

PERSUASION AS TRANSPORTATION

N-AGENT PERSUASION

HOW TO SUPPLY INFORMATION OPTIMALLY TO MULTIPLE AGENTS?
today:
two agents, binary state

N-AGENT PERSUASION

HOW TO SUPPLY INFORMATION OPTIMALLY TO MULTIPLE AGENTS? today:
two agents, binary state

N-AGENT PERSUASION

HOW TO SUPPLY INFORMATION OPTIMALLY TO MULTIPLE AGENTS? today:
two agents, binary state

N-AGENT PERSUASION

HOW TO SUPPLY INFORMATION OPTIMALLY TO MULTIPLE AGENTS? $\begin{gathered}\text { today: } \\ \text { two ad }\end{gathered}$

two agents, binary state

N-AGENT PERSUASION

HOW TO SUPPLY INFORMATION OPTIMALLY TO MULTIPLE AGENTS? today:

two agents, binary state

N-AGENT PERSUASION

HOW TO SUPPLY INFORMATION OPTIMALLY TO MULIIPLE AGENTS? today:
two agents, binary state

WHAT IS KNOWN?

- $N=1$ is easy: sender's value $=\operatorname{cav}[u](p)$
- Kamenica, Gentzkow (2011)

N-AGENT PERSUASION

HOW TO SUPPLY INFORMATION OPTIMALLY TO MULTIPLE AGENTS?
today:
two agents, binary state

WHAT IS KNOWN?

- $N=1$ is easy: sender's value $=\operatorname{cav}[u](p)$
- Kamenica, Gentzkow (2011)
- $N \geq 2$ is hard: feasible distributions can be complex
- Arieli, Babichenko, Sandomirskiy, Tamuz (2021), Brooks, Frankel, Kamenica (2022)

OUR CONTRIBUTION

OUR CONTRIBUTION

CONDITIONING ON THE STATE SIMPLIFIES THE PROBLEM

OUR CONTRIBUTION

CONDITIONING ON THE STATE SIMPLIFIES THE PROBLEM

DEFINITION

μ^{ℓ} and μ^{h} on $[0,1]^{2}$ is a feasible pair of conditional distributions
$\Longleftrightarrow \exists$ information structure s.t. $\left(p_{1}^{\prime}, p_{2}^{\prime}\right) \sim \mu^{\theta}$ conditional on θ

OUR CONTRIBUTION

CONDITIONING ON THE STATE SIMPLIFIES THE PROBLEM

DEFINITION

μ^{ℓ} and μ^{h} on $[0,1]^{2}$ is a feasible pair of conditional distributions
$\Longleftrightarrow \exists$ information structure s.t. $\left(p_{1}^{\prime}, p_{2}^{\prime}\right) \sim \mu^{\theta}$ conditional on θ

- Remark: μ on $[0,1]^{2}$ is unconditionally feasible if $\mu=(1-p) \mu^{\ell}+p \mu^{h}$ for a feasible pair

OUR CONTRIBUTION

CONDITIONING ON THE STATE SIMPLIFIES THE PROBLEM

DEFINITION

μ^{ℓ} and μ^{h} on $[0,1]^{2}$ is a feasible pair of conditional distributions
$\Longleftrightarrow \exists$ information structure s.t. $\left(p_{1}^{\prime}, p_{2}^{\prime}\right) \sim \mu^{\theta}$ conditional on θ

- Remark: μ on $[0,1]^{2}$ is unconditionally feasible if $\mu=(1-p) \mu^{\ell}+p \mu^{h}$ for a feasible pair
"Why pairs? Feasibility of a pair is determined by marginals:

OUR CONTRIBUTION

CONDITIONING ON THE STATE SIMPLIFIES THE PROBLEM

DEFINITION

μ^{ℓ} and μ^{h} on $[0,1]^{2}$ is a feasible pair of conditional distributions
$\Longleftrightarrow \exists$ information structure s.t. $\left(p_{1}^{\prime}, p_{2}^{\prime}\right) \sim \mu^{\theta}$ conditional on θ

- Remark: μ on $[0,1]^{2}$ is unconditionally feasible if $\mu=(1-p) \mu^{\ell}+p \mu^{h}$ for a feasible pair
'Why pairs? Feasibility of a pair is determined by marginals:

OBSERVATION

(μ^{ℓ}, μ^{h}) and (ν^{ℓ}, ν^{h}) with the same 1-dimensional marginals are feasible simultaneously

OUR CONTRIBUTION

CONDITIONING ON THE STATE SIMPLIFIES THE PROBLEM

DEFINITION

μ^{ℓ} and μ^{h} on $[0,1]^{2}$ is a feasible pair of conditional distributions
$\Longleftrightarrow \exists$ information structure s.t. $\left(p_{1}^{\prime}, p_{2}^{\prime}\right) \sim \mu^{\theta}$ conditional on θ

- Remark: μ on $[0,1]^{2}$ is unconditionally feasible if $\mu=(1-p) \mu^{\ell}+p \mu^{h}$ for a feasible pair
- Why pairs? Feasibility of a pair is determined by marginals:

OBSERVATION

(μ^{l}, μ^{h}) and $\left(\nu^{l}, \nu^{h}\right)$ with the same 1-dimensional marginals are feasible simultaneously
' Corollary: persuasion = nested optimisation over marginals and then over joint distributions with given marginals

OUR CONTRIBUTION

CONDITIONING ON THE STATE SIMPLIFIES THE PROBLEM

DEFINITION

μ^{ℓ} and μ^{h} on $[0,1]^{2}$ is a feasible pair of conditional distributions
$\Longleftrightarrow \exists$ information structure s.t. $\left(p_{1}^{\prime}, p_{2}^{\prime}\right) \sim \mu^{\theta}$ conditional on θ

- Remark: μ on $[0,1]^{2}$ is unconditionally feasible if $\mu=(1-p) \mu^{\ell}+p \mu^{h}$ for a feasible pair
'Why pairs? Feasibility of a pair is determined by marginals:

OBSERVATION

(μ^{ℓ}, μ^{h}) and (ν^{ℓ}, ν^{h}) with the same 1-dimensional marginals are feasible simultaneously

- Corollary: persuasion = nested optimisation over marginals and then over joint distributions with given marginals
MULTI-AGENT PERSUASION = OPTIMAL TRANSPORTATION PROBLEM!

WHAT IS OPTIMAL TRANSPORTATION PROBLEM?

Given:

- μ_{1}, μ_{2} on [0,1]
- utility $u=u(x, y)$

WHAT IS OPTIMAL TRANSPORTATION PROBLEM?

Given:

- μ_{1}, μ_{2} on [0,1]
- utility $u=u(x, y)$

Find:
$T\left[u, \mu_{1}, \mu_{2}\right]=\underset{\substack{\gamma \text { on }[0,1]^{2} \\ \text { marginals } \mu_{1}, \mu_{2}}}{ } \int_{[0,1]^{2}} u(x, y) d \gamma(x, y)$

WHAT IS OPTIMAL TRANSPORTATION PROBLEM?

Given:

- μ_{1}, μ_{2} on [0,1]
- utility $u=u(x, y)$

Find:

$$
T\left[u, \mu_{1}, \mu_{2}\right]=\max _{\substack{\gamma \text { on }[0,1]^{2}}} \int_{[0,1]^{2}} u(x, y) d \gamma(x, y)
$$

Interpretation: given spacial distribution of production and consumption, minimise the cost of transportation / maximise the utility

WHAT IS OPTIMAL TRANSPORTATION PROBLEM?

Given:

- μ_{1}, μ_{2} on [0,1]
- utility $u=u(x, y)$

Find:

$$
\begin{aligned}
& T\left[u, \mu_{1}, \mu_{2}\right] \max \\
& \gamma \text { on }[0,1]^{2} \\
& \text { marginals } \mu_{1}, \mu_{2}
\end{aligned} \int_{[0,1]^{2}} u(x, y) d \gamma(x, y)
$$

-Interpretation: given spacial distribution of production and consumption, minimise the cost of transportation / maximise the utility
,Remark: fractional maximal-weight matching

WHAT IS OPTIMAL TRANSPORTATION PROBLEM?

Given:

- μ_{1}, μ_{2} on [0,1]
- utility $u=u(x, y)$

Find:

$$
T\left[u, \mu_{1}, \mu_{2}\right]=\max _{\substack{\gamma \text { on }[0,1]^{2}}} \int_{[0,1]^{2}} u(x, y) d \gamma(x, y)
$$

-Interpretation: given spacial distribution of production and consumption, minimise the cost of transportation / maximise the utility
,Remark: fractional maximal-weight matching
-Archetypal coupling problem, many econ applications:

- Daskalakis et al. (2017), Kleiner, Manelli (2019), Boerma et al. (2021), Chiapporiet et al. (2010), Galichon (2021), Steinerberger, Tsyvinski (2019), Gensbittel (2015), Guo, Shmaya (2021), Cieslak, Malamud, Schrimpf (2021)

PERSUASION AS TRANSPORT

THEOREM

Value of a persuasion problem $\left(p, u^{\ell}, u^{h}\right)$ equals

$$
\begin{aligned}
& \max
\end{aligned}\left[(1-p) \cdot T\left[u^{l}, \mu_{1}^{l}, \mu_{2}^{l}\right]+p \cdot T\left[u^{h}, \mu_{1}^{h}, \mu_{2}^{h}\right]\right]
$$

PERSUASION AS TRANSPORT

THEOREM

Value of a persuasion problem $\left(p, u^{l}, u^{h}\right)$ equals

$$
\underset{\substack{\text { admissible } \\ \text { marginals }}}{\max }\left[(1-p) \cdot T\left[u^{\ell}, \mu_{1}^{\ell}, \mu_{2}^{\ell}\right]+p \cdot T\left[u^{h}, \mu_{1}^{h}, \mu_{2}^{h}\right]\right]
$$

PERSUASION AS TRANSPORT

THEOREM

Value of a persuasion problem $\left(p, u^{l}, u^{h}\right)$ equals

$$
\underset{\substack{\text { admissible } \\ \text { marginals }}}{\max } \underbrace{\left[\left(\mu_{1}^{h}\right),\left(\mu_{2}^{\ell}, \mu_{2}^{h}\right)\right. \text { are feasible pairs in 1-receiver problem }}_{\left((1-p) \cdot T\left[u^{\ell}, \mu_{1}^{\ell}, \mu_{2}^{\ell}\right]+p \cdot T\left[u^{h}, \mu_{1}^{h}, \mu_{2}^{h}\right]\right]}
$$

WHY USEFUL?

PERSUASION AS TRANSPORT

THEOREM

Value of a persuasion problem $\left(p, u^{l}, u^{h}\right)$ equals

$$
\underset{\substack{\text { admissible } \\ \text { marginals }}}{\max }\left[(1-p) \cdot T\left[u^{\ell}, \mu_{1}^{\ell}, \mu_{2}^{\ell}\right]+p \cdot T\left[u^{h}, \mu_{1}^{h}, \mu_{2}^{h}\right]\right]
$$

WHY USEFUL?

- connection to extensive math transportation literature

PERSUASION AS TRANSPORT

THEOREM

Value of a persuasion problem $\left(p, u^{l}, u^{h}\right)$ equals

$$
\underset{\substack{\text { admissible } \\ \text { marginals }}}{\max }\left[(1-p) \cdot T\left[u^{\ell}, \mu_{1}^{\ell}, \mu_{2}^{\ell}\right]+p \cdot T\left[u^{h}, \mu_{1}^{h}, \mu_{2}^{h}\right]\right]
$$

WHY USEFUL?

- connection to extensive math transportation literature
- simplification for particular classes of utilities
- one-state, supermodular, submodular

PERSUASION AS TRANSPORT

THEOREM

Value of a persuasion problem $\left(p, u^{l}, u^{h}\right)$ equals

$$
\underset{\substack{\text { admissible } \\ \text { marginals }}}{\max } \xlongequal{\left[(1-p) \cdot T\left[u^{\ell}, \mu_{1}^{\ell}, \mu_{2}^{\ell}\right]+p \cdot T\left[u^{h}, \mu_{1}^{h}, \mu_{2}^{h}\right]\right]}
$$

WHY USEFUL?

- connection to extensive math transportation literature
- simplification for particular classes of utilities
- one-state, supermodular, submodular
- tractable dual extending 1-receiver results:
- cav[u]-theorem by Kamenica, Gentzkow (2011) and duality by Dworczak, Kolotilin (2017)

THE DUAL

THEOREM

Value of a persuasion problem $\left(p, u^{\ell}, u^{h}\right)$ equals

$$
\min _{\text {admissible }}\left[(1-p) \cdot V^{\ell}+p \cdot V^{h}\right]
$$

numbers
V^{ℓ}, V^{h}

THE DUAL

THEOREM

Value of a persuasion problem $\left(p, u^{\ell}, u^{h}\right)$ equals

$$
\begin{aligned}
& \underset{\substack{\text { min } \\
\text { admissible } \\
\text { numbers } \\
V^{\ell}, V^{h}\\
}}{ }\left[(1-p) \cdot V^{\ell}+p \cdot V^{h}\right] \\
& \begin{array}{l}
u^{\ell}(x, y) \leq V^{l}+x \cdot \alpha_{1}(x)+y \cdot \alpha_{2}(y) \\
u^{h}(x, y) \leq V^{h}-(1-x) \alpha_{1}(x)-(1-y) \alpha_{2}(y)
\end{array}
\end{aligned}
$$

THE DUAL

THEOREM

Value of a persuasion problem $\left(p, u^{\ell}, u^{h}\right)$ equals

$$
\begin{gathered}
\underset{\substack{\min \\
\text { admissible } \\
\text { numbers } \\
V^{\ell}, V^{h}\\
}}{ }\left[(1-p) \cdot V^{l}+p \cdot V^{h}\right] \\
\begin{array}{l}
u^{\ell}(x, y) \leq V^{l}+x \cdot \alpha_{1}(x)+y \cdot \alpha_{2}(y) \\
u^{h}(x, y) \leq V^{h}-(1-x) \alpha_{1}(x)-(1-y) \alpha_{2}(y)
\end{array}
\end{gathered}
$$

- Interpretation:

THE DUAL

THEOREM

Value of a persuasion problem $\left(p, u^{\ell}, u^{h}\right)$ equals

$$
\begin{gathered}
\underset{\substack{\min \\
\text { admissible } \\
\text { numbers } \\
V^{\ell}, V^{h}\\
}}{ }\left[(1-p) \cdot V^{l}+p \cdot V^{h}\right] \\
\begin{array}{r}
u^{\ell}(x, y) \leq V^{l}+x \cdot \alpha_{1}(x)+y \cdot \alpha_{2}(y) \\
u^{h}(x, y) \leq V^{h}-(1-x) \alpha_{1}(x)-(1-y) \alpha_{2}(y)
\end{array}
\end{gathered}
$$

- Interpretation:

$$
\text { s.t. } u^{l} \leq v^{l}, \quad u^{h} \leq v^{h}
$$

and non-revealing is optimal

THE DUAL

THEOREM

Value of a persuasion problem $\left(p, u^{\ell}, u^{h}\right)$ equals

$$
\begin{array}{r}
\underset{\substack{\text { admissible } \\
\text { numbers } \\
V^{\ell}, V^{h} \\
\text { min }}}{ }\left[(1-p) \cdot V^{l}+p \cdot V^{h}\right] \\
\begin{array}{r}
V^{l}, V^{h}(x, y) \leq V^{l}+x \cdot \alpha_{1}(x)+y \cdot \alpha_{2}(y) \\
u^{h}(x, y) \leq V^{h}-(1-x) \alpha_{1}(x)-(1-y) \alpha_{2}(y)=v^{h}
\end{array}
\end{array}
$$

value of $\left(p, u^{\ell}, u^{h}\right)=$ minimal value of $\left(p, v^{\ell}, v^{h}\right)$

$$
\text { s.t. } u^{\ell} \leq v^{\ell}, \quad u^{h} \leq v^{h}
$$

and non-revealing is optimal

THE DUAL

THEOREM

Value of a persuasion problem $\left(p, u^{\ell}, u^{h}\right)$ equals

$$
\begin{array}{r}
\begin{array}{c}
\min \\
\text { admissible } \\
\text { numbers } \\
V^{\ell}, V^{h}
\end{array} \\
\left.\hline(1-p) \cdot V^{\ell}+p \cdot V^{h}\right] \\
V^{l}, V^{h}(x, y) \leq V^{l}+x \cdot \alpha_{1}(x)+y \cdot \alpha_{2}(y) \\
u^{h}(x, y) \leq V^{h}-(1-x) \alpha_{1}(x)-(1-y) \alpha_{2}(y)=v^{h}
\end{array}
$$

- Interpretation:

$$
\begin{array}{r}
\text { value of }\left(p, u^{l}, u^{h}\right)=\begin{array}{r}
\text { minimal value of }\left(p, v^{\ell}, v^{h}\right) \\
\text { s.t. } u^{\ell} \leq v^{l}, \quad u^{h} \leq v^{h} \\
\text { and non-revealing is optimal }
\end{array}
\end{array}
$$

- $\operatorname{cav}[u]$-theorem has a similar form: convexity \Leftrightarrow a condition that non-revealing is optimal

THE DUAL

THEOREM

Value of a persuasion problem $\left(p, u^{\ell}, u^{h}\right)$ equals

$$
\begin{gathered}
\left.\begin{array}{c}
\min \\
\begin{array}{c}
\text { admissible } \\
\text { numbers } \\
V^{\ell}, V^{h}
\end{array} \\
(1-p) \cdot V^{\ell}+p \cdot V^{h}
\end{array}\right] \\
\begin{array}{r}
V^{l}, V^{h} \\
\text { are admissible } \\
u^{\ell}(x, y) \leq V^{l}+x \cdot \alpha_{1}(x)+y \cdot \alpha_{2}(y) \\
u^{h}(x, y) \leq V^{h}-(1-x) \alpha_{1}(x)-(1-y) \alpha_{2}(y)=v^{h}
\end{array}
\end{gathered}
$$

- Interpretation:

$$
\begin{array}{r}
\text { value of }\left(p, u^{\ell}, u^{h}\right)=\begin{aligned}
\text { minimal value of }\left(p, v^{l}, v^{h}\right) \\
\text { s.t. } u^{\ell} \leq v^{\ell}, \quad u^{h} \leq v^{h}
\end{aligned} \\
\text { and non-revealing is optimal }
\end{array}
$$

- $\operatorname{cav}[u]$-theorem has a similar form: convexity \Leftrightarrow a condition that non-revealing is optimal
- dual solution = certificate of optimality: verifies guessed solution to the primal

THE DUAL

THEOREM

Value of a persuasion problem $\left(p, u^{\ell}, u^{h}\right)$ equals

 $\min \left[(1-p) \cdot V^{\ell}+p \cdot V^{h}\right]$ admissible numbers$$
V^{\ell}, V^{h}
$$

$$
\begin{aligned}
& V^{l}, V^{h} \text { are admissible } \Longleftrightarrow \exists \text { functions } \alpha_{1}, \alpha_{2} \text { on }[0,1] \text { s.t. } \\
& \qquad \begin{array}{r}
=v^{\ell} \\
u^{\ell}(x, y) \leq V^{l}+x \cdot \alpha_{1}(x)+y \cdot \alpha_{2}(y) \\
u^{h}(x, y) \leq V^{h}-(1-x) \alpha_{1}(x)-(1-y) \alpha_{2}(y)
\end{array}=v^{h}
\end{aligned}
$$

- Interpretation:

$$
\begin{array}{r}
\text { value of }\left(p, u^{\ell}, u^{h}\right)=\begin{aligned}
\text { minimal value of }\left(p, v^{l}, v^{h}\right) \\
\text { s.t. } u^{\ell} \leq v^{\ell}, \quad u^{h} \leq v^{h}
\end{aligned} \\
\text { and non-revealing is optimal }
\end{array}
$$

- $\operatorname{cav}[u]$-theorem has a similar form: convexity \Leftrightarrow a condition that non-revealing is optimal
- dual solution = certificate of optimality: verifies guessed solution to the primal
- gives a class of problems where full-information/partial-information signals are optimal

SUMMARY

SUMMARY

-Conditioning on θ helps in multi-agent persuasion

SUMMARY

-Conditioning on θ helps in multi-agent persuasion
Donnects to optimal transport

SUMMARY

-Conditioning on θ helps in multi-agent persuasion
Donnects to optimal transport
Connection enables rich math tools, including duality

SUMMARY

-Conditioning on θ helps in multi-agent persuasion
Connects to optimal transport
Connection enables rich math tools, including duality
Another confirmation:
information \& mechanism design \simeq transportation

SUMMARY

Conditioning on θ helps in multi-agent persuasion
Donnects to optimal transport
Connection enables rich math tools, including duality
Another confirmation:
information \& mechanism design \simeq transportation

THANK YOU!

