIFIES THE PROBLEM

CONDITIONING ON THE STATE SIMPLIFIES THE PROBLEM

DEFINITION

 μ^{ℓ} and μ^{h} on $[0,1]^{2}$ is a feasible pair of conditional distributions

 $\iff \exists \text{ information structure s.t. } (p_1',p_2') \sim \mu^\theta \text{ conditional on } \theta$

CONDITIONING ON THE STATE SIMPLIFIES THE PROBLEM

DEFINITION

 μ^{ℓ} and μ^{h} on $[0,1]^{2}$ is a feasible pair of conditional distributions $\iff \exists$ information structure s.t. $(p'_{1}, p'_{2}) \sim \mu^{\theta}$ conditional on θ

• **Remark:** μ on $[0,1]^2$ is unconditionally feasible if $\mu = (1-p)\mu^{\ell} + p\mu^h$ for a feasible pair

CONDITIONING ON THE STATE SIMPLIFIES THE PROBLEM

DEFINITION

 μ^{ℓ} and μ^{h} on $[0,1]^{2}$ is a feasible pair of conditional distributions $\iff \exists$ information structure s.t. $(p'_{1}, p'_{2}) \sim \mu^{\theta}$ conditional on θ

- **Remark:** μ on $[0,1]^2$ is unconditionally feasible if $\mu = (1-p)\mu^{\ell} + p\mu^h$ for a feasible pair
- Why pairs? Feasibility of a pair is determined by marginals:

CONDITIONING ON THE STATE SIMPLIFIES THE PROBLEM

DEFINITION

 μ^{ℓ} and μ^{h} on $[0,1]^{2}$ is a feasible pair of conditional distributions $\iff \exists$ information structure s.t. $(p'_{1}, p'_{2}) \sim \mu^{\theta}$ conditional on θ

• **Remark:** μ on $[0,1]^2$ is unconditionally feasible if $\mu = (1-p)\mu^{\ell} + p\mu^h$ for a feasible pair

• Why pairs? Feasibility of a pair is determined by marginals:

OBSERVATION

 (μ^{ℓ}, μ^{h}) and (ν^{ℓ}, ν^{h}) with the same 1-dimensional marginals are feasible simultaneously

CONDITIONING ON THE STATE SIMPLIFIES THE PROBLEM

DEFINITION

 μ^{ℓ} and μ^{h} on $[0,1]^{2}$ is a feasible pair of conditional distributions

 $\iff \exists \text{ information structure s.t. } (p_1',p_2') \sim \mu^{\theta} \text{ conditional on } \theta$

- **Remark:** μ on $[0,1]^2$ is unconditionally feasible if $\mu = (1-p)\mu^{\ell} + p\mu^h$ for a feasible pair
- Why pairs? Feasibility of a pair is determined by marginals:

OBSERVATION

 (μ^{ℓ}, μ^{h}) and (ν^{ℓ}, ν^{h}) with the same 1-dimensional marginals are feasible simultaneously

Corollary: persuasion = nested optimisation over marginals and then over joint distributions with given marginals

CONDITIONING ON THE STATE SIMPLIFIES THE PROBLEM

DEFINITION

 μ^{ℓ} and μ^{h} on $[0,1]^{2}$ is a feasible pair of conditional distributions

 $\iff \exists \text{ information structure s.t. } (p_1',p_2') \sim \mu^{\theta} \text{ conditional on } \theta$

- **Remark:** μ on $[0,1]^2$ is unconditionally feasible if $\mu = (1-p)\mu^{\ell} + p\mu^h$ for a feasible pair
- Why pairs? Feasibility of a pair is determined by marginals:

OBSERVATION

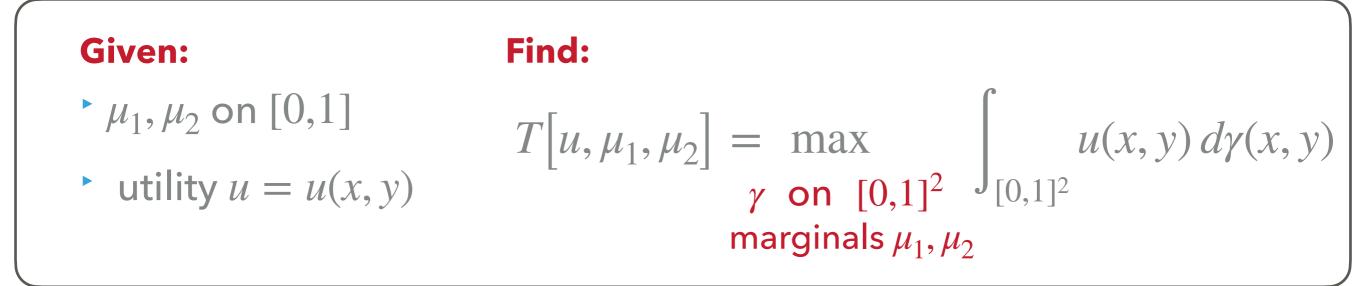
 (μ^{ℓ}, μ^{h}) and (ν^{ℓ}, ν^{h}) with the same 1-dimensional marginals are feasible simultaneously

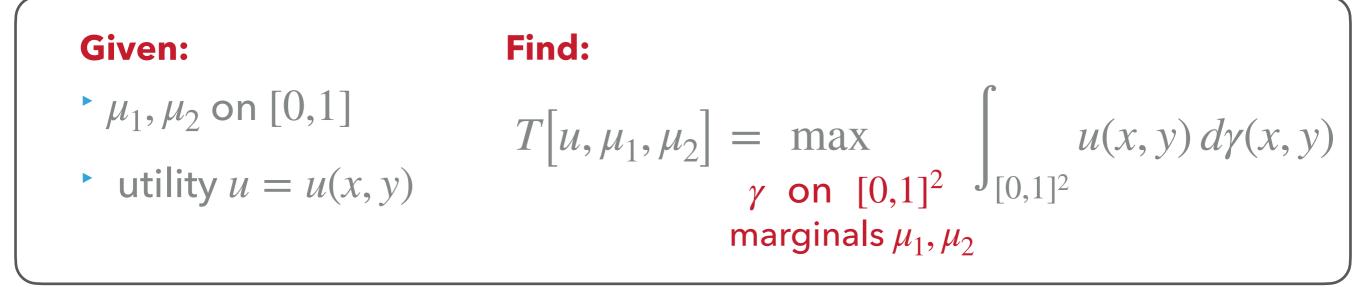
Corollary: persuasion = nested optimisation over marginals and then over joint distributions with given marginals

MULTI-AGENT PERSUASION = OPTIMAL TRANSPORTATION PROBLEM!

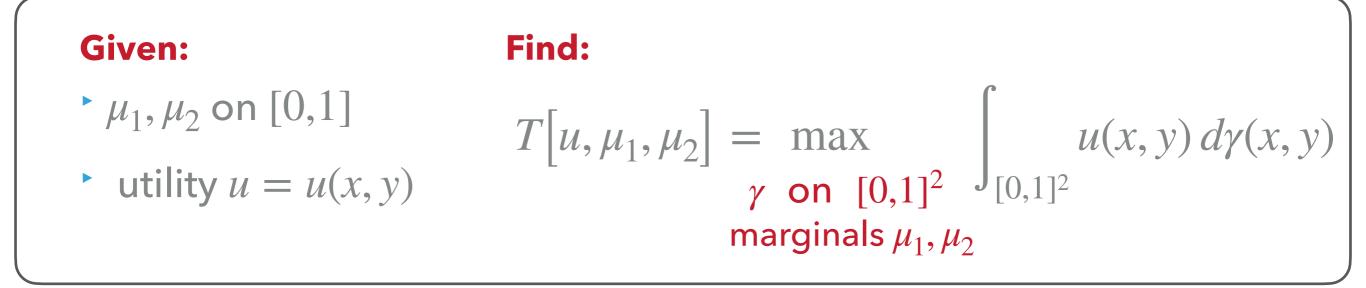
Given:

- μ_1, μ_2 on [0,1]
- utility u = u(x, y)



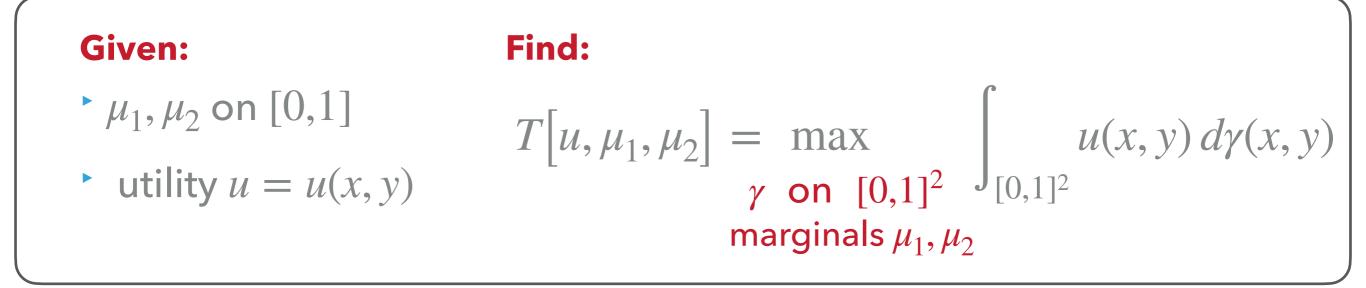


Interpretation: given spacial distribution of production and consumption, minimise the cost of transportation / maximise the utility



Interpretation: given spacial distribution of production and consumption, minimise the cost of transportation / maximise the utility

Remark: fractional maximal-weight matching



Interpretation: given spacial distribution of production and consumption, minimise the cost of transportation / maximise the utility

Remark: fractional maximal-weight matching

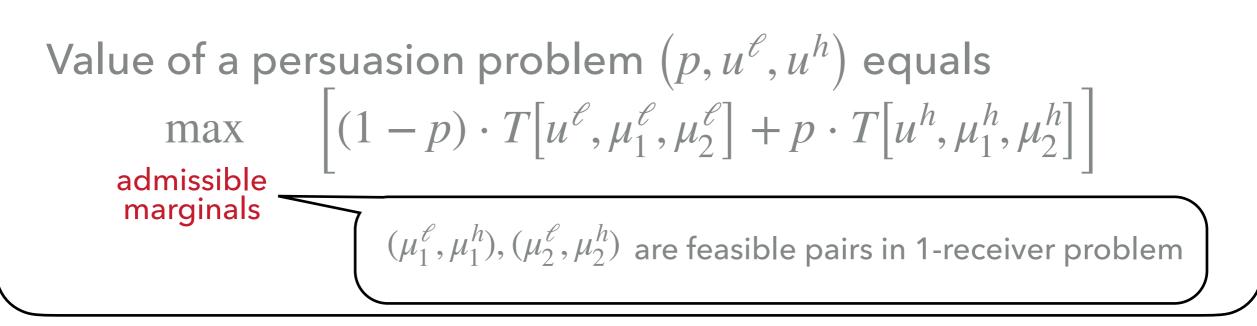
Archetypal coupling problem, many econ applications:

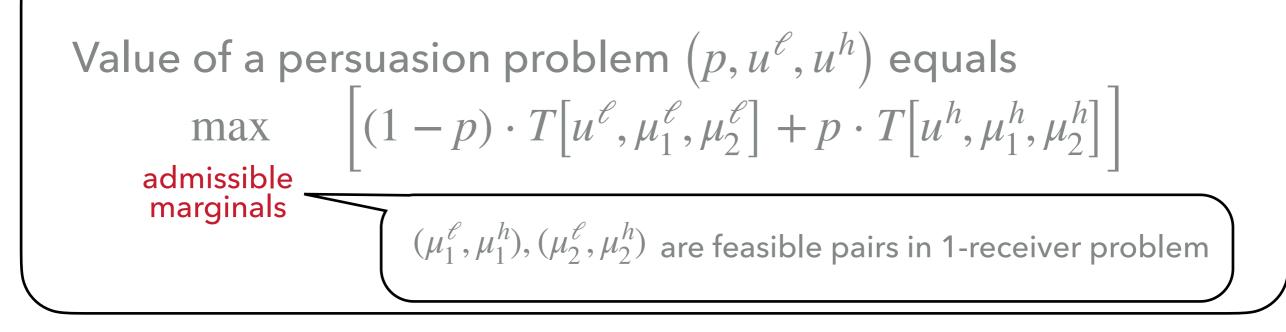
Daskalakis et al. (2017), Kleiner, Manelli (2019), Boerma et al. (2021), Chiapporiet et al. (2010), Galichon (2021), Steinerberger, Tsyvinski (2019), Gensbittel (2015), Guo, Shmaya (2021), Cieslak, Malamud, Schrimpf (2021)

THEOREM

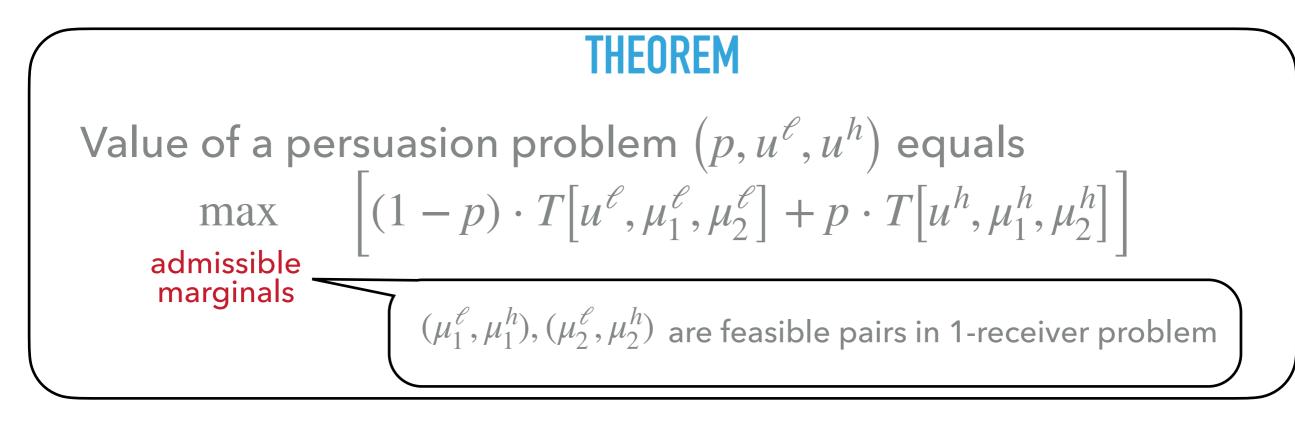
Value of a persuasion problem
$$(p, u^{\ell}, u^{h})$$
 equals
max $\left[(1-p) \cdot T[u^{\ell}, \mu_{1}^{\ell}, \mu_{2}^{\ell}] + p \cdot T[u^{h}, \mu_{1}^{h}, \mu_{2}^{h}] \right]$
admissible
marginals

THEOREM





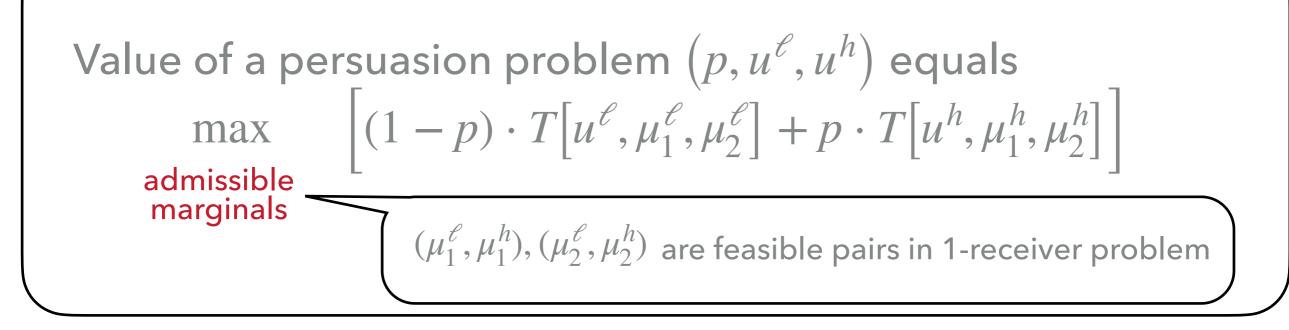
WHY USEFUL?



WHY USEFUL?

connection to extensive math transportation literature

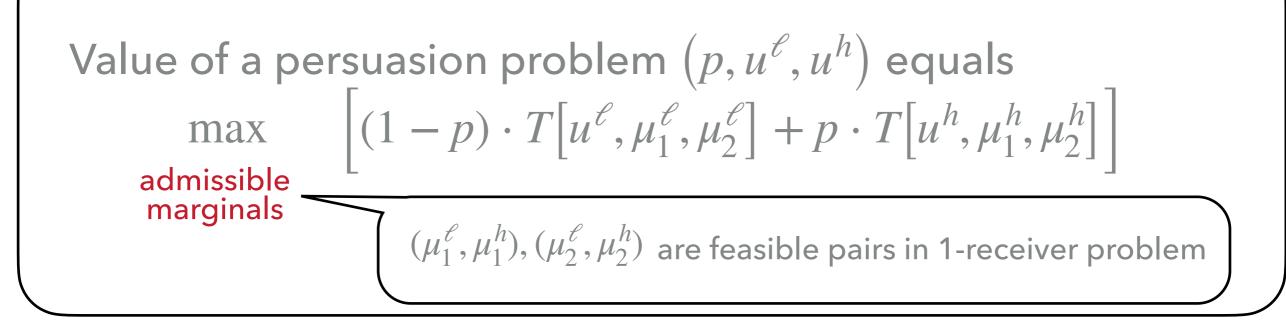
THEOREM



WHY USEFUL?

- connection to extensive math transportation literature
- simplification for particular classes of utilities
 - one-state, supermodular, submodular

THEOREM

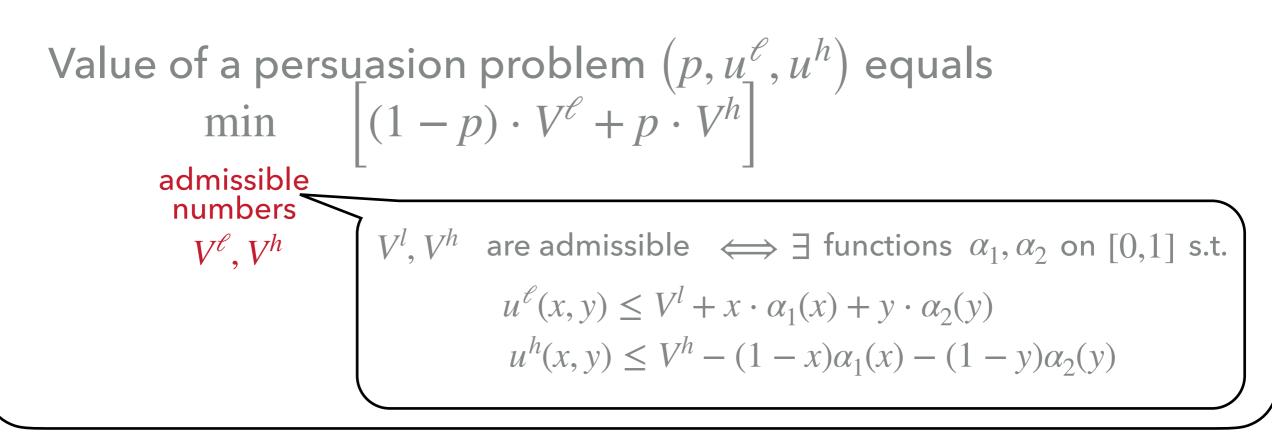


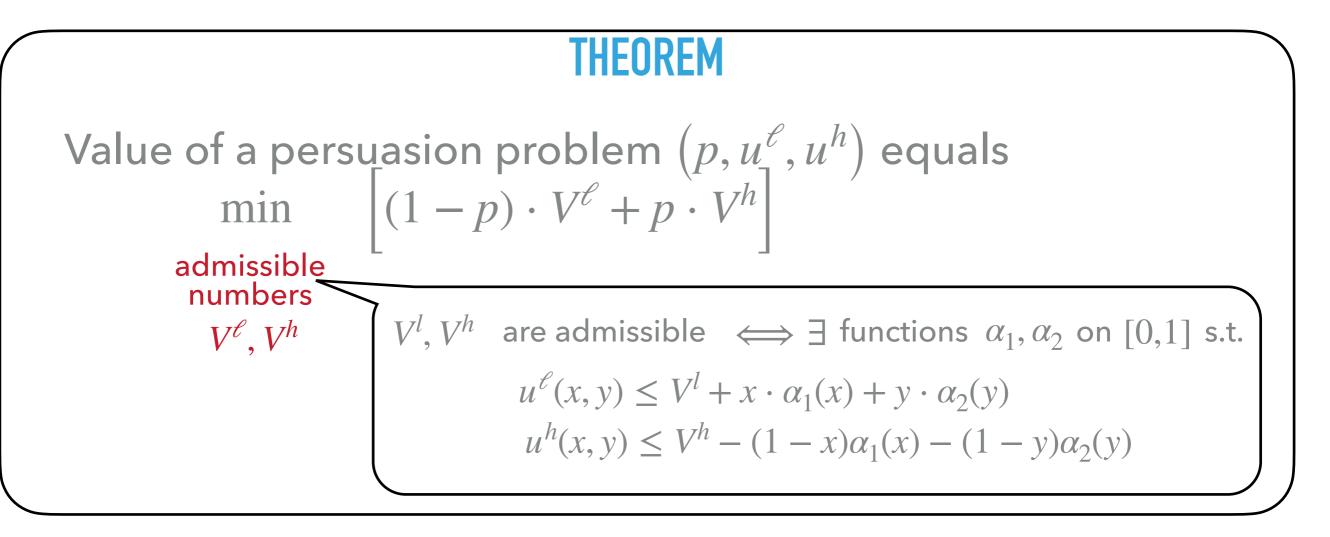
WHY USEFUL?

- connection to extensive math transportation literature
- simplification for particular classes of utilities
 - one-state, supermodular, submodular
- tractable dual extending 1-receiver results:
 - cav[u]-theorem by Kamenica, Gentzkow (2011) and duality by Dworczak, Kolotilin (2017)

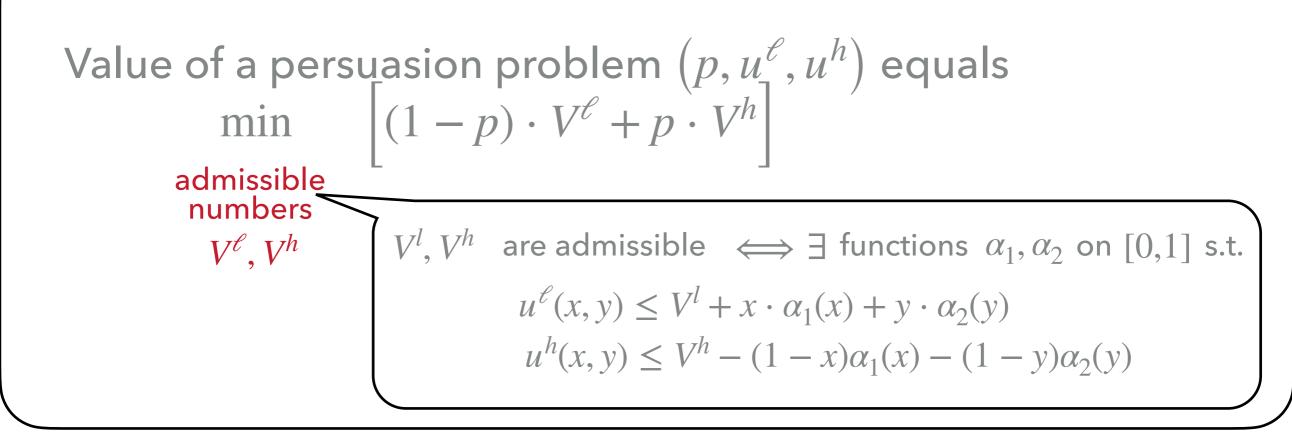
THEOREM

Value of a persuasion problem
$$(p, u^{\ell}, u^{h})$$
 equals
min $\left[(1-p) \cdot V^{\ell} + p \cdot V^{h} \right]$
admissible
numbers
 V^{ℓ}, V^{h}





Interpretation:



Interpretation:

value of (p, u^{ℓ}, u^{h}) = minimal value of (p, v^{ℓ}, v^{h}) s.t. $u^{\ell} \leq v^{\ell}$, $u^{h} \leq v^{h}$ and non-revealing is optimal

Value of a persuasion problem
$$(p, u^{\ell}, u^{h})$$
 equals
min $[(1-p) \cdot V^{\ell} + p \cdot V^{h}]$
admissible
numbers
 V^{ℓ}, V^{h}
 V^{l}, V^{h} are admissible $\iff \exists$ functions α_{1}, α_{2} on $[0,1]$ s.t.
 $u^{\ell}(x, y) \leq V^{l} + x \cdot \alpha_{1}(x) + y \cdot \alpha_{2}(y) = v^{\ell}$
 $u^{h}(x, y) \leq V^{h} - (1-x)\alpha_{1}(x) - (1-y)\alpha_{2}(y) = v^{h}$

Interpretation:

value of (p, u^{ℓ}, u^{h}) = minimal value of (p, v^{ℓ}, v^{h}) s.t. $u^{\ell} \leq v^{\ell}$, $u^{h} \leq v^{h}$ and non-revealing is optimal

Value of a persuasion problem
$$(p, u^{\ell}, u^{h})$$
 equals
min $[(1-p) \cdot V^{\ell} + p \cdot V^{h}]$
admissible
 V^{ℓ}, V^{h}
 V^{l}, V^{h} are admissible $\iff \exists$ functions α_{1}, α_{2} on $[0,1]$ s.t.
 $u^{\ell}(x, y) \leq V^{l} + x \cdot \alpha_{1}(x) + y \cdot \alpha_{2}(y) = v^{\ell}$
 $u^{h}(x, y) \leq V^{h} - (1-x)\alpha_{1}(x) - (1-y)\alpha_{2}(y) = v^{h}$

Interpretation:

value of
$$(p, u^{\ell}, u^{h})$$
 = minimal value of (p, v^{ℓ}, v^{h})
s.t. $u^{\ell} \leq v^{\ell}$, $u^{h} \leq v^{h}$
and non-revealing is optimal

• cav[u]-theorem has a similar form: convexity \Leftrightarrow a condition that non-revealing is optimal

Value of a persuasion problem
$$(p, u^{\ell}, u^{h})$$
 equals
min $[(1-p) \cdot V^{\ell} + p \cdot V^{h}]$
admissible
numbers
 V^{ℓ}, V^{h}
 V^{l}, V^{h} are admissible $\iff \exists$ functions α_{1}, α_{2} on $[0,1]$ s.t.
 $u^{\ell}(x, y) \leq V^{l} + x \cdot \alpha_{1}(x) + y \cdot \alpha_{2}(y) = v^{\ell}$
 $u^{h}(x, y) \leq V^{h} - (1-x)\alpha_{1}(x) - (1-y)\alpha_{2}(y) = v^{h}$

Interpretation:

value of
$$(p, u^{\ell}, u^{h})$$
 = minimal value of (p, v^{ℓ}, v^{h})
s.t. $u^{\ell} \leq v^{\ell}$, $u^{h} \leq v^{h}$
and non-revealing is optimal

• cav[u]-theorem has a similar form: convexity \Leftrightarrow a condition that non-revealing is optimal

dual solution = certificate of optimality: verifies guessed solution to the primal

Value of a persuasion problem
$$(p, u^{\ell}, u^{h})$$
 equals
min $[(1-p) \cdot V^{\ell} + p \cdot V^{h}]$
admissible
numbers
 V^{ℓ}, V^{h}
 V^{l}, V^{h} are admissible $\iff \exists$ functions α_{1}, α_{2} on $[0,1]$ s.t.
 $u^{\ell}(x, y) \leq V^{l} + x \cdot \alpha_{1}(x) + y \cdot \alpha_{2}(y) = v^{\ell}$
 $u^{h}(x, y) \leq V^{h} - (1-x)\alpha_{1}(x) - (1-y)\alpha_{2}(y) = v^{h}$

Interpretation:

value of
$$(p, u^{\ell}, u^{h})$$
 = minimal value of (p, v^{ℓ}, v^{h})
s.t. $u^{\ell} \leq v^{\ell}$, $u^{h} \leq v^{h}$
and non-revealing is optimal

• cav[u]-theorem has a similar form: convexity \Leftrightarrow a condition that non-revealing is optimal

dual solution = certificate of optimality: verifies guessed solution to the primal

gives a class of problems where full-information/partial-information signals are optimal

Conditioning on θ helps in multi-agent persuasion

Conditioning on θ helps in multi-agent persuasion

Connects to optimal transport

Conditioning on θ helps in multi-agent persuasion

Connects to optimal transport

Connection enables rich math tools, including duality

Conditioning on θ helps in multi-agent persuasion

Connects to optimal transport

Connection enables rich math tools, including duality

Another confirmation:

information & mechanism design \simeq transportation

Conditioning on θ helps in multi-agent persuasion

Connects to optimal transport

Connection enables rich math tools, including duality

Another confirmation:

information & mechanism design \simeq transportation

THANK YOU!