
Persuasion as Transportation∗

Itai Arieli† Yakov Babichenko‡ Fedor Sandomirskiy§

Abstract

We consider a model of Bayesian persuasion with one informed sender and several unin-

formed receivers. The sender can affect receivers’ beliefs via private signals, and the sender’s

objective depends on the combination of induced beliefs.

We reduce the persuasion problem to the Monge-Kantorovich problem of optimal trans-

portation. Using insights from optimal transportation theory, we identify several classes of

multi-receiver problems that admit explicit solutions, get general structural results, derive a

dual representation for the value, and generalize the celebrated concavification formula for the

value to multi-receiver problems.

1 Introduction

Actions taken by economic agents depend on the information they have access to. Thus more
informed agents can use their information advantage to affect the actions of less informed ones by
disclosing the available information selectively. Such a strategic information disclosure is called
persuasion. In the archetypal problem of Bayesian persuasion by Kamenica and Gentzkow (2011),
an informed sender aims to affect the uninformed receiver’s beliefs by sending a noisy signal. This
model has become a standard for understanding information-related phenomena in various economic
problems such as advertising, market signaling, legal disputes, financial disclosure, etc. The presence
of explicit solutions which can be constructed via the concavification technique of Aumann and
Maschler (1995) contributes to the popularity of this model.

The assumption that the sender interacts with a single receiver can often be restrictive. For ex-
ample, electronic marketplaces are governed by recommendation systems that can send “recommen-
dations” individually tailored to each recipient, i.e., private signals. However, private multi-receiver
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Bayesian persuasion is challenging. The source of difficulty is that, in addition to deciding what
information to disclose to each receiver (which boils down to specifying individual belief distribu-
tions, as in the single-receiver case), the sender must also decide on how to couple (i.e., to correlate)
the information across receivers. The set of feasible couplings of individual belief distributions has
a complex structure (Arieli, Babichenko, Sandomirskiy, and Tamuz, 2021a; Morris, 2020; Ziegler,
2020; Lang, 2022) which makes optimal multi-receiver persuasion notoriously difficult.

The classical Monge-Kantorovich problem of optimal transportation consists of finding the least
costly way to transport a produced commodity for given spatial distributions of supply and demand.
More generally, it can be considered a problem of finding a coupling between given distributions
optimizing a certain objective function. This interpretation explains why optimal transportation
problems emerge in diverse economic, mathematical, and statistical contexts seemingly having no
connection to transportation.

The coupling of beliefs is the bottleneck in understanding private multi-receiver persuasion.
This observation motivates finding a formal connection between persuasion and transportation to
handle the belief-coupling problem via transportation tools.

Finding a formal connection between persuasion and optimal transport was mentioned by Dwor-
czak and Martini (2019) as an open question. We establish such a connection for a benchmark
model of private multi-receiver persuasion, where the sender’s objective is expressed as a function
of induced receivers’ beliefs like in the single-receiver model of Kamenica and Gentzkow (2011).

Our contribution

We demonstrate that private multi-receiver persuasion can be reduced to a problem of optimal
transportation; moreover, methods from optimal transportation enabled by this connection prove
to be useful in studying persuasion problems.

The reduction is established in Theorem 1. The essence of the result is that persuasion can be
represented as nested optimization: first, we optimize over individual belief distributions and then
over possible couplings for fixed individual distributions. The internal coupling problem turns out
to be the standard optimal transportation one. The external optimization over individual belief
distributions takes a simple form identical to the single-receiver case.

There is no contradiction between the simplicity of Theorem 1 and the intractability of feasible
joint belief distributions mentioned above. The theorem relies on a simple but counter-intuitive
insight: conditional distributions of beliefs given the realized state turn out to be substantially easier
to work with than unconditional distributions, which the literature has focused on. Conditioning
on the state disentangles the feasibility of individual belief distributions and their coupling, thus
leading to the nested structure from our theorem.
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The internal transportation problem absorbs the difficulty of the original persuasion problem.
For some classes of sender’s objectives, one can use off-the-shelf transportation tools to solve the in-
ternal problem explicitly and, as a result, the persuasion problem itself. We illustrate this approach
for one-state persuasion, where the sender’s utility is zero for all states except one (Section 3.1) and
for supermodular utilities (Section 3.2.1).

Duality plays a central role in optimal transportation theory. Using the connection between
persuasion and transportation, we obtain an analog of the Kantorovich–Rubinstein duality for
persuasion (Theorem 2). The dual representation for the sender’s optimal value extends the familiar
concavification formula for the single-receiver problem to the multi-receiver case (Theorem 3).
Specifically, we show that the value can be expressed as the minimum over the family of all functions
that are pointwise above the sender’s utility and for which revealing no information is optimal for all
priors.1 Finally, we demonstrate how the dual problem can be used to construct explicit solutions
to the primal one.

1.1 Related literature

Optimal ways to persuade multiple receivers via private signals are known only for particular
sender’s objectives and/or strong restrictions on receivers’ action sets. The main obstacle is the
complex structure of the set of feasible joint belief distributions (those distributions that the sender
can induce) as indicated by Dawid, DeGroot, and Mortera (1995); Mathevet, Perego, and Taneva
(2020); Arieli, Babichenko, Sandomirskiy, and Tamuz (2021a,b); He, Sandomirskiy, and Tamuz
(2021); Lang (2022). Related feasibility questions were studied by Gutmann, Kemperman, Reeds,
and Shepp (1991); Herings, Karos, and Kerman (2020); Ziegler (2020); Levy, Barreda, and Razin
(2022); Morris (2020); Brooks, Frankel, and Kamenica (2022); Arieli and Babichenko (2022). Math-
ematical literature refers to feasible distributions as coherent distributions and provides some tight
bounds, which can be converted into solutions to particular persuasion problems (Burdzy and Pit-
man, 2020; Burdzy and Pal, 2021; Cichomski, 2020; Cichomski and Osękowski, 2021; Cichomski
and Osękowski, 2022a,b; Cichomski and Petrov, 2023). Persuasion simplifies dramatically if re-
ceivers have only a few actions. Arieli and Babichenko (2019) solve the problem for binary actions
and sub/supermodular objectives. In general, for a few actions, one can identify signals with ac-
tion recommendations satisfying incentive-compatibility constraints (also known as obedience or
straightforwardness Kamenica and Gentzkow (2011)) and obtain the optimal information structure
as a solution to a linear program capturing Bayesian correlated equilibria as in Bergemann and
Morris (2016, 2019); Taneva (2019). Our results are not sensitive to the cardinality of action sets

1For a single receiver, the set of utility functions such that revealing no information is optimal for all priors is
precisely the set of concave functions.
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and are applicable in the case of a continuum of actions.
A connection to optimal transportation is known in a variety of economic settings, e.g., monopoly

pricing and multi-dimensional screening (Daskalakis, Deckelbaum, and Tzamos, 2017; Figalli, Kim,
and McCann, 2011), auctions (Kolesnikov, Sandomirskiy, Tsyvinski, and Zimin, 2022), matching
and labor market sorting (Chiappori, McCann, and Nesheim, 2010; Boerma, Tsyvinski, and Zimin,
2021), optimal taxation (Steinerberger and Tsyvinski, 2019), econometrics (Galichon, 2021), and
many others surveyed by (Ekeland, 2010; Carlier, 2012; Galichon, 2016). This connection is fruitful
as it always brings new tools — such as the Kantorovich-Rubinstein duality — from the math-
ematical theory of transportation to the problem of interest. The modern mathematical theory
is surveyed by (Bogachev and Kolesnikov, 2012; Guillen and McCann, 2013) and comprehensively
presented in books (Santambrogio, 2015; Villani, 2009).

An extended abstract of this paper appeared in proceedings ACM EC2022 (Arieli et al., 2022).
In parallel to our work connecting multi-receiver persuasion and transportation, several recent
papers describe another connection for single-receiver problems (Kolotilin, Corrao, and Wolitzky,
2022; Cieslak, Malamud, Schrimpf, et al., 2021; Malamud and Schrimpf, 2021; Lin and Liu, 2022).2

In these papers, transportation problems arise as the optimal coupling between the state and a
recommendation to a single receiver, a perspective especially useful for continuous state spaces. By
contrast, in our approach, the transportation problem captures the optimal coupling between the
beliefs of multiple receivers, and we focus on finite sets of states.

The duality that we find in the multi-receiver setting can be seen as an extension of the general
single-receiver duality by Dworczak and Kolotilin (2019); see Section 4 for a detailed comparison.
Earlier duality results of Kolotilin (2018), Dworczak and Martini (2019), and Dizdar and Kováč
(2020) addressed the case of the sender’s objective depending on the induced posterior mean. The
action-recommendation approach of Bergemann and Morris (2016) also leads to a linear program,
and its dual is studied by Galperti and Perego (2018) and Galperti, Levkun, and Perego (2023) for
finite sets of actions. Smolin and Yamashita (2022) show that this dual problem gains tractability
for a continuum of actions under extra convexity assumptions.

2If multiple receivers observe the same public signal, they can be replaced by a single aggregate receiver. Following
the tradition, we distinguish between single- and multi-receiver problems, while a distinction is, in fact, made between
public vs. private signaling.

4



2 Model

2.1 Persuasion

A Bayesian persuasion problem is given by a collection

B “
´

Ω, p P ∆pΩq, N, v : Ωˆ
`

∆pΩq
˘N
Ñ R

¯

.

Here Ω is a finite set of states and a random state ω P Ω is drawn according to a distribution
p “ pppωqqωPΩ P ∆pΩq with full support. We refer to p as the prior distribution.

The sender observes the realized state ω and can selectively reveal some information about ω to
a group of n receivers N “ t1, 2, . . . , nu, who do not observe the realization of ω but are aware of
the prior distribution. The information is revealed via an information structure with private signals
defined below. The goal of the sender is to maximize her expected utility vωpx1, x2, . . . , xnq, which
depends on the state ω and on the combination of posterior beliefs3 x1, x2, . . . xn of all the receivers
about the state; the function v is assumed to be measurable.

An information structure I “
`

pSiqiPN , πp¨ | ωq
˘

is composed of sets of signals Si for each
receiver i P N and a joint distribution of signals πp¨ | ωq P ∆pS1 ˆ ¨ ¨ ¨ ˆ Snq conditional on each
possible realization of the state ω. The sets of signals can be arbitrary measurable spaces, i.e.,
sets equipped with sigma-fields. It is assumed that the sender selects an information structure
before observing the state and commits to drawing signals ps1, . . . , snq according to the distribution
πp¨ | ωq once she observes ω.

Combined with the prior p P ∆pΩq, an information structure I induces the joint distribution
P “ PI of the state and signals pω, s1, . . . , snq. Each receiver i is aware of the prior p and the
information structure I chosen by the sender. Hence, having received her signal si, the receiver i
can compute her posterior belief xi P ∆pΩq about the state, i.e., xipwq “ PIpω “ w | siq, w P Ω.
The posterior belief is defined for almost all realizations of signals. For finite sets of signals, it can
be computed by the familiar Bayes formula:

xipwq “ ppwq ¨
πpsi | wq

ř

w1PΩ ppw
1q ¨ πpsi | w1q

. (1)

The persuasion problem is to maximize the expected utility EI rvωpx1, . . . , xnqs over all information
structures I. The optimal value of the objective is called the value of the persuasion problem B:

ValrBs “ sup
I

EI
”

vωpx1, x2 . . . , xnq
ı

. (2)

3Utility functions depending on the profile of receivers’ beliefs about the state arise as indirect utilities if each
receiver i has action set Ai and the receiver’s action is a function of her belief about the state, ai “ aipxiq. This
is the case in the first-order persuasion model of Arieli, Babichenko, Sandomirskiy, and Tamuz (2021a) where each
receiver’s utility depends only on the receiver’s own action and the state. More generally, higher-order beliefs do not
affect receivers’ choices if receivers play a simple game in the sense of Börgers and Li (2019).
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Note that at this point we assume neither boundedness nor continuity of v and, hence, the value
may equal `8 or the optimal information structure may fail to exist (this is why the value is
defined using sup instead of max). As we will see later, the existence of the optimal information
structure is guaranteed under the standard assumption of upper semicontinuity.

2.2 Transportation

Suppose we are given a finite set X1 of locations, where the same homogeneous good is produced,
and a finite set X2 of consumers. A distribution λ1 over X1 represents the amount produced at
each location and a distribution λ2 over X2 specifies the demand of each consumer. The cost of
transporting a unit amount of the good from a location x1 to a consumer x2 is cpx1, x2q, where
c : X1 ˆX2 Ñ R is a given cost function. A transportation plan µ is given by an X1 ˆX2 matrix,
where µpx1, x2q ě 0 is the amount transported from x1 to x2; a plan is feasible if supply meets
demand, i.e.,

ř

x2PX2
µpx1, x2q “ λ1px1q and

ř

x1PX1
µpx1, x2q “ λ2px2q for all x1 and x2. The

classical Monge-Kantorovich transportation problem is to find a feasible plan µ with minimal total
transportation cost.

More generally, instead of two sets X1 and X2 there is an arbitrary number of them Xi, i P

N “ t1, 2, . . . , nu and Xi are arbitrary sets, not necessarily finite, each equipped with a sigma
field. For presentation purposes, it is convenient to consider a maximization objective instead of
a minimization one. Thus a problem of optimal transportation is given by a measurable utility
function v on X1ˆ . . .ˆXn and a collection of probability measures λi P ∆pXiq for each i P N . Let
Mpλ1, λ2, . . . , λnq be the set of feasible transportation plans; it consists of probability measures µ
on X1 ˆ . . .ˆXn such that the marginal of µ on Xi equals λi for each i P N . The goal is to

maximize
ż

X1ˆ...ˆXn

vpxqdµpxq over µ PMpλ1, λ2, . . . , λnq.

We denote the value of the transportation problem by

Tv
“

pλiqiPN
‰

“ sup
µPMppλiqiPN q

ż

X1ˆ...ˆXn

vpxqdµpxq.

3 Persuasion as transportation

This section shows that the persuasion problem can be reduced to a transportation problem.
Consider a persuasion problem B “

´

Ω, p,N, v
¯

and define a family of transportation problems
indexed by ω P Ω. In these transportation problems, the sets X1, X2, . . . , Xn coincide with ∆pΩq

and the utility is vω. The marginals have to satisfy the requirement of admissibility that we are
about to define.
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Denote by ∆pp∆pΩqq the set of distributions on ∆pΩq with mean p, i.e., λ P ∆pp∆pΩqq if
ş

∆pΩq
xpωqdλpxq “ ppωq for all ω P Ω. By the well-known splitting lemma (Aumann and Maschler,

1995; Blackwell, 1951), the set of all belief distributions of one agent that can be induced by some
information structure is precisely ∆pp∆pΩqq. Moreover, a distribution of beliefs λ P ∆pp∆pΩqq

uniquely determines the distribution of beliefs conditional on state ω. This conditional distribution
denoted by λω can be found using the following equality of the Radon-Nikodym derivatives:

dλω

dλ
pxq “

xpωq

ppωq
, for all x P ∆pΩq and ω P Ω. (3)

Definition 1. An |Ω|-tuple of distributions pλωqωPΩ is called admissible if there exists λ that induces
λω conditional on ω for every ω P Ω, i.e., the identity (3) holds. A collection pλωi qiPN,ωPΩ is called
admissible marginals if the tuple pλωi qωPΩ is an admissible |Ω|-tuple for every i P N .

Theorem 1. For a persuasion problem B, the value can be represented as follows:

ValrBs “ sup
admissible marginals

pλωi qiPN,ωPΩ Ă ∆p∆pΩqq

ÿ

ωPΩ

ppωq ¨ Tvω
“

pλωi qiPN
‰

. (4)

Moreover, if the utility function v is upper semicontinuous, the optimal marginals, as well as the
optimal transportation plans, exist and sup can be replaced by max.

In other words, to compute the value of a persuasion problem, we can fix some admissible
marginals, solve a family of transportation problems indexed by the state, average the obtained
values over the prior, and then optimize the result over admissible marginals. Theorem 1 is proved
in Appendix A.1 where we also demonstrate how to construct an optimal information structure
based on optimal marginals and transportation plan. Here we explain the structural properties of
multi-receiver persuasion enabling this nested representation.

Ideas behind Theorem 1. Instead of the maximization over information structures in (2), one
can maximize over all joint distributions of the state ω and posterior beliefs x1, . . . , xn that can be
induced by some information structure I. Since the distribution of ω equals the prior p, we only need
to know conditional distributions of beliefs given the state to reconstruct the whole distribution.
We say that pµωqωPΩ Ă ∆

`

∆pΩq ˆ . . . ˆ ∆pΩq
˘

are feasible conditional distributions of beliefs if
there exists an information structure I such that the joint distribution of beliefs x1, . . . , xn given
the state ω equals µω for each of the states; the set of all such collections pµωqωPΩ depends on the
prior p and is denoted by Fp.

We conclude that the value of the persuasion problem admits the following representation

ValrBs “ sup
pµωqωPΩPFp

ÿ

ωPΩ

ppωq ¨

ż

∆pΩqˆ...ˆ∆pΩq

vωpx1, . . . , xnqdµ
ωpx1, . . . , xnq.
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As we show in Appendix A.1, the set Fp can be expressed through feasible transportation plans M
with admissible marginals as follows:

Fp “
ď

asmissible marginals
pλωi qiPN,ωPΩ Ă ∆p∆pΩqq

ź

ωPΩ

M
`

λω1 , . . . , λ
ω
n

˘

. (5)

In other words, conditional distributions are feasible if they have admissible marginals. This rep-
resentation allows us to conduct the maximization in two steps — first, over transportation plans
and then over admissible marginals — and leads to the desired formula (4).

It is instructive to compare the characterization of feasible conditional distributions of beliefs (5)
to the characterizations of unconditional ones found by Dawid, DeGroot, and Mortera (1995) for
two receivers in the binary-state case and by Arieli, Babichenko, Sandomirskiy, and Tamuz (2021a)
for any number of receivers. In our notation, the set they characterize can be seen as the image
of Fp under the linear map pµωqωPΩ Ñ

ř

ωPΩ ppωq ¨ µ
ω. This image does not admit a simple

characterization in terms of marginals, particularly the conditions found by Dawid, DeGroot, and
Mortera (1995) and Arieli, Babichenko, Sandomirskiy, and Tamuz (2021a) are rather involved. The
surprising simplicity of characterization (5) underlies the connection to optimal transport and drives
our analysis.

Below we consider several classes of problems that can be solved explicitly using Theorem 1.

3.1 One-state persuasion

A problem B is a one-state persuasion problem if the utility function vω has the following form

vωpx1, . . . , xnq “

#

vpx1, . . . , xnq, ω “ ω0

0, ω ‰ ω0

,

where ω0 P Ω is fixed and v is some measurable function ∆pΩqN Ñ R.

Remark 1. One-state persuasion problems arise naturally if, at each state ω, the sender derives
utility from disjoint groups Nω Ă N of receivers, e.g., a PR-manager targets different parts of
the population depending on the focus ω of a PR-campaign. Formally, consider a partition N “
Ť

ωPΩNω of the set of receivers into |Ω| disjoint subsets and assume that the sender’s utility takes
the following form v “ vω

`

pxiqiPNω

˘

. Such a persuasion problem boils down to solving |Ω| one-state
persuasion problems indexed by ω0 P Ω and having Nω0

as the set of receivers and the utility equal
to vω0

`

pxiqiPNω0

˘

if ω “ ω0 and to zero, otherwise.

For one-state problems, only the state ω0 contributes to the formula for the value in Theorem 1.
In particular, the only components of the admissible marginals playing a role are pλω0

i qiPN .
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Lemma 1. For a collection of distributions pγiqiPN Ă ∆p∆pΩqq one can find admissible marginals
pλωi qiPN,ωPΩ such that γi “ λω0

i , i P N , if and only if the following family of inequalities holds:
ż

∆pΩq

xpωq

xpω0q
dγipxq ď

ppωq

ppω0q
, i P N, ω P Ωztω0u. (6)

The lemma is proved in the appendix. The necessity of conditions (6) is easy to see informally.
The definition of admissibility (3) implies that there exists a probability measure λi such that
dλipxq “

ppωq
xpωqdλ

ω
i pxq (except for points where xpωq “ 0). Hence, ppω0q

xpω0q
dλω0

i pxq “
ppωq
xpωqdλ

ω
i pxq or,

equivalently, xpωq
xpω0q

dλω0
i pxq “

ppωq
ppω0q

dλωi pxq. Integrating this identity over x P ∆pΩq with xpω0q ‰ 0,
we get (6).

From Theorem 1 and Lemma 1, we conclude that the value of the persuasion problem can be
represented as ppω0q¨supγ

ş

vpxqdγpxq, where the supremum is over distributions γ P ∆
`

∆pΩqˆ. . .ˆ

∆pΩq
˘

such that its marginals pγiqiPN satisfy the inequalities (6). We maximize a linear functional
over a convex set; hence, by Bauer’s principle, we can restrict the maximization to extreme points
of this set. Extreme γ turns out to have a simple form. Indeed, extreme points of the set of all
probability measures are just point masses (the Dirac delta measures). The set of feasible γ is
cut from the set of all probability measures by |N | ¨ p|Ω| ´ 1q linear inequalities and, hence, the
extreme γ are convex combinations of at most |N | ¨ p|Ω|´1q`1 point masses. The following lemma
formalizes this observation.

Lemma 2. The value of a one-state persuasion problem B can be expressed as the supremum over
distributions γ supported on at most |N | ¨ p|Ω| ´ 1q ` 1 points:

ValrBs “ ppω0q ¨ sup
γ P ∆

`

∆pΩq ˆ . . .ˆ∆pΩq
˘

such that the marginals satisfy (6) and
ˇ

ˇsupp rγs
ˇ

ˇ ď |N | ¨ p|Ω| ´ 1q ` 1

ż

∆pΩqˆ...ˆ∆pΩq

vpx1, . . . , xnqdγpx1, . . . , xnq.

(7)

Note that for γ from the lemma, the integral in (7) as well as the integrals in (6) are, in fact, finite
sums with at most Np|Ω|´1q`1 summands. In Appendix A, we prove a strengthening of Lemma 2
with the bound on the number of atoms depending on the number of “active” constraints (6); we
also demonstrate there that the sender can achieve the utility level corresponding to a distribution
γ by using an information structure with at most |N | ¨ p|Ω| ´ 1q signals per receiver.

The possibility to reduce one-state persuasion to a finite-dimensional problem can be seen as
a peculiar geometric property of the set Fp of feasible conditional distributions of beliefs. The set
of distributions with marginals satisfying (6) can be seen as the image of Fp under the projection
pµωqωPΩ Ñ µω0 . The fact that this image has extreme points with finite support and a simple
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structure is to be contrasted with the complicated structure of extreme points of the set Fp itself.
Indeed, Arieli, Babichenko, Sandomirskiy, and Tamuz (2021a) and Zhu (2022) showed that feasible
unconditional distributions of beliefs (i.e., the image of Fp under pµωqωPΩ Ñ

ř

ωPΩ ppωq ¨ µ
ω) have

extreme points with infinite support, which implies the existence of infinitely-supported extreme
points in Fp since an extreme point of the image under a linear map is the image of an extreme
point.

The following example illustrates how to use Lemma 2.

Example 1. Consider a stylized model of portfolio diversification, where a financial advisor (sender)
advises two investors (receivers). A binary state ω equals ` or h equally likely and determines
whether the investment opportunity is low-risk (ω “ `) or high-risk (ω “ h). We assume that
the fraction of the receiver’s i investment budget allocated to the given investment opportunity
is proportional to her belief xip`q “ 1 ´ xiphq (e.g., i’s investment decision is guided by a proper
scoring rule).

To mitigate potential losses within the overall portfolio, the advisor’s bonus is tied to the
portfolio’s diversification achieved in the high-risk state. The bonus equals

`

x1phq ´ x2phq
˘2 if

the state is ω “ h, and equals 0 if the state is ω “ `. Hence, to achieve diversification, the financial
advisor aims to make receivers’ beliefs x1 and x2 in the high-risk state as far apart as possible.

For two receivers, it is enough to consider distributions γ in (7) with at most three points in
the support. If we restrict the maximization to one-point distributions, then the optimum of 1

8

is achieved at the point mass at a pair of beliefs px1phq, x2phqq “
`

1, 1
2

˘

and also at
`

1
2 , 1

˘

. For
γ supported on two points, we can improve the value of the objective to 2

9 , which is achieved at
the distribution that places equal weight on

`

1, 1
3

˘

and
`

1
3 , 1

˘

. Allowing for the third point in the
support does not improve the objective.

We conclude that the value of the persuasion problem — the maximal bonus that the advisor
can get — equals 2

9 . It can be achieved by disclosing the state to a randomly chosen investor for
ω “ h and providing no information in other cases. Formally, an optimal information structure I
has two signals D,H for both receivers, where D stands for dummy. If ω “ h, the sender picks
a receiver uniformly at random and sends the signal H. In all other cases (state ω “ h and the
receiver not picked or state ω “ `), the sender sends a dummy signal D. The corresponding belief
distribution is depicted in Figure 1.

3.2 The case of two receivers and a binary state

Consider a persuasion problem B with two receivers N “ t1, 2u and a binary state ω P Ω “ t`, hu.
We identify x P ∆pΩq with xp`q P r0, 1s. Accordingly, ∆pΩq is identified with the interval r0, 1s and
∆p∆pΩqq with the set of distributions over it.
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Figure 1: The joint distribution of beliefs for Example 1. Prior is 1{2. The numbers inside the
square indicate the probabilities of each outcome, and red/blue colors correspond to ω “ h and
ω “ `, respectively.

We exemplify what the optimization problem from Theorem 1 looks like in this case. The
condition of admissibility for a family of distributions λ`1, λh1 , λ`2, λh2 on r0, 1s is expressed as
dλ`

i

dλi
pxq “ x

p and dλh
i

dλi
pxq “ 1´x

1´p . Excluding λi, we see that the admissibility is equivalent to the
identity4 pp1´ xqdλ`ipxq “ p1´ pq ¨ xdλhi pxq. Hence, the formula for the value (4) reads as follows:

ValrBs “ sup
λ`1, λ

h
1 , λ

`
2, λ

h
2 P ∆pr0, 1sq

such that
pp1´ xq dλ`ipxq “ p1´ pq ¨ xdλhi pxq

¨

˚

˚

˚

˚

˝

p ¨ max
µ` P ∆pr0, 1s2q

with marginals λ`1, λ
`
2

ż

r0,1s2
v`px1, x2qdµ`px1, x2q`

` p1´ pq ¨ max
µh P ∆pr0, 1s2q

with marginals λh1 , λ
h
2

ż

r0,1s2
vhpx1, x2qdµhpx1, x2q

˛

‹

‹

‹

‹

‚

.

(8)

Solving the optimization problem (8) poses two challenges. First, we need to be able to solve the
two transportation problems (the maximization of the integrals) for all possible marginals. Second,
we need to be able to maximize the outcome over four marginals. To conquer the first challenge,
we make structural assumptions on vω and use results from the transportation literature. The
remaining optimization over four distributions may also be challenging. However, under symmetry
assumption, this step reduces to tractable optimization over a single distribution.

4This identity is to be understood in the integrated sense, i.e., p ¨
ş

r0,1s fpxqp1 ´ xqdλ`ipxq “ p1 ´ pq
ş

r0,1s fpxq ¨

xdλhi pxq for any continuous function f on r0, 1s.
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We say that a persuasion problem is agent-symmetric if vωpx1, x2q “ vωpx2, x1q; it is state-
symmetric if v`px1, x2q “ vhp1 ´ x1, 1 ´ x2q and p “ 1

2 . For agent-symmetric problems, one
can assume that λω1 “ λω2 and, for state-symmetric, that λhi is obtained from λ`i by the reflection
around 1

2 ; see Lemma 5 in Appendix A. We demonstrate the applicability of Theorem 1 by providing
a closed-form solution for symmetric supermodular utilities.

3.2.1 Supermodular persuasion

Recall that a function v : r0, 1s2 Ñ R is supermodular if for all x1 ď x11 and x2 ď x12

vpx1, x2q ` vpx
1
1, x

1
2q ě vpx1, x

1
2q ` vpx

1
1, x2q. (9)

Informally, the definition of supermodularity (9) requires that, if we are given a pair of points for
each of the coordinates, the function is maximized if these pairs are coupled in a monotone way, i.e.,
when one coordinate is large another is also large. This insight is formalized and generalized in the
theory of optimal transportation. For a pair of distributions λ1, λ2 P ∆pr0, 1sq, their co-monotone
coupling γλ1Òλ2 is defined as the distribution of the vector5 pfλ1pξq, fλ2pξqq, where ξ is a random
variable with the uniform distribution on r0, 1s and fλ denotes the inverse cumulative distribution
functions of a distribution λ P ∆pr0, 1sq, i.e., fλptq “ mintx P r0, 1s : λpr0, xsq ě tu. It is easy to
see that γλ1Òλ2 has λ1, λ2 as the marginals and, hence, belongs to the set of feasible plans for a
transportation problem with these marginals. Any transportation problem with a supermodular
utility v has the co-monotone coupling as the optimal solution:

Tvrλ1, λ2s “

ż

r0,1s2
vpx1, x2qdγλ1Òλ2

px1, x2q “

ż

r0,1s

v
´

f1ptq, f2ptq
¯

dt, (10)

see Theorem 3.12 in Rachev and Rüschendorf (1998).6

We call a persuasion problem supermodular if N “ t1, 2u, Ω “ t`, hu, and the utility function
vωpx1, x2q is a supermodular function in each of the two states. Thanks to (10), the internal
transportation problems in equation (8) can be solved explicitly and, hence, it remains to maximize
the outcome over the admissible marginals pλωi qiPt1,2u,ωPt`,hu to compute the value.

The following Lemma shows that supermodular agent-symmetric problems reduce to persuading
one auxiliary receiver and, hence, are easy to solve.

Lemma 3. An agent-symmetric supermodular persuasion problem B is equivalent to a single-
receiver persuasion problem B1 that has the same prior p and the utility v1ωpxq “ vωpx, xq. Namely,

ValrBs “ Val
“

B1
‰

“ cav
”

v1
ı

ppq,

5This distribution is also known as Fréchet upper bound (Joe, 1997).
6The original result is due to Lorentz (1949) and holds in any dimension.
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where v1pxq “ x ¨ v1
`
pxq ` p1 ´ xqv1

h
pxq and cav

”

v1
ı

denotes the concavification of v1. Moreover,
information structures with two public signals are enough for optimal persuasion.

Lemma 3 is proved in Appendix A. The intuition is as follows. If the problem is agent-symmetric,
we can restrict the maximization to admissible marginals satisfying λω1 “ λω2 . Their co-monotone
coupling is supported on the diagonal x1 “ x2, which corresponds to information structures with
public signals. Multi-receiver persuasion with public signals is equivalent to persuading one repre-
sentative receiver, and we get the result.

We note that Lemma 3 extends to any number of receivers straightforwardly since (10) admits
such an extension.

Example 2. Consider a one-state persuasion problem with v` ” 0 and vhpx1, x2q “ gpx1qgpx2q,
which is supermodular for non-decreasing g. The function v1 from Lemma 3 equals p1´ xq

`

gpxq
˘2.

For gpxq “
?
x, this function is concave, and we conclude that revealing no information is optimal

for any prior p. For gpxq “ x, the function v1 is convex on
“

0, 1
3

‰

and concave on
“

1
3 , 1

‰

. Hence, for
p in

“

1
3 , 1

‰

, revealing no information is optimal. For p P
“

0, 1
3

‰

, the concavification of v1 is given by
the linear interpolation of its values at 0 and 1

3 , i.e., the value equals 2
9p; the optimal information

structure induces the posterior beliefs x1 “ x2 equal to either 0 or 1
3 , e.g., S1 “ S2 “ tL,Hu and

s1 “ s2 “ L is always sent to both receivers in the low state ω “ `, while, in the high state, the
sender randomizes between L and H with probabilities 2p

1´p and 1´3p
1´p .

4 Analog of the Kantorovich–Rubinstein duality for persua-

sion

One of the main tools in optimal transportation is the dual representation for the optimal value,
the so-called Kantorovich-Rubinstein duality, which we discuss below in detail. Using this classical
result as an inspiration, we derive a dual representation for the value of a persuasion problem.
We compare our formula to the Kantorovich-Rubinstein duality and to the duality described by
Dworczak and Kolotilin (2019) for persuasion with one receiver. As an application of the dual
representation, we find a multi-receiver extension of the celebrated result that the value of a single-
receiver persuasion problem coincides with the concavification of the utility function. We also show
how one can construct an explicit solution to the dual problem and use it to solve the primal
problem.

The following theorem is the main result of this section.

Theorem 2. Consider a persuasion problem B with an upper semi-continuous utility function.

13



The value of B can be represented as follows:

ValrBs “ inf
V ω P R, continuous ϕωi on ∆pΩq such that

vωpx1, . . . , xnq ď V ω `
ř

iPN ϕωi pxiq

and
ř

ωPΩ xipωqϕ
ω
i pxiq “ 0

ÿ

ωPΩ

ppωq ¨ V ω. (11)

If the utility function is continuous, the optimum is attained, i.e., the infimum can be replaced
by the minimum.

The theorem has a simple geometric interpretation. Recall that the support function of a convex
set V Ă Rd is a convex function defined by hVptq “ supV PVxt, V y, t P Rd. From (11), we see that
the value coincides with ´hV

`

´ p
˘

, where V “
 

pV ωqωPΩ : Dϕωi satisfying the constraints
(

. This
set is convex7 and does not depend on the prior p. In particular, the value is a convex function of
the prior.

Comparison to the Kantorovich-Rubinstein duality. Kantorovich and Rubinstein found
the dual to the transportation problem in the case of two marginals. The multi-marginal version
of their result takes the following form

Tv
“

pλiqiPN
‰

“ inf
V P R, continuous ϕi : Xi Ñ R

such that vpx1, . . . , xnq ď V `
ř

iPN ϕipxiq

and
ş

Xi
ϕipxiqdλipxiq “ 0

V, (12)

where Xi, i P N , are compact metric spaces and v is an upper semicontinuous function on their
Cartesian product; the optimum exist provided that v is continuous (Rachev and Rüschendorf,
1998).

The similarity between formula (11) from Theorem 2 and the Kantorovich-Rubinstein duality
is not surprising thanks to the connection between persuasion and transportation established in
Theorem 1. The differences are caused by the fact that the marginals in Theorem 1 are not fixed
but instead are free parameters that satisfy the admissibility constraints. Hence, in contrast to
(12), the marginals do not enter (11) and the functions ϕωi are required to satisfy the pointwise
orthogonality requirement

ř

ωPΩ xipωqϕ
ω
i pxiq “ 0 instead of functional orthogonality to measures

λi as in (12).
A version of the Kantorovich-Rubinstein duality persists for general bounded measurable utilities

v with general measurable ϕi (Kellerer, 1984, Theorem 2.14). We expect that Theorem 2 also admits
such an extension.

7If
`

V ω , ϕωi
˘

and
`

V 1ω , ϕ1i
˘

both satisfy the constraints so does their convex combination and, hence, V is convex.
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Comparison to the single-receiver case. Consider a persuasion problem with one receiver and
the utility function vω “ v independent of the state. Dworczak and Kolotilin (2019) established8 a
dual representation for the value, which, in our notation, can be written as follows:

ValrBs “ inf
V ω P R such that

vpxq ď
ř

ωPΩ xpωq ¨ V
ω

ÿ

ωPΩ

ppωq ¨ V ω. (13)

The crucial difference between (13) and Theorem 2 is that functions ϕωi are absent in the single-
receiver case. As a consequence, the problem with one receiver is finite-dimensional, while that
from Theorem 2 is infinite-dimensional.

One may wonder if we can assume that ϕωi ” 0 in Theorem 2. For more than one receiver, the
answer is negative even if the utility function is state-independent and satisfies all the symmetries.
Below we will see an example with two receivers, where the optimum is attained at non-linear
functions ϕωi . We believe that, as in the theory of optimal transportation, the minimization can-
not be restricted to functions ϕωi having a simple parametric form. This can be seen as another
justification for the difficulty of multi-receiver persuasion.

Note that Theorem 2 and (12) are examples of infinite-dimensional programs, where the exis-
tence of the optimum is guaranteed under a simple condition of continuity. By contrast, when (13)
becomes infinite-dimensional (for infinite Ω), the existence of the optimum requires superdifferen-
tiability of the concavified utility function, a hard-to-check condition.

Proof idea of Theorem 2. The differences between Theorem 2 and the Kantorovich-Rubinstein
duality do not allow us to deduce the former from the latter. In Appendix B.1, we use a game-
theoretic approach to derive the dual. We define an auxiliary zero-sum game with a sup-inf value
equal to the value of the persuasion problem, use Sion’s minimax theorem to exchange sup and inf,
and show that the inf-sup value coincides with the right-hand side of (11).

Let }v}8 be the maximal absolute value of v. To prove the existence of the optimum for
continuous v, we show that one can restrict the minimization to |V ω| ď 2

ppωq}v}8 and ϕωi bounded
in absolute value by 2n

ppωq}v}8 and having moduli of continuity upper-bounded in terms of the
modulus of v (Lemma 6 in the appendix). The existence of the optimum then follows from the
compactness of this set.

8For a finite dimension p|Ω| ă 8q, the result is intuitive. The value is known to be equal to the concavification
cavrvsppq and the concavification of a function is the envelope of affine functions that lie above it. Dworczak and
Kolotilin (2019) demonstrated that this remains true in the far less intuitive infinite-dimensional case, e.g., for
continuous Ω.
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4.1 Analog of the concavification formula for the value

Consider a single-receiver persuasion problem with a continuous state-independent utility function
vpxq. The value of this problem is equal to the concavification cavrvsppq (Kamenica and Gentzkow,
2011). Notice that u “ cavrvs is a concave continuous function and, in particular, revealing no
information would be optimal if the utility function was equal to upxq. Hence, the classical concav-
ification result can be restated as follows.

Observation 1 (reinterpreted concavification). For a single-receiver persuasion problem B “

pΩ, p, vq with continuous v, the following identity holds:

ValrBs “ min
continuous u such that

v ď u and
non-revealing is optimal for pΩ, q, uq @q

uppq. (14)

Moreover, one can restrict minimization in (14) to linear u.

In this form, the result remains valid for any number of receivers and state-dependent utilities.

Theorem 3. For a persuasion problem B “ pΩ, p,N, vq with an upper semicontinuous v, the
following identity holds:

ValrBs “ inf
continuous u such that

vωpx1, . . . , xnq ď uωpx1, . . . , xnq and
non-revealing is optimal for pΩ, q,N, uq @q

ÿ

ωPΩ

ppωq ¨ uωpp, p, . . . , pq. (15)

The minimization in (15) can be restricted to separable functions of coordinates uωpx1, . . . , xmq “
ř

iPN ψ
ω
i pxiq. For continuous v, the optimum is achieved, and inf can be replaced by min.

The proof of Theorem 3 relies on duality (Theorem 2) and is relegated to Appendix B.2.
Theorem 3 relates two seemingly incomparable problems: (a) Compute the value of an arbitrary

persuasion problem, and (b) Determine whether revealing no information is optimal. One might
think that problem (b) is significantly simpler than (a). However, Theorem 3 indicates that if one
knows how to solve problem (b), all that remains is to minimize (15) over functions satisfying (b).
As it is believed that (a) is a complicated problem, this indicates that so is problem (b).

Another interesting aspect of Theorem 3 is the central role played by the values of uω at the
diagonal. Indeed, we evaluate uω only at the point pp, p, . . . , pq. The informal reason why this
“local” behavior turns out to be enough to characterize the value is the presence of the “global”
condition that revealing no information is optimal.

16



4.2 Solving the dual problem

We start by illustrating Theorem 2 in the case of two receivers and a binary state. As previously,
we identify x P ∆pΩq with xp`q P r0, 1s.

The unique feature of the binary-state case is that the last condition in (11) uniquely determines
ϕh for a given ϕ`. This allows us to simplify the problem by optimizing over two functions instead
of four. Denote ϕ`

ipxq
1´x by αipxq; hence, ϕhi pxq “ ´x ¨ αipxq and we see that αi is not singular at

x “ 1. Therefore, (11) reduces to

ValrBs “ inf
V ω P R, continuous αi on r0, 1s such that

v`px1, x2q ď V ` ` p1´ x1qα1px1q ` p1´ x2qα2px2q

vhpx1, x2q ď V h ´ x1 ¨ α1px1q ´ x2 ¨ α2px2q

p ¨ V ` ` p1´ pqV h. (16)

If the problem is symmetric, (16) can be simplified further. For agent-symmetric problems
(vωpx1, x2q “ vωpx2, x1q), the minimization can be restricted to α1 “ α2; for state-symmetric
problems (p “ 1

2 and v`px1, x2q “ vhp1 ´ x1, 1 ´ x2q) one can assume9 αipxq “ ´αip1 ´ xq and to
check only one of the two inequality conditions in (16).

4.2.1 Optimality of full-information/partial-information policy

As an application of Theorem 2, we will derive an easy-to-check sufficient condition for the optimal-
ity of a full-information/partial-information policy. A full-information/partial-information policy is
an information structure revealing the state to one receiver and partially informing the other. Such
information structures can be implemented in the model of sequential persuasion by Khantadze
et al. (2021), where information is revealed to agents sequentially so that each next agent observes
all predecessors’ signals. Hence, a sufficient condition for the optimality of full-information/partial-
information policy is also sufficient for the optimality of sequential persuasion.

The heuristic that we rely on is that, in problems where it is optimal to fully inform one
receiver, the solution to the dual problem is determined by the values of the utility function on
the boundary of r0, 1s2. Relying on this intuition, we construct candidates for optimal αi and V ω.
The requirement that this candidate solution is indeed a solution gives a sufficient condition for the
optimality of full-information/partial-information policy. We first illustrate the ideas for a family
of sender’s objectives depending on the difference of induced beliefs and formulate the condition

9For an agent-symmetric problem and distinct α1, α2 satisfying the constraints for some V ω , define rα1 “ rα2 “

α1`α2
2

. The functions rα1 and rα2 satisfy the constraints with the same rV ω “ V ω and, hence, give the same
value to the objective. For state-symmetric problems, the argument is analogous with rαipxq “

αipxq`αip1´xq
2

and
rV ω “ V ``V h

2
.
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of optimality for a full-information/no-information policy. We then extend the result to general
objectives and general full-information/partial-information policies.

Consider a persuasion problem with two receivers, binary state, symmetric prior p “ 1{2, and

vhpx1, x2q “ vlpx1, x2q “ hp|x1 ´ x2|q

with some non-decreasing continuous function h. We aim to find a condition on h so that revealing
the state to one of the agents and giving no information to the other one is optimal.

We note that this full-information/no-information policy guarantees a payoff of hp1{2q in both
states. By (16), this payoff is optimal if and only if there exists a function α such that

hp|x1 ´ x2|q ď hp1{2q ` p1´ x1qαpx1q ` p1´ x2qαpx2q, (17)

hp|x1 ´ x2|q ď hp1{2q ´ x1 ¨ αpx1q ´ x2 ¨ αpx2q (18)

To gain an intuition about the existence of α, we plug x2 “ 1 into the first inequality and x2 “ 0

into the second and get

hp1´ x1q ´ hp1{2q

1´ x1
ď αpx1q ď

hp1{2q ´ hpx1q

x1
. (19)

Hence, for α to exist, the left-hand side of (19) has to be upper-bounded by the right-hand side.
Equivalently,

x1hp1´ x1q ` p1´ x1qhpx1q ď hp1{2q (20)

is necessary for the optimality of a full-information/no-information policy. This condition becomes
intuitive if we rewrite it as

cavrhsp1{2q ď hp1{2q, where hpx1q “ x1hp1´ x1q ` p1´ x1qhpx1q. (21)

Indeed, it means that in the single-receiver persuasion problem obtained from B by revealing the
state to the second agent, revealing no information is optimal.

Assuming that (21) is satisfied, we find a sufficient condition for optimality of full-information/no-
information policy. By (21), we know that there are functions α satisfying (19) and we select a
particular one:

αpx1q “

#

hp1´x1q´hp1{2q
1´x1

, x1 ď 1{2
hp1{2q´hpx1q

x1
, x1 ě 1{2

. (22)

The idea is that we want α to be given the most demanding constraint, e.g., for small x1, the upper
bound is unlikely to be active thanks to x1 in the denominator. Plugging in this α into (17-18), we
obtain the following result.
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1{2

hp1{2q´hpx1q

x1

hp1´x1qq´hp1{2q
1´x1

αpx1q

x1

Figure 2: The construction of α from (22) for vpx1, x2q “ |x1 ´ x2|
3; see Example 3.

Proposition 1. Consider a persuasion problem with two receivers, binary state, prior p “ 1{2,
and and utility function vhpx1, x2q “ vlpx1, x2q “ hp|x1 ´ x2|q. If h is non-decreasing and satisfies
the following conditions

hpx2 ´ x1q ď hp1´ x1q `
1´x2

x2
php1{2q ´ hpx2qq, x1 ď 1{2 ď x2 (23)

hpx2 ´ x1q ď hp1{2q ´
ř

iPt1,2u
xi

1´xi
php1´ xiq ´ hp1{2qq , x1 ď x2 ď 1{2 (24)

then the full-information/no-information policy is optimal.

Proof. A payoff of hp1{2q is guaranteed by revealing the state to the second receiver and keeping
the first one uninformed. To show the optimality of this full-information/no-information policy, we
need to demonstrate that the value of the persuasion problem is at most hp1{2q. For this purpose, it
is enough to demonstrate that (17-18) have a solution α. We will show that, under the assumptions
of the proposition, α given by (22) solves (17-18).

We need to check each of the two inequalities (17-18) in each of the four regions determined
by whether xi in r0, 1{2s or r1{2, 1s, i “ 1, 2. Thanks to the symmetry of the problem, all these
eight cases reduce to three. In r0, 1{2s ˆ r1{2, 1s Y r1{2, 1s ˆ r0, 1{2s, both inequalities (17-18) are
equivalent to (23) and thus hold. In r1{2, 1s2, inequalities (17-18) follow from those in r0, 1{2s2.
Hence, it remains to verify (17-18) in r0, 1{2s2. There, (18) holds since it boils down to (24). Finally,
(17) in r0, 1{2s2 reduces to

hpx2 ´ x1q ď hp1´ x1q ` hp1´ x2q ´ hp1{2q, x1 ď x2 ď 1{2,

which holds trivially by the monotonicity of h since x2 ´ x1 and 1{2 are smaller than 1 ´ x1 and
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1 ´ x2. We conclude that (17-18) hold in r0, 1s2, thus full-information/no-information policy is
optimal.

Note that the conditions of Proposition 1 are formulated in terms of primitives of the model
and so can be checked by an elementary (but sometimes tedious) computation.

Example 3. (moderate discord with symmetric prior) A persuasion problem with

vpx1, x2q “ |x1 ´ x2|
β

models a sender who benefits from inducing discord between the two receivers. This problem
satisfies the conditions of Proposition 1 for10

β P p0, βmaxs , βmax » 2.25751...

Thus the full-information/no-information policy is optimal for such β. This result encompasses par-
ticular cases previously addressed by Burdzy and Pitman (2020) for β “ 1 and Arieli, Babichenko,
Sandomirskiy, and Tamuz (2021a) for β P p0, 2s.

The full-information/no-information policy guarantees that the induced beliefs satisfy |x1´x2| “

1{2 with probability one. The sender could induce a pair of beliefs |x1 ´ x2| ą 1{2, but there is
a tradeoff between how far the induced beliefs are and the probability of such an outcome. For
β ď βmax, the sender’s relative benefit from higher discord does not compensate for the loss in
probability. This is no longer the case for high β, e.g., the information structure from Example 1
gives a higher payoff than the full-information/no-information policy for β ě 2.41.... For β ą 3, the
function h from (21) is not concave, and so the sender can also improve upon the full-information/no-
information policy by revealing partial information to the previously uninformed receiver. The
asymptotic behavior for β Ñ `8 has been recently studied by Cichomski and Osękowski (2023).
Despite progress in understanding the extreme ends of the β spectrum, characterizing the optimal
policy for intermediate values of β remains a challenging open problem.

We now describe how the construction extends to full-information/no-information policies, gen-
eral persuasion problems with state-dependent utility functions, and general priors p P p0, 1q. For
simplicity, we will keep the assumption that the problem is agent-symmetric, which allows us to
focus on one function α instead of a pair, but this assumption could also be easily dropped.

Consider a two-receiver persuasion problem, a binary state with prior p P p0, 1q, and a continuous
state-dependent agent-symmetric sender’s utility vωpx1, x2q “ vωpx2, x1q.

10Mathematica code can be found in Appendix C.
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Suppose the sender uses a full-information/partial-information policy revealing the state to the
second agent. Deciding what information to reveal to the first one boils down to solving a single-
receiver persuasion problem with the sender’s utility function

vpx1q “ x1 ¨ v
`px1, 1q ` p1´ x1qv

hpx1, 0q.

Thus full-information/partial-information policy is optimal if and only the value of the persuasion
problem does not exceed cavrvsppq. By (16), the value does not exceed cavrvsppq if and only if there
exists a function α such that

v`px1, x2q ď V ` ` p1´ x1qαpx1q ` p1´ x2qαpx2q,

vhpx1, x2q ď V h ´ x1 ¨ αpx1q ´ x2 ¨ αpx2q
, (25)

where V `p and V hp are such that

x1 ¨ V
`
p ` p1´ x1qV

h
p is the tangent line to the graph of cavrvs at x1 “ p. (26)

Note that if cavrvs is differentiable at x1 “ p, then V `p “ cavrvsppq ` p1 ´ pq d
dx1

cavrvsppq and
V hp “ cavrvsppq ´ p d

dx1
cavrvsppq.

To find a sufficient condition for the optimality of the full-information/partial-information policy,
we select a particular function α using a heuristic similar to the one used for the full-information/no-
information policy. Plugging x2 “ 1 into the first inequality of (25) and x2 “ 0 to the second, we
see that

v`px1, 1q ´ V
`

1´ x1
ď αpx1q ď

V h ´ vhpx1, 0q

x1
. (27)

The condition (26) guarantees that the graph of the function on the left-hand side in (27) lies below
that of the right-hand side. Moreover, the two graphs touch each other at points x1 where the
linear function x1 ¨ V

`
p ` p1´ x1qV

h
p touches by v. Let bp and cp be the leftmost and the rightmost

such points, respectively.
We define αp as follows:

αppx1q “

$

’

’

&

’

’

%

v`px1,1q´V
`
p

1´x1
, x1 ď bp

v`px1, 1q ´ V
`
p ` V

h
p ´ v

hpx1, 0q, x1 P rbp, cps
V h
p ´v

h
px1,0q

x1
, x1 ě cp

. (28)

In other words, for small values of x1, the function αp is given by the lower bound in (27), for high
values x1 it is given by the upper bound, and, between the points bp and cp (at these points the
two bounds coincide), αp equals the convex combination of the two bounds with weights p1 ´ x1q

and x1. The intuition is again that αp must equal the most demanding of the bounds.
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p 1

V h´vhpx1,0q
x1

v`px1,1q´V
`

1´x1
αpx1q

x1

bp p cp 1

V h´vhpx1,0q
x1

v`px1,1q´V
`

1´x1

αpx1q

x1

Figure 3: Construction of αp from (28). Left: vpx1, x2q “ |x1 ´ x2| with p “ 1{3; full-
information/no-information is optimal and thus bp “ cp “ p (Example 4) Right: vpx1, x2q “

|x1 ´ x2| ¨ |x1 ´ 1{2| ¨ |x2 ´ 1{2| with p “ 1{2; full-information/partial information with beliefs
bp “ p3´

?
3q{6 and cp “ 1´ bp of the partially-informed receiver is optimal (Example 5).

Proposition 2. If αp, V `p , and V hp defined by (28) and (26) satisfy the inequalities (25), then the
value of the persuasion problem equals cavrvsppq and a full-information/partial-information policy
revealing the state to receiver 2 and inducing the beliefs bp or cp of the first receiver is optimal.

Proof. The sender guarantees a payoff of cavrvsppq by the information structure from the statement
of the lemma. It remains to show that the sender cannot improve upon this utility level. Substituting
αp, V `p , and V hp into the dual representation for the value (16), we see that the value is bounded
from above by p ¨ V `p ` p1´ pqV h “ cavrvsppq. Thus the full-information/partial-information policy
is optimal.

Checking the conditions of Proposition 2 for given sender’s utility v boils down to verifying
inequalities between explicitly given functions on the unit square.

Example 4 (weak discord under asymmetric prior). We consider a persuasion problem from Exam-
ple 3 with β “ 1, i.e.,

vpx1, x2q “ |x1 ´ x2|,

but we now allow for arbitrary prior p P p0, 1q. This problem satisfies the conditions of Propo-
sition 2 with bp “ cp “ p; see Figure 3:left depicting the corresponding αp. We conclude that
full-information/no-information is optimal for any prior p, and the value equals 2pp1 ´ pq. This
gives a simple alternative proof of the result by Burdzy and Pitman (2020).
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Example 5 (discord with informative signals). Consider a persuasion problem with

vpx1, x2q “ |x1 ´ x2| ¨

ˇ

ˇ

ˇ

ˇ

x1 ´
1

2

ˇ

ˇ

ˇ

ˇ

¨

ˇ

ˇ

ˇ

ˇ

x2 ´
1

2

ˇ

ˇ

ˇ

ˇ

and prior p “ 1{2. Here the sender is incentivized to push induced beliefs further away from each
other and also from 1{2, i.e., the sender aims to induce discord while keeping both agents’ signals
informative. In particular, the full-information/no-information policy cannot be optimal. Indeed,
the persuasion problem satisfies the conditions of Proposition 2 with bp “ p3´

?
3q{6 “ 0.211... and

cp “ 1´ bp; see Figure 3:right and Mathematica code in Appendix D. Thus full-information/partial
information policy inducing beliefs bp and cp of the less informed receiver is optimal.
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A Proofs for Section 3

A.1 Proof of Theorem 1

Consider a persuasion problem B “ pΩ, p,N, vq. By the definition, its value ValrBs is the maximal
expected utility supI EI rvωpx1, . . . , xnqs, where the maximization is over all information structures.
To compute the expectation, we only need to know the joint distribution of pω, x1, . . . , xnq and
we know that the marginal of this distribution on ω equals p. Hence, to reconstruct the whole
distribution, it is enough to have the conditional distributions of px1, . . . , xnq for each realization
of ω P Ω.

Recall that pµωqωPΩ Ă ∆
`

∆pΩq ˆ . . .ˆ∆pΩq
˘

are feasible conditional distributions of posterior
beliefs if there exists an information structure I such that the joint distribution of posterior beliefs
x1, . . . , xn given the state ω equals µω for each ω P Ω. By Fp, we denote the set of all such collections
pµωqωPΩ.

Rewriting the expectation as the integral over the joint distribution we see that

ValrBs “ sup
pµωqωPΩPFp

ÿ

ωPΩ

ppωq ¨

ż

∆pΩqˆ...ˆ∆pΩq

vωpx1, . . . , xnqdµ
ωpx1, . . . , xnq. (29)
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For the next step, we need to characterize the set of feasible distributions Fp. Recall that
∆pp∆pΩqq denotes the set of distributions over ∆pΩq with mean p and we call pλωi qiPN,ωPΩ Ă

∆p∆pΩqq are admissible marginals if there exist pλiqiPN Ă ∆pp∆pΩqq such that dλω
i

dλi
pxq “ xpωq

ppωq .

Lemma 4. Distributions pµωqωPΩ are feasible conditional distributions of posterior beliefs if and
only if they have admissible marginals. The set of all feasible distributions Fp is a convex subset of
∆
`

∆pΩq ˆ . . .ˆ∆pΩq
˘

closed in the topology of weak convergence.

Before proving the lemma, we check that the theorem is its corollary.
By Lemma 4, we can split the maximization in (29) into two steps, namely, the maximization over

admissible marginals and the maximization over arbitrary joint distributions with given marginals.
We get

ValrBs “ sup
asmissible marginals

pλωi qiPN,ωPΩ Ă ∆p∆pΩqq

ÿ

ωPΩ

ppωq¨ sup
µωPM

`

λω
1 ,...,λ

ω
n

˘

ż

∆pΩqˆ...ˆ∆pΩq

vωpx1, . . . , xnqdµ
ωpx1, . . . , xnq,

(30)
whereM

`

λω1 , . . . , λ
ω
n

˘

denotes the subset of distributions from ∆
`

∆pΩqˆ. . .ˆ∆pΩq
˘

with marginals
λω1 , . . . , λ

ω
n , i.e., the set of feasible transportation plans in the transportation problem Tvω

“

pλωi qiPN
‰

.
Thus (30) can be rewritten in terms of the transportation problems:

ValrBs “ sup
asmissible marginals

pλωi qiPN,ωPΩ Ă ∆p∆pΩqq

ÿ

ωPΩ

ppωq ¨ Tvω
“

pλωi qiPN
‰

,

which coincides with the formula from the theorem.
Now let us demonstrate the existence of the optimum for upper semicontinuous v. The integral

of an upper semicontinuous function over a compact set is an upper semicontinuous function of
the distribution in the weak topology (Villani, 2008, Lemma 4.3). Hence, the objective in (29) is
upper semicontinuous. An upper semicontinuous function on a compact set attains its maximum.
By Lemma 4, the set Fp is a closed subset of ∆

`

∆pΩq ˆ . . .ˆ∆pΩq
˘

and, hence, is compact since
the set of all probability distributions over a compact set is compact in the weak topology. We
conclude that the maximum over Fp is attained, i.e., both the optimal marginals and the optimal
transportation plans exist.

It remains to prove Lemma 4.

Proof of Lemma 4. First, we show that all feasible distributions have admissible marginals. Fix an
information structure I inducing the conditional distributions pµωqωPΩ of posterior beliefs. Pick a
receiver i P N and consider the conditional distributions pµωi qωPΩ of i’s belief xi (these are marginals
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of pµωqωPΩ on i’s coordinate). We need to demonstrate that there exists λi with mean p such that

dµωi
dλi

pxq “
xpωq

ppωq
(31)

for all x P ∆pΩq. We will show that this identity holds if λi is set to be equal to the unconditional
distribution µi “

ř

ωPΩ ppωq ¨ µ
ω
i of i’s beliefs.

By the definition of the posterior belief, the conditional distribution of the state ω given that
i’s belief xi equals x coincides with x, i.e.,

PIpω “ w | xi “ xq “ xpwq for all w P Ω and PI -almost-all x.

By the Bayes formula, the left-hand side of this identity rewrites as follows:

PIpω “ w | xi “ xq “ ppwq ¨
dµωi
dµi

pxq.

We see that the identity (31) holds. It remains to show that λi has the mean p. Indeed, by (31),
ż

∆pΩq

xpωqdλipxq “ ppωq

ż

∆pΩq

1 dµωi pxq “ ppωq.

We conclude that feasible distributions have admissible marginals.
Second, let us demonstrate that any collection pµωqωPΩ with admissible marginals pµωi qiPN,ωPΩ

is feasible. Given such a collection, we construct an information structure I “ ppSiqiPN , πp¨ | ωqq as
follows. The sets of signals Si coincide with ∆pΩq for each receiver i and the distribution of signals
πp¨ | ωq at a state ω is equal to µω. In other words, the sender uses µω to generate the collection
of signals ps1, . . . , snq and then tells each receiver i her coordinate si. Let us compute the belief xi
induced by the signal si using the Bayes formula:

xipwq “ PIpω “ w | siq “ ppωq ¨
dµωi

d
ř

w1PΩ ppw
1qµw

1

i

psiq. (32)

By formula (31), we deduce that λi from the admissibility requirement can be expressed as λi “
ř

ωPΩ ppωqµ
ω
i , i.e., λi coincides with the distribution in the denominator of (32). Hence, (31)

and (32) imply that xi “ si, i.e., the induced belief coincides with the signal. Thus the joint
distribution of beliefs coincides with the joint distribution of signals, i.e., the information structure
I induces pµωqωPΩ as the conditional distribution of beliefs. We conclude that any collection of
distributions with admissible marginals is feasible.

It remains to check that Fp is a closed convex set. We already know that feasibility is equivalent
to the admissibility of marginals. Let us rewrite this condition in a form that makes convexity and
closedness apparent. We saw that instead of looking for arbitrary λi in the admissibility condition,
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we can check it for λi “
ř

ωPΩ ppωqµ
ω
i . Hence, the admissibility of marginals of pµωqωPΩ can be

written as
ppωqdµωi “ xpωq d

ÿ

ω1PΩ

ppω1qµω
1

i

or, equivalently, in the integrated form:

ppωq ¨

ż

∆pΩqˆ...ˆ∆pΩq

ψpxiqdµ
ωpx1, . . . , xnq ´

ż

∆pΩq

xipωq ¨ ψpxiq

˜

ÿ

ω1PΩ

ppω1qdµω
1

px1, . . . , xnq

¸

“ 0

(33)
for all continuous functions ψ : ∆pΩq Ñ R. Since this condition is linear in pµωqωPΩ, a convex
combination of feasible distributions is also feasible. Since the integrands are continuous functions,
the weak limit of a sequence of distributions satisfying the conditions also satisfies them. We get
closedness.

A.2 Proofs for one-state persuasion

Proof of Lemma 1. Let us demonstrate the necessity of the condition (6). In other words, we need
to show that if pλωi qiPN,ωPΩ are admissible marginals and γi “ λω0

i , then
ż

∆pΩq

xpωq

xpω0q
dγipxq ď

ppωq

ppω0q
, i P N, ω P Ωztω0u.

By the definition of admissibility, there exists λi such that

dλωi
dλi

pxq “
xpωq

ppωq
(34)

for all ω and i. Let ε ą 0 be the small parameter. Hence, dλ
ω0
i

dλi
pxq ď maxtxpω0q,εu

ppω0q
or, equivalently,

1

maxtxpω0q, εu
dλω0

i pxq ď
1

ppω0q
dλipxq. (35)

By (34), xpωqppωqdλipxq “ dλωi pxq. Applying this identity to (35), we get

xpωq

maxtxpω0q, εu
dλω0

i pxq ď
ppωq

ppω0q
dλωi pxq.

Integrating this inequality over ∆pΩq, we obtain
ż

∆pΩq

xpωq

maxtxpω0q, εu
dλω0

i pxq ď
ppωq

ppω0q
.

Letting ε go to zero, gives (6).
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Now we check the sufficiency. For given pγiqiPN satisfying (6) we need to construct admissible
pλωi qiPN,ωPΩ such that γi “ λω0

i . The idea is to use formula (34) to define λi first. Set

drλipxq “
ppω0q

xpω0q
dγipxq.

The measure rλi may not be a probability measure and its mean may not equal p. To make a
probability measure with the desired mean out of λi, we define λi by

λi “ rλi `
ÿ

ωPΩztω0u

˜

ppωq ´

ż

∆pΩq

xpωqdrλipxq

¸

¨ δω, (36)

where δω denotes the point mass at ω. By (6), the coefficients in (36) are non-negative and, hence,
λi is a non-negative measure. By the construction

ş

xpωqdλi “ ppωq and so the mean of λi is
p. Summing up these equalities, we see that λi is a probability measure. For ω ‰ ω0, define λωi
by (34); λωi is a probability measure since the mean of λi is p. To show that pλωi qiPN,ωPΩ with
λω0
i “ γi are admissible marginals, it remains to check that the condition (34) is satisfied at ω0.

Since xpω0qdδω “ 0 for ω ‰ ω0, we get xpω0qdλipxq “ xpω0qdrλipxq. By the definition of rλi,

dλω0
i pxq “

xpω0q

ppω0q
d rλipxq “

xpω0q

ppω0q
dλipxq.

From this identity, we conclude that dλ
ω0
i

dλi
pxq “ xpω0q

ppω0q
, which completes the proof of the Lemma 1.

Proof of Lemma 2: By Lemma 1, the value of a one-state persuasion problem B can be represented
as follows:

ValrBs “ ppω0q ¨ sup
γ P ∆

`

∆pΩq ˆ . . .ˆ∆pΩq
˘

such that the marginals satisfy (6)

ż

∆pΩqˆ...ˆ∆pΩq

vpx1, . . . , xnqdγpx1, . . . , xnq.

Our goal is to check that in this formula it is enough to maximize over atomic γ with a certain
bound on the number of atoms in the support.

Let Fω0
p be the set of all distributions γ satisfying the inequalities (6). Since these inequalities

are linear, Fω0
p is a convex set. The objective linearly depends on γ P Fω0

p and, hence, by the Bauer
principle, it is enough to restrict the maximization to the extreme points of the set Fω0

p .
To describe the extreme points of Fω0

p let us discuss how the set of extreme points changes when
we intersect a convex set with half-spaces. Let X be a convex set with extreme points X˚ Ă X and
any H be a half-space. The set of extreme points of X YH consists of the union of X˚ XH and
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extreme points of pBH XXq˚ that are convex combinations αx` p1´ αqx1 of x, x1 P X˚ satisfying
the condition αx`p1´αqx1 P BH, where BH denotes the boundary of H. Applying this observation
sequentially, we obtain that for the intersection X Y

ŤQ
q“1Hq with the family of half-spaces any

extreme point x˚ is given by a convex combination of at most k ` 1 extreme points of X, where k
is the number of Hq such that x˚ P BHq.

Applying this general statement to our case, we put X “ ∆p∆pΩq ˆ . . .ˆ∆pΩqq and define the
half-spaces Hi,ω, i P N , ω P Ωztω0u as the set of signed measures satisfying inequalities (6) with
given i and ω. Since the extreme points of X are the point masses, we conclude that the extreme
points of Fω0

p are the atomic measures with at most |N |p|Ω|´1q`1 atoms. Hence, one can restrict
the maximization to such measures.

This statement can be strengthened. Let nipγq be the number of “active” inequalities for the
receiver i, i.e., nipγq is the number of those inequalities from (6) with the given i that hold as
equalities; denote npγq “

ř

iPN nipγq. Hence, the extreme γ have at most npγq ` 1 points in the
support. We conclude that

ValrBs “ ppω0q ¨ sup
γ P ∆

`

∆pΩq ˆ . . .ˆ∆pΩq
˘

such that the marginals satisfy (6) and
ˇ

ˇsupp rγs
ˇ

ˇ ď npγq ` 1

ż

∆pΩqˆ...ˆ∆pΩq

vpx1, . . . , xnqdγpx1, . . . , xnq.

Let us now discuss how many signals we need to generate an extreme γ P Fω0
p . Using the

construction from the proof of Lemma 1, we obtain admissible marginals pλωi qiPN,ωPΩ such that
λω0
i “ γi. Note that the union of supports of λωi over ω P Ω may be larger than the support of γi

since we add |Ω| ´ 1´ nipγq point masses in (36). Let pµωqωPΩ be a feasible family of distributions
with µω0 “ γ and marginals pλωi qiPN,ωPΩ; for example, one can take µω to be the product of its
marginals for ω ‰ ω0. In the proof of Theorem 1, we saw that any feasible family pµωqωPΩ can be
induced by an information structure with

ˇ

ˇsupp rµis
ˇ

ˇ, where µi “
ř

ωPΩ
ppωqµωi . Thus there exists

an information structure inducing γ that uses

ˇ

ˇsupp rγis
ˇ

ˇ` |Ω| ´ 1´ nipγq ď |N |p|Ω| ´ 1q

signals per receiver.

A.3 Proofs for supermodular persuasion

In this family of results, we consider persuasion problems B with two receivers and a binary state.
We start with a lemma demonstrating how symmetries of the utility function v simplify the general
transportation representation for the value from Theorem 1.
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Recall that a problem is agent-symmetric if vωpx1, x2q “ vωpx2, x1q and state-symmetric if
v`px1, x2q “ vhp1 ´ x1, 1 ´ x2q and p “ 1

2 . We start with formally stating the utilization of
symmetry in the simplifications of Theorem 1, or more concretely, in equation (8).

Lemma 5. If B is agent-symmetric,

ValrBs “ sup
admissible pλ`1, λ

h
1 , λ

`
2, λ

h
2 q

such that λω1 “ λω2 “ λω

p ¨ Tv`pλ
`, λ`q ` p1´ pqTvhpλ

h, λhq. (37)

If B is state-symmetric,

ValrBs “ sup
admissible pλ`1, λ

h
1 , λ

`
2, λ

h
2 q

such that λ`ipr0, xsq “ λhi pr1´ x, 1sq

Tv`pλ
`
1, λ

`
2q “ (38)

“ sup
λ1, λ2 P ∆pr0, 1sq symmetric around 1

2

Tv`pγλ1
, γλ2

q, (39)

where γλ is the distribution that has the density 2x with respect to λ.

Proof. By Theorem 1,

ValrBs “ sup
admissible pλ`1, λ

h
1 , λ

`
2, λ

h
2 q

p ¨ Tv`pλ
`, λ`q ` p1´ pqTvhpλ

h, λhq. (40)

Consider an agent-symmetric problem and let pλωi qiPN,ωPΩ be some admissible marginals and
pµωqωPΩ, some feasible transportation plans with these marginals. Define rλω1 “

rλω2 “
λω

1`λ
ω
2

2 and
rµω “

µω
`µω

x1Øx2

2 , where µωx1Øx2
denotes the image of µω under the reflection px1, x2q Ñ px2, x1q.

Hence, prλωi qiPN,ωPΩ are admissible, and prµωqωPΩ are feasible transportation plans with the same
value of the objective in 40. Thus assuming λω1 “ λω2 does not change the optimal value and we
get (37).

The argument for state-symmetric problems is similar. Let pλωi qiPN,ωPΩ be admissible marginals
and pµωqωPΩ, feasible transportation plans. For a distribution ν on r0, 1s2, denote by ν0Ø1 its
image obtained when each of the coordinates xi is reflected around 1

2 , i.e., xi Ñ 1 ´ xi. Define
rλ`i “

λ`
i`λ

h
i,0Ø1

2 and rλhi “
λ`
i,0Ø1`λ

h
i

2 and the transportation plans rµ` “ µ`
`µh

0Ø1

2 and rµh “
µ`

0Ø1`µ
h

2 .
By the construction rλ`ipr0, xsq “

rλhi pr1 ´ x, 1sq. The new marginals are admissible and the new
transportation plans are feasible and give the same value to the objective in (40). Since both states
contribute equally, the objective can be expressed as the double contribution of ω “ `. We get (38).

To derive (39), note that pλωi qiPN,ωPΩ are admissible with prior 1
2 if and only if there exist λi

with the mean 1
2 such that dλ`

i

dλi
pxq “ 2x (i.e., λ`i “ γλi

) and dλh
i

dλi
pxq “ 2p1 ´ xq. By (38), we can

restrict maximization to λ`ipr0, xsq “ λhi pr1 ´ x, 1sq, which corresponds to λi symmetric around 1
2 ,

and we obtain (39).
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Proof of Lemma 3. Since B is agent-symmetric, we can use formula (37) from Lemma (5) to com-
pute the value of B, i.e., the transportation problems have equal marginals λω1 “ λω2 . For super-
modular utilities, the optimal transportation plan is given by the co-monotone coupling (10); since
the marginals are identical, such coupling is given by a distribution on the diagonal of r0, 1s2. We
obtain the following:

ValrBs “ sup
admissible pλ`1, λ

h
1 , λ

`
2, λ

h
2 q

such that λω1 “ λω2

p ¨

ż

r0,1s

v`px, xqdλ`pxq ` p1´ pq ¨

ż

r0,1s

v`px, xqdλ`pxq.

Comparing this formula with the formula for the value of a single-receiver persuasion problem,
we see that the persuasion problem B is equivalent to the single-receiver problem with the same
prior and the utility v1ωpxq “ vωpx, xq. For single-receiver problems with state-independent utility,
the value coincides with the concavification of this utility Kamenica and Gentzkow (2011). We
conclude that ValrBs “ cavrv1sppq. Since in a single-receiver problem, |Ω| signals are enough for
optimal persuasion, in B, it is enough to consider information structures that reveal the same
information to both receivers (i.e., send public signals) and use two signals only.

B Proofs for Section 4

B.1 Proof of Theorem 2

Dual representation for the value. To prove the dual representation for the value (11) of the
persuasion problem B, we introduce an auxiliary zero-sum game G such that the max inf-value of
G coincides with the value of B and then exchange max and inf via Sion’s minimax theorem.

By Theorem 1, to get the value of B, it is enough to maximize
ÿ

ωPΩ

ppωq ¨

ż

∆pΩqˆ...ˆ∆pΩq

vωpx1, . . . xnqdµ
ωpx1, . . . , xnq (41)

over a family of measures pµωqωPΩ Ă ∆
`

∆pΩq ˆ . . . ˆ ∆pΩq
˘

with admissible marginals. The
admissibility constraints require that the Radon-Nikodym derivatives of the marginals µωi of µω

with respect to some λi P ∆p∆pΩqq satisfy dµω
i

dλi
pxiq “

xipωq
ppωq . From this equation, we conclude that

λi “
ř

ω1PΩ ppω
1q ¨ µω

1

i and, hence, the admissibility is equivalent to the identity

ppωqdµωi pxiq ´ xipωq ¨
ÿ

ω1PΩ

ppω1qdµω
1

i pxiq “ 0,

which can be rewritten in the integrated form as follows:

ppωq ¨

ż

∆pΩqˆ...ˆ∆pΩq

ψωi pxiqdµ
ωpx1, . . . , xnq´

ż

∆pΩq

xipωq ¨ψ
ω
i pxiq

˜

ÿ

ω1PΩ

ppω1qdµω
1

px1, . . . , xnq

¸

“ 0

(42)
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for all continuous functions ψωi : ∆pΩq Ñ R.
Let us define the game G. In this game, the maximizer aims to maximize (41) and we allow

her to pick an arbitrary collection of probability measures pµωqωPΩ, which may have non-admissible
marginals. However, the minimizer can penalize her for violation of the identity (42) by selecting a
family of continuous functions pψωi qiPN,ωPΩ. The payoff function is defined as follows

G
”

`

µω
˘

ωPΩ
,
`

ψωi
˘

iPN,ωPΩ

ı

“
ÿ

ωPΩ

˜

ppωq ¨

ż

∆pΩqˆ...ˆ∆pΩq

vωpx1, . . . xnqdµ
ωpx1, . . . , xnq´

´
ÿ

iPN

˜

ppωq ¨

ż

∆pΩqˆ...ˆ∆pΩq

ψωi pxiqdµωpx1, . . . , xnq´

´

ż

∆pΩq

xipωq ¨ ψ
ω
i pxiq

˜

ÿ

ω1PΩ

ppω1qdµω
1

px1, . . . , xnq

¸¸

If the maximizer selects pµωqωPΩ with admissible marginals, then the last two integrals are zero.
On the other hand, if the admissibility constraint is violated, the minimizer can arbitrarily lower
the payoff by choosing pψωi qiPN,ωPΩ. Therefore,

ValrBs “ sup
pµωqωPΩ

inf
pψω

i qiPN,ωPΩ

G
”

`

µω
˘

ωPΩ
,
`

ψωi
˘

iPN,ωPΩ

ı

.

The assumptions of Sion’s minimax theorem11 are satisfied by G
”

`

µω
˘

ωPΩ
,
`

ψωi
˘

iPN,ωPΩ

ı

and we
can exchange suppµωqωPΩ

and infpψω
i qiPN,ωPΩ

. Indeed, the set of probability measures on a compact
metric space is compact in the weak topology, G is an affine function of strategies of each of the
players (and thus both convex and concave), it is an upper semicontinuous function of pµωqωPΩ
in the weak topology (see Lemma 4.3 in Section 4 of Villani (2008)) and a continuous function of
pψωi qiPN,ωPΩ in the topology induced by the sup-norm on continuous functions. We obtain

ValrBs “ inf
pψω

i qiPN,ωPΩ

sup
pµωqωPΩ

G
”

`

µω
˘

ωPΩ
,
`

ψωi
˘

iPN,ωPΩ

ı

.

For a compact metric space X, we have maxνP∆pXq
ş

hpxqdνpxq “ maxxPX hpxq for any upper
semicontinuous function h on X; in particular, both maxima are attained. Hence the internal
unconstrained maximization over pµωqωPΩ leads to the pointwise maxima of the corresponding
integrands, and we get

ValrBs “ inf
pψω

i qiPN,ωPΩ

ÿ

ωPΩ

ppωq ¨ max
pxiqiPNĂ∆pΩq

˜

vωpx1, . . . , xnq ´
ÿ

iPN

˜

ψωi pxiq ´
ÿ

ω1PΩ

xipω
1q ¨ ψω

1

i pxiq

¸¸

.

11Sion’s theorem claims that supxPX infyPY Gpx, yq “ infyPY supxPX Gpx, yq if X and Y are convex subsets of
linear topological spaces, at least one of them is compact, and G is an upper semicontinuous quasiconcave function
of the first argument and lower semicontinuous quasiconvex of the second. See Mertens, Sorin, and Zamir (2015),
Chapter I.1.

35



For a family function pψωi qiPN,ωPΩ define a new family pϕωi qiPN,ωPΩ by the formula.

ϕωi pxiq “ ψωi pxiq ´
ÿ

ω1PΩ

xpω1q ¨ ψω
1

i pxiq, x P ∆pΩq. (43)

The new family satisfies an additional condition

ÿ

ωPΩ

xipωqϕ
ω
i pxiq “ 0, x P ∆pΩq, (44)

and gives the same value to the objective as the original one. We obtain the following:

ValrBs “ inf
continuous

pϕωi qiPN,ωPΩ such that
ř

ωPΩ xipωqϕ
ω
i pxiq ” 0

ÿ

ωPΩ

ppωq ¨ max
pxiqiPNĂ∆pΩq

˜

vωpx1, . . . , xnq ´
ÿ

iPN

ϕωi pxiq

¸

. (45)

Finally, we we pick arbitrary V ω ě maxpxiqiPNĂ∆pΩq pv
ωpx1, . . . , xnq ´

ř

iPN ϕ
ω
i pxiqq and obtain

ValrBs “ inf
V ω P R, continuous ϕωi on ∆pΩq such that

vωpx1, . . . , xnq ď V ω `
ř

iPN ϕωi pxiq

and
ř

ωPΩ xipωqϕ
ω
i pxiq “ 0

ÿ

ωPΩ

ppωqV ω. (46)

which coincides with the desired formula from the statement of Theorem 2.

Existence of optima. Here we demonstrate that for continuous utility functions vω the infimum
in (46) is attained, i.e., optimal pV ω, ϕωi qiPN,ωPΩ exist.

The idea is to show that we can restrict the minimization to some compact set and then extract
a subsequence converging to an optimum. The restrictions that we can impose on pV ωqωPΩ and ϕωi
are presented in the following lemma. To formulate it, we define the norm of the utility function
by

}v}8 “ max
ωPΩ, x1,...,xnP∆pΩq

ˇ

ˇvωpx1, . . . , xnq
ˇ

ˇ

and its modulus of continuity, by

Dvpεq “ max
ω P Ω, i P N

x1, . . . , xi´1, xi`1, . . . , xn P ∆pΩq

x, x1 P ∆pΩq : |x´ x1| ď ε

ˇ

ˇ

ˇ
vω

`

x1, . . . , xi´1, x, xi`1, . . . , xn
˘

´ vω
`

x1, . . . , xi´1, x
1, xi`1, . . . , xn

˘

ˇ

ˇ

ˇ
,

where |x´ x1| “
ř

ωPΩ |xpωq ´ xpω
1q| is the total variation distance between x and x1 P ∆pΩq.
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Lemma 6. Restricting the minimization in (46) to pV ω, ϕωi qiPN,ωPΩ such that

´}v}8 ď
ˇ

ˇ

ˇ
V ω

ˇ

ˇ

ˇ
ď

2´ ppωq

ppωq
¨ }v}8, (47)

´
2n

ppωq
¨ }v}8 ď

ˇ

ˇ

ˇ
ϕωi pxq

ˇ

ˇ

ˇ
ď

2

ppωq
¨ }v}8, x P ∆pΩq, (48)

ˇ

ˇ

ˇ
ϕωi pxq ´ ϕ

ω
i px

1q

ˇ

ˇ

ˇ
ď 2 ¨Dv

´

|x´ x1|
¯

`
2n

minω1PΩ ppω1q
¨ }v}8 ¨ |x´ x

1|, x, x1 P ∆pΩq, (49)

does not affect the optimal value.

We first check that this lemma implies the existence of the optimal pV ω, ϕωi qiPN,ωPΩ and then
prove the lemma. Consider a sequence pV ω,t, ϕω,ti qiPN,ωPΩ indexed by a parameter t “ 1, 2, . . .

and such that the objective in (46) converges to its optimum along this sequence, as t goes to
infinity. By Lemma 6, we can additionally require that pV ω,t, ϕω,ti qiPN,ωPΩ satisfy conditions (47),
(48) and (49) for each t. The set of numbers defined by (47) is compact as a closed bounded
subset of RΩ. Functions satisfying (48) and (49) are uniformly bounded and uniformly continuous
and thus, by the Arzelà–Ascoli theorem (see Rudin (1964)), this class of functions compact in the
topology of the space of continuous functions (induced by the sup-norm). The product of compact
sets is compact and, hence, the sequence pV ω,t, ϕω,ti qiPN,ωPΩ belongs to a compact set. Let us
extract a converging subsequence and denote its limit by pV ω, ϕωi qiPN,ωPΩ. The objective in (46) is
continuous and the constraints are closed. Hence, the collection pV ω, ϕωi qiPN,ωPΩ gives the optimal
value to the objective, satisfies the constraints, and thus is optimal.

To complete the proof of Theorem 2 it remains to prove the lemma.

Proof of Lemma 6. For a given family pϕωi qiPN,ωPΩ of continuous functions satisfying (44), let
V ω

“

pϕωi qiPN,ωPΩ
‰

be the minimal value of V ω such that pV ω, ϕωi q satisfy the constraints of (46):

V ω
“

pϕωi qiPN,ωPΩ
‰

“ max
pxiqiPNĂ∆pΩq

˜

vωpx1, . . . , xnq ´
ÿ

iPN

ϕωi pxiq

¸

. (50)

Without loss of generality, we can assume that V ω in (46) is given by V ω
“

pϕωi qiPN,ωPΩ
‰

and, hence,
V ω is determined by functions pϕωi qiPN,ωPΩ, which remain the only free parameter in the mini-
mization. In particular, to prove the bounds (47) on V ω it is enough to show that we can restrict
minimization to pϕωi qiPN,ωPΩ such that

´ }v}8 ď
ˇ

ˇ

ˇ
V ω

“

pϕωi qiPN,ωPΩ
‰

ˇ

ˇ

ˇ
ď

2´ ppωq

ppωq
¨ }v}8. (51)

Recall that δω P ∆pΩq is the point mass at the state ω. Plugging xi “ δω for each i into (50), we
obtain the following lower bound:

V ω
“

pϕωi qiPN,ωPΩ
‰

ě vω
`

δω, . . . , δω
˘

ě ´}v}8.
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Hence, the lower bound in (51) holds.
The optimal value of (46) cannot exceed the best value of the objective attained at the zero

functions ϕωi . Hence, minimization can be restricted to pϕωi qiPN,ωPΩ such that
ÿ

ωPΩ

ppωq ¨ V ω
“

pϕωi qiPN,ωPΩ
‰

ď
ÿ

ωPΩ

ppωq ¨ V ω
“

p0qiPN,ωPΩ
‰

.

Since the right-hand side does not exceed }v}8, we get
ÿ

ωPΩ

ppωq ¨ V ω
“

pϕωi qiPN,ωPΩ
‰

ď }v}8. (52)

Changing all summands on the left-hand side of (52) except one to their lower bounds and trans-
ferring them to the right-hand side, we get

V ω
“

pϕωi qiPN,ωPΩ
‰

ď
2´ ppωq

ppωq
¨ }v}8. (53)

We obtain the upper bound in (51). Moreover, this inequality implies an upper bound on ϕωi .
Indeed, let us plug xj “ δω for all receivers j except j “ i into the objective of (50). The value of
the objective on this input cannot exceed the optimal value and, taking into account that ϕωj pδωq “ 0

thanks to (44), we deduce

vωpδω, . . . , δω, xi, δω, . . . , δωq ` ϕ
ω
i pxiq ď V ω

“

pϕωi qiPN,ωPΩ
‰

.

Consequently,
ϕωi pxq ď

2

ppωq
¨ }v}8, (54)

i.e, the upper bound in (48) holds.

Let us summarize: Without loss of generality, the minimization in (46) can be restricted to
families of continuous functions pϕωi qiPN,ωPΩ satisfying (44) and (52); the upper bound (54) is
satisfied for all such families automatically, as well as the bounds (51). Now, we consider such
a family, fix a receiver k P N and show that we can replace the functions pϕωk qωPΩ by prrϕωk qωPΩ
keeping the rest of the family unchanged so that the new family satisfies the same requirements,
the value of the objective remains the same or improves, and most importantly, the functions
prrϕωk qωPΩ additionally satisfy bounds (48) and (49). Define rϕωk by

rϕωk pxq “ max
x1,...,xk´1,xk`1,...,xn

¨

˝vωpx1, . . . , xk´1, x, xk`1, . . . , xnq ´
ÿ

iPNztku

ϕωi pxiq

˛

‚´V ω
“

pϕωi qiPN,ωPΩ
‰

.

From the definition, we see that

V ω
”´

prϕωk qωPΩ, pϕ
ω
i qiPNztku,ωPΩ

¯ı

“ V ω
“

pϕωi qiPN,ωPΩ
‰
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and, moreover, the functions rϕωk are pointwise minimal among all the functions with this property.
Hence, ϕωk ě rϕωk .

The functions prϕωk qωPΩ may violate the requirement (44). To enforce this requirement, we set

r

rϕωk pxq “ rϕωk pxq ´
ÿ

ω1PΩ

xpω1q ¨ rϕω
1

k pxq.

The functions r

rϕωk satisfy (44). Since ϕωk ě rϕωk ,

ÿ

ω1PΩ

xpω1q ¨ rϕωk pxq ď
ÿ

ω1PΩ

xpω1q ¨ ϕωk pxq “ 0,

and we see that r

rϕωk ě rϕωk . Therefore,

V ω
”´

prrϕωk qωPΩ, pϕ
ω
i qiPNztku,ωPΩ

¯ı

ď V ω
”´

prϕωk qωPΩ, pϕ
ω
i qiPNztku,ωPΩ

¯ı

,

and so replacing ϕωk by r

rϕωk can only improve the objective in (45).
We conclude that the constructed family satisfies the conditions (44) and (52) (hence, the upper

bound (54) also holds) and the value of the objective remains the same or improves. Now let us
check that r

rϕωk satisfies the lower bound in (48) and the bound (49).
From the definition of rϕωk the bounds (53) and (54), we obtain

´
2n

ppωq
¨ }v}8 ď rϕωk pxq.

Since r

rϕωk ě rϕωk , the same lower bound holds for r

rϕωk . Thus, rrϕ
ω
k satisfies both bounds of (48).

To prove (49), we estimate the difference
ˇ

ˇ

ˇ
rϕωk pxq ´ rϕωk px

1q

ˇ

ˇ

ˇ
first. By the definition of Dvpεq,

vω
`

x1, . . . , xi´1, x, xi`1, . . . , xn
˘

`Dv

´

|x´ x1|
¯

ě vω
`

x1, . . . , xi´1, x
1, xi`1, . . . , xn

˘

for any x, x1 P ∆pΩq and all x1, . . . , xk´1, xk`1, . . . , xn P ∆pΩq. Subtracting
ř

iPNztku ϕ
ω
i pxiq `

V ω
“

pϕωi qiPN,ωPΩ
‰

from both sides and taking maximum over x1, . . . , xk´1, xk`1, . . . , xn P ∆pΩq, we
get

rϕωk pxq `Dv

´

|x´ x1|
¯

ě rϕωk px
1q.

Combining this inequality with the one where the roles of x and x1 are exchanged, we obtain
ˇ

ˇ

ˇ
rϕωk pxq ´ rϕωk px

1q

ˇ

ˇ

ˇ
ď Dv

´

|x´ x1|
¯

. (55)

From the definition of rrϕωk ,

r

rϕωk pxq ´
r

rϕωk px
1q “

´

rϕωk pxq ´ rϕωk px
1q

¯

´
ÿ

ω1PΩ

xpω1q
´

rϕω
1

k pxq ´ rϕω
1

k px
1q

¯

´
ÿ

ω1PΩ

´

xpω1q ´ x1pω1q
¯

rϕω
1

k px
1q.
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Estimating the first two terms on the right-hand side using (55) and bounding the absolute value
of the last term by |x´ x1| ¨maxω1,x |rϕ

ω1

k pxq|, we see that r

rϕωk satisfies (49).

Sequentially replacing ϕωk in pϕωi qiPN,ωPΩ by r

rϕωk for all receivers k P N , we obtain a collection
of functions that satisfies (48) and (49), while the value of the objective in (46) remains the same
or improves. Thus restricting the minimization in (46) to families that satisfy (48) and (49) does
not affect the optimal value.

B.2 Proof of Theorem 3

Consider a persuasion problem B “ pΩ, p,N, vq and a new problem B1 “ pΩ, p,N, uq such that
u ě v and revealing no information is optimal in pΩ, q,N, uq for any q. Our goal is to show that
ValrBs “ infu ValrB1s. Since u ě v, the value of B1 is at least as high as that of B. Hence, it
remains to demonstrate that for any ε ą 0, we can find u such that ValrB1s ď ValrBs ` ε.

By Theorem 2, we can find V ωB P R and continuous functions ϕωB,i on ∆pΩq such that

ValrBs ď
ÿ

ωPΩ

ppωqV ωB ď ValrBs ` ε, (56)

vωpx1, . . . , xnq ď V ωB `
ř

iPN ϕ
ω
B,ipxiq, and

ř

ωPΩ xipωqϕ
ω
B,ipxiq “ 0. Denote

ψωi “ ϕωB,i `
1

|N |
V ωB

and define u as follows:
uωpx1, . . . , xnq “

ÿ

iPN

ψωi pxiq.

By the construction u ě v. Applying Theorem 2 to the persuasion problem pΩ, q,N, uq, we see
that its value cannot exceed

ř

ωPΩ qpωqV
ω
B , the value of the objective achieved if we pick V ω “ V ωB

and ϕωi “ ϕωB,i. However, if the sender reveals no information, the expected utility is equal to
ř

ωPΩ qpωqu
ωpq, . . . , qq “

ř

ωPΩ qpωqV
ω
B . We conclude that

Val
”

pΩ, q,N, uq
ı

“
ÿ

ωPΩ

qpωqV ωB

and revealing no information is optimal for the sender. Thus the persuasion problem B1 “

pΩ, p,N, uq satisfies all the requirements and, by (56), the value of B1 is bounded by ValrBs ` ε.
We conclude that ValrBs “ infu ValrB1s.

Note that for continuous v, the infimum is achieved because, for such v, it is achieved in Theo-
rem 2, and thus we can take ε “ 0 in the above construction.
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C Code for Example 3

The following Mathematica code finds the maximal β such that the inequalities from Proposition 1
are satisfied for hp|t|q “ |t|β . The algorithm implements a binary search with respect to β and
outputs β “ 2.25751...

ClearAll;

h[t_, beta_] := Abs[t]^beta; (*define function h*)

(*define the difference between the LHS and the RHS side of the inequalities to be checked*)

ineq1[x_, y_, beta_] := h[x - y, beta] - (h[1 - x, beta]

+ (1 - y)/y *(h[0.5, beta] - h[y, beta]));

ineq2[x_, y_, beta_] := h[x - y, beta] - (h[0.5, beta]

- x/(1 - x) *(h[1 - x, beta] - h[0.5, beta]) - y/(1 - y) *(h[1 - y, beta] - h[0.5, beta]));

(*define the precision and the range for beta*)

betaPrecision = 10^-6;

betaMin = 0;

betaMax = 100;

(*binary search for the maximal beta*)

While[betaMax - betaMin > betaPrecision,

beta = (betaMin + betaMax)/2;

If[

NMaximize[{ineq1[x, y, beta], 0 <= x <= 0.5, 0.5 <= y <= 1}, {x, y}][[1]] <= $MachineEpsilon

&& (*if both inequalities hold within machine precision for all x and y*)

NMaximize[{ineq2[x, y, beta], 0 <= x <= 0.5, 0 <= y <= 0.5}, {x, y}][[1]] <= $MachineEpsilon,

betaMin = beta, (*then increase betaMin*)

betaMax = beta (*else decrease betaMax*)

]

];

beta (*print beta*)

D Code for Example 5

Consider any utility function vpx1, x2q such that vpx1, x2q “ vpx2, x1q and vpx1, x2q “ vp1´x1, 1´

x2q. The following Mathematica code checks that v satisfies the conditions of Proposition 2.

ClearAll;

v[x_, y_] := Max[0, Abs[x - y] Abs[x - 1/2] Abs[y - 1/2]]; (*define the utility function*)
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vBar[x_] := x*v[x, 1] + (1 - x)*v[x, 0]; (*define the auxiliary function \bar{v}*)

(*by the symmetry of v, the global maximum of \bar{v} equals

the maximum of its concavification at the prior 1/2*)

maxPoint = Maximize[{vBar[x], 0 <= x <= 1}, x];

V = maxPoint[[1]] (*V is the maximum*)

(*b and c are optimal posteriors of the partially informed receiver*)

b = Min[x /. maxPoint[[2]], 1 - x /. maxPoint[[2]]];

c = 1 - b;

(*define function alpha*)

alpha[x_] := Piecewise[{

{(v[x, 1] - V)/(1 - x), 0 <= x < b},

{v[x, 1] - v[x, 0], b <= x < c},

{(V - v[x, 0])/x, c <= x <= 1}

}];

(*by symmetry, it is enough to check only one inequality from the proposition;

define ineq as the difference between the LHS and the RHS*)

ineq[x_, y_] := v[x, y] - (V + (1 - x)*alpha[x] + (1 - y)*alpha[y]);

(*if the difference is non-positive within precision,

the conditions of the proposition are satisfied*)

If[NMaximize[{ineq[x, y], 0 <= x <= 1, 0 <= y <= 1}, {x, y}][[1]] <= $MachineEpsilon,

Print["Full-info/partial-info is optimal"],

Print["Full-info/partial-info may not be optimal"]

];
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