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‣   is easy: sender’s value N = 1 = cav[u](p)
‣ Kamenica, Gentzkow (2011)

‣   is hard: feasible distributions can be complexN ≥ 2
‣ Arieli, Babichenko, Sandomirskiy, Tamuz (2021), Brooks, Frankel, Kamenica (2022)
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MULTI-AGENT PERSUASION = OPTIMAL TRANSPORTATION PROBLEM!
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▸Interpretation: given spacial distribution of production and 
consumption, minimise the cost of transportation / maximise the utility

▸Remark: fractional maximal-weight matching 

▸Archetypal coupling problem, many econ applications:

▸ Daskalakis et al. (2017), Kleiner, Manelli (2019), Boerma et al. (2021), Chiapporiet et al. 
(2010), Galichon (2021), Steinerberger, Tsyvinski (2019), Gensbittel (2015), Guo, Shmaya 
(2021), Cieslak, Malamud, Schrimpf (2021)

A
B

Given:  
‣  on  

‣  utility 

μ1, μ2 [0,1]

u = u(x, y)

WHAT IS OPTIMAL TRANSPORTATION PROBLEM?

Find:  

T[u, μ1, μ2] = max ∫[0,1]2

u(x, y) dγ(x, y)
γ  on  [0,1]2

marginals  μ1, μ2



THEOREM
Value of a persuasion problem  equals(p, uℓ, uh)

PERSUASION AS TRANSPORT

max [(1 − p) ⋅ T[uℓ, μℓ
1 , μℓ

2 ] + p ⋅ T[uh, μh
1 , μh

2]]
admissible 
marginals



THEOREM
Value of a persuasion problem  equals(p, uℓ, uh)

PERSUASION AS TRANSPORT

max [(1 − p) ⋅ T[uℓ, μℓ
1 , μℓ

2 ] + p ⋅ T[uh, μh
1 , μh

2]]
admissible 
marginals

(μℓ
1 , μh

1), (μℓ
2 , μh

2) are feasible pairs in 1-receiver problem



THEOREM
Value of a persuasion problem  equals(p, uℓ, uh)

PERSUASION AS TRANSPORT

max [(1 − p) ⋅ T[uℓ, μℓ
1 , μℓ

2 ] + p ⋅ T[uh, μh
1 , μh

2]]
admissible 
marginals

(μℓ
1 , μh

1), (μℓ
2 , μh

2) are feasible pairs in 1-receiver problem

WHY USEFUL?



THEOREM
Value of a persuasion problem  equals(p, uℓ, uh)

PERSUASION AS TRANSPORT

▸ connection to extensive math transportation literature

max [(1 − p) ⋅ T[uℓ, μℓ
1 , μℓ

2 ] + p ⋅ T[uh, μh
1 , μh

2]]
admissible 
marginals

(μℓ
1 , μh

1), (μℓ
2 , μh

2) are feasible pairs in 1-receiver problem

WHY USEFUL?



THEOREM
Value of a persuasion problem  equals(p, uℓ, uh)

PERSUASION AS TRANSPORT

▸ connection to extensive math transportation literature

▸ simplification for particular classes of utilities 
‣ one-state, supermodular, submodular

max [(1 − p) ⋅ T[uℓ, μℓ
1 , μℓ

2 ] + p ⋅ T[uh, μh
1 , μh

2]]
admissible 
marginals

(μℓ
1 , μh

1), (μℓ
2 , μh

2) are feasible pairs in 1-receiver problem

WHY USEFUL?



THEOREM
Value of a persuasion problem  equals(p, uℓ, uh)

PERSUASION AS TRANSPORT

▸ connection to extensive math transportation literature

▸ simplification for particular classes of utilities 
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‣  -theorem by Kamenica, Gentzkow (2011) and duality by Dworczak, Kolotilin (2017)cav[u]
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THANK YOU!


