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Abstract

We investigate inherent stochasticity in individual choice behavior across
diverse decisions. Each decision is modeled as a menu of actions with out-
comes, and a stochastic choice rule assigns probabilities to actions based on
the outcome profile. Outcomes can be monetary values, lotteries, or elements
of an abstract outcome space. We characterize decomposable rules: those that
predict independent choices across decisions not affecting each other. For mon-
etary outcomes, such rules form the one-parametric family of multinomial logit
rules. For general outcomes, there exists a universal utility function on the
set of outcomes, such that choice follows multinomial logit with respect to this
utility. The conclusions are robust to replacing strict decomposability with
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an approximate version or allowing minor dependencies on the actions’ labels.
Applications include choice over time, under risk, and with ambiguity.

1 Introduction

Consider an individual choosing an action from a finite menu of actions, say, whether
to wear a red, green, or blue shirt on a particular day. Such a choice may look
stochastic to an analyst unaware of some of the factors affecting the choice, e.g., an
individual’s favorite color or whether it is St. Patrick’s Day. This perceived stochas-
ticity motivated the widespread empirical use of random utility models, which assume
that individuals are rational utility maximizers, but the utilities contain random un-
observed components originating from unobservable latent variables.

By contrast, a substantial body of research suggests that choice behavior may be
inherently stochastic, i.e., randomness would not be completely eliminated even if the
analyst had perfect access to the individual’s type and all the external factors affect-
ing the decision. There is neither consensus on the origin of inherent stochasticity
nor on the way to model it. For example, inherent stochasticity may originate from
a preference for randomization, or from ambiguity aversion/regret minimization (see,
e.g., Machina, 1985; Cerreia-Vioglio, Dillenberger, Ortoleva, and Riella, 2019; Agra-
nov and Ortoleva, 2017, 2022, and references therein), cognitive costs (see Matějka
and McKay, 2015), or the neuro-physiological origin of the decision-making process
(e.g., Webb, 2019, and references therein).

Our paper develops an axiomatic approach to model the inherent stochasticity
of choice behavior. Our approach has two key features. First, it is agnostic to the
origin of stochasticity. Instead of deriving a choice rule from a particular mecha-
nism behind stochasticity, we start from a broad family of choice rules, allowing for
irrational behaviors and so do not assume that individuals are random utility maxi-
mizers.1 We impose assumptions (axioms) on the choice rules and characterize choice
rules compatible with these axioms. Second, we assume that the choice rule governs
individual’s behavior—and thus axioms apply—over a broad range of decisions. This

1Necessary conditions for a stochastic choice rule to originate from a random utility model were
derived by Block and Marschak (1959). Falmagne (1978) demonstrated their sufficiency; see also
McFadden and Richter (1990). By allowing irrational behaviors, we also allow for violating these
conditions.
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enables strong conclusions based on seemingly weak axioms.
Each decision is modeled as a finite menu of actions in which each action is assigned

an outcome. The outcomes represent all relevant information about the actions. We
first study the baseline case, where the relevant information about each action is
summarized by a single number. Such a numerical outcome may represent monetary
rewards or costs associated with an action. However, we do not assume that the
decision-maker is engaged in maximization of any sort.

A stochastic choice rule is a model that describes how an individual chooses their
actions across different decisions. Formally, they are maps that assign to each menu
a choice probability for each action. This rich non-parametric family of rules leads
to the problem of model selection. We take an axiomatic approach to this problem,
based on a concept that we call decomposability.

Decomposability can be motivated by the following example. Consider choosing
which of three shirts to wear and which of two brands of cereals to eat for breakfast.
While this is a choice from a menu of six actions, the decision naturally decomposes
into two separate ones that every human would treat separately. Decomposability
is an Occam’s Razor that extends this logic, imposing independent choices across
sub-decisions that are unrelated in the sense that there is no complementarity or sub-
stitutability in their outcomes. By contrast, the choice of shirt may not be unrelated
to the choice of pants, and so decomposability would not imply that these are chosen
independently.

Formally, a stochastic choice rule is decomposable if, whenever a decision decom-
poses into unrelated ones, the choices are made as if they were made in isolation, and
independently of each other. In particular, consider two unrelated decisions, such as
selecting a shirt and cereal. We can apply a choice rule to each of the two corre-
sponding menus separately and then sample a pair of actions independently from the
corresponding distributions. Alternatively, we can compose the two menus into one
by pairing actions and summing outcomes, and then apply the rule to this composed
menu. Summing the outcomes of the two actions manifests that actions are unrelated
in the sense that the reward or cost of one does not affect that of the other. We say
that a rule is decomposable if both routes yield the same distribution over pairs of
actions.

At first glance, decomposability is an extremely weak requirement, as it places no
restriction on decisions that are not composed of independent sub-decisions. Contrary
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to this intuition, decomposability imposes enough constraints across decisions to pin
down a one-parametric family of rules.

Our first main result is the characterization of all decomposable stochastic choice
rules. Under mild additional assumptions, we show that multinomial logit is the only
such rule. Moreover, the parameter in the logit (the coefficient in the exponent) is
identical across all decisions. This result provides a simple, novel foundation for this
widely used choice rule.

Curiously, decomposability implies rational utility-maximizing behavior. Indeed,
multinomial logit corresponds to a random utility model with shocks following the
Gumbel distribution (Luce and Suppes, 1965).2 Hence, the individual behaves as if
she was maximizing or minimizing the outcome of a chosen action plus noise with
magnitude depending on the parameter. Thus the outcomes can be interpreted as
utilities or disutilities, respectively, even though no rationality assumption was made
a priori.

The theorem highlights that an analyst selecting a stochastic choice rule for one
particular decision implicitly makes assumptions about the counterfactual behavior
of the individual. Unless multinomial logit is selected for the decision of interest, it is
possible to find a pair of unrelated decision problems that would be solved together
differently than they would in isolation.

The theorem also demonstrates a logical relation between seemingly unrelated
behavioral patterns. Indeed, multinomial logit has a number of properties distin-
guishing it from a generic stochastic choice rule, and our theorem demonstrates that
all these properties are implied by decomposability. For example, logit has the prop-
erty of independence of irrelevant alternatives (IIA) that is commonly criticized as
too strong and lacking experimental evidence. We conclude that any rule violating
IIA necessarily violates decomposability.

Having established this result, we turn to a more general setting of a richer space
of outcomes. For example, suppose that each action generates a stochastic reward,
a stream of payoffs, or a reward that depends on a state variable that the decision-
maker is ambiguous about. All these cases can be captured by allowing outcomes to
be elements of an abstract outcome space endowed with a binary operation, which

2By our theorem, all random utility models except for multinomial logit violate decomposability.
We illustrate this violation for the widely used probit rule.
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corresponds to combining outcomes of unrelated actions. For example, combining
stochastic rewards corresponds to the convolution of reward distributions. The notion
of decomposability of a choice rule extends naturally by replacing the summation of
numerical outcomes with their composition via the binary operation.

In this general setting, our second main result demonstrates that a sophisticated
decision maker, whose behavior satisfies decomposability, behaves as if she were driven
by a utility over outcomes. Namely, there is a canonical way to assign a utility to
each element of the outcome space so that any decomposable rule is multinomial logit
with respect to these canonical utilities. We refine the result by characterizing the
functional form of the canonical utility representation for particular outcome spaces.
For example, the canonical utility for stochastic rewards with bounded second mo-
ment is the mean-variance utility commonly used to model risk-aversion. For rewards
depending on an ambiguous state, we recover the standard expected utility repre-
sentation. Hence, also in this more general setting, we obtain utility maximization
without any rationality assumptions beyond decomposability.

Decomposability only requires that unrelated decisions are perceived and taken as
unrelated and makes no assumptions about related decisions.3 Despite the weakness
of this assumption and its possible intellectual appeal, real people’s behavior satisfies
it only approximately at best. Indeed, the theoretical and experimental literature on
ambiguity aversion describes the hedging phenomenon, which implies that combining
unrelated choices may alter behavior; see, e.g., Azrieli, Chambers, and Healy (2018).

Our third main result is a robustness check that demonstrates that any choice
rule that is approximately decomposable must be close to multinomial logit. This
result is quantitative, i.e., we get an explicit bound on how close the behavior is to a
multinomial logit based on how close it is to satisfying decomposability.

1.1 Related literature

Multinomial logit is a ubiquitous model of randomness in a variety of fields: eco-
nomics, psychology, statistics, machine learning, and statistical mechanics.

Multinomial logit was proposed by Luce (1959) to model discrete choice behavior
in experimental psychology and then popularized in economics by McFadden (1974);

3Nevertheless, widely documented narrow choice-bracketing indicates that even related decisions
are often treated by decision makers as if they were unrelated (see, e.g., Barberis et al., 2006).
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see McFadden (2001) for a history of ideas behind multinomial logit and Train (2009);
Anderson, De Palma, and Thisse (1992) for a general economic perspective on stochas-
tic choice models. The early popularity of multinomial logit in economics was driven
by the fact that it can be micro-founded as a random-utility model with shocks
following the Gumbel distribution (Luce and Suppes, 1965), and because of its conve-
nience both for applied econometrics and theory; it gives explicit formulas for choice
probabilities and welfare whereas other random utility models require Monte Carlo
methods. Multinomial logit is also at the heart of the quantal response equilibrium,
a generalization of the Nash equilibrium for error-prone decision-makers (McKelvey
and Palfrey, 1995).

According to Luce (1959), a choice rule exhibits independence of irrelevant alter-
natives (IIA) if the relative probabilities for a subset of alternatives do not depend on
the presence of other alternatives in the choice set. Luce (1959) demonstrated that
any behavior satisfying IIA can be generated by multinomial logit for some choice of
utilities. In our setting—as in the analysis of random utilities—the scale of utilities
is given. For a given scale, IIA implies that the probability of an alternative must be
proportional to some fixed function of its utility. Multinomial logit corresponds to
the exponential function but IIA is also compatible with any other.

The work of Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini (2021b) is
the closest to ours. They obtain the first characterization of multinomial logit for a
given utility-scale. The characterization augments IIA by several other axioms to pin
down the exponential dependence. The key insight is to characterize the whole one-
parametric family of multinomial logit rules, rather than considering multinomial
logit for a particular parameter. The additional axioms relate the behavior of the
stochastic choice rule for different noise levels and imply the multiplicative property of
the exponent. Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini (2022) develop
these ideas further and characterize a dynamic version of multinomial logit where the
noise level can depend on the timing of the decision, thus relating static choice models
to neuro-economic drift-diffusion models. IIA underpins both results; its rationality
foundations are discussed by Cerreia-Vioglio, Lindberg, Maccheroni, Marinacci, and
Rustichini (2021a).

Our characterization of multinomial logit relies on decomposability instead of
IIA. One can think of decomposability as independence of irrelevant sub-decisions
rather than alternatives, intuitively a less demanding and more natural requirement
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than IIA, which is commonly criticized as unrealistic. Indeed, the red bus/blue bus
thought experiment by Debreu (1960) indicates that IIA is problematic, especially
if alternatives are substitutes, and this conclusion is supported by vast empirical
evidence (e.g., Becker, Degroot, and Marschak, 1963; McFadden, Tye, and Train,
1977). Various generalizations of multinomial logit can capture non-IIA behaviors:
e.g., Gul, Natenzon, and Pesendorfer (2014) characterize the so-called attribute rules
related to nested logit, Saito (2018) obtains the first axiomatization for mixed logit,
and Echenique, Saito, and Tserenjigmid (2018) characterize a version of multinomial
logit incorporating alternatives’ priorities. Similarly to Luce (1959), the scale of
utilities in these results is not fixed.

Matějka and McKay (2015) develop a model combining choice with a given utility-
scale and the rational-inattention framework of Sims (2003). Matějka and McKay
(2015) demonstrate that multinomial logit captures the behavior of a utility-maximizing
individual with entropy-based attention cost. Woodford (2014) and Mattsson and
Weibull (2002) derive related results for binary choices and costly effort, respectively.
Steiner, Stewart, and Matějka (2017) obtain an entropy-cost characterization of dy-
namic logit; see also Fudenberg and Strzalecki (2015). The result of Matějka and
McKay (2015) supports the conclusion of Camara (2022) that cognitive costs force
decision-makers to split problems into unrelated sub-problems whenever possible.

Multinomial logit is known as the Maxwell-Boltzmann or the Gibbs distribution
in statistical mechanics and information theory. The result of Matějka and McKay
(2015) is related to the well-known fact that multinomial logit maximizes the Shan-
non entropy over all distributions with fixed mean utility (Shannon, 1948; Shannon
et al., 1959). The entropy-based derivation is close to Boltzmann’s original informal
argument that, for a system in thermodynamic equilibrium, the distribution of micro-
states must be as uniform as the law of conservation of energy permits. Other infor-
mal derivations of the Gibbs distribution use specific properties of physical systems.
For example, Landau and Lifshitz (1951) offer a general argument for Hamiltonian
systems relying on Noether’s characterization of their continuous symmetries, and
Feynman, Leighton, and Sands (2011) discuss ideal gases. The Hammersley-Clifford
Theorem (see, e.g., Besag, 1974) characterizes the Gibbs distribution for lattice mod-
els of statistical mechanics by the Markov property, which shares some similarity to
IIA.

Our notion of decomposability shares remote similarity to separability in dynamic
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choice models. Chambers, Masatlioglu, and Turansick (2021) consider the choice
behavior of two agents (or of a single agent over two periods) and study its separability,
i.e., whether a joint distribution over choices is compatible with the existence of a
single distribution over utility pairs; see also Frick, Iijima, and Strzalecki (2019);
Li (2021); Kashaev, Gauthier, and Aguiar (2023) for multi-period dynamic random
utility models.

2 Model

We consider a single decision-maker and model her behavior across various decisions.
There is a non-empty set of possible actions A. We assume that this set is closed
under the operation of forming ordered pairs. I.e., if a1, a2 P A then the pair pa1, a2q

is also an element of A. For example, if a1 is the action of buying a certain cereal and
a2 is the action of wearing a certain shirt, then pa1, a2q is the action of doing both.
Note that this condition implies that A is infinite.

The set of possible outcomes of a decision is denoted by O. A single decision
instance is represented by a menu pA, oq, where A Ă A is a finite set of possible
actions and o : A Ñ O assigns an outcome to each action. The outcome of an action
encapsulates all the information about this action relevant to the decision-maker.

We first formalize the model and discuss the results for O “ R. In this case,
a menu is simply a one-player game. This benchmark outcome space can be used
to model a decision-maker who compares actions by a single number, such as their
monetary reward or cost. General outcome spaces O are discussed in §4.

We display a menu by showing each action’s outcome below it. For example,

pA, oq “

"

bus
3.14

train
´17

*

is a menu with two actions, choosing a bus or a train, with the former having a
monetary reward of 3.14 and the latter having a reward of ´17.

Let M be the collection of all menus. In other words, M consists of all pairs
pA, oq where A is a finite subset of A and o is a function from A to O. The richness
of M distinguishes our approach from the standard stochastic choice setting in which
menus are subsets of some fixed finite set of alternatives. Moreover, in our setting,
the same action can have different outcomes in different menus.
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A stochastic choice rule is a map Φ that assigns to each menu pA, oq P M a
probability distribution over A. We denote by ΦpA, oqa the probability that ΦpA, oq

assigns to a P A. We think of Φ as describing or predicting the choices of a single
decision-maker across different situations. A stochastic choice can be thought of as a
solution concept for one-player games.

We consider several properties of stochastic choice rules. The first one is neutrality.
Neutrality captures a sense in which the decision-maker’s choice is driven by the
outcomes rather than the names of actions.

Axiom 1 (Neutrality). A rule Φ is neutral if actions in the same menu sharing the
same outcome are chosen with the same probability: for any menu pA, oq in M and
any a, a1 P A such that opaq “ opa1q it holds that ΦpA, oqa “ ΦpA, oqa1.

Note that this axiom does not impose any constraints across menus, but only
within a given menu, and only if there are any actions that share the same outcome.

To introduce our main axiom, decomposability, we will need an operation of com-
bining two unrelated choices into one. Given two menus pA1, o1q and pA2, o2q, we
define their product pA, oq “ pA1, o1q b pA2, o2q by

A “ A1 ˆ A2 and opa1, a2q “ o1pa1q ` o2pa2q. (1)

Indeed, it is intuitive to assume that monetary rewards or costs are additive across
unrelated actions.

For example, suppose that pA1, o1q with A1 “ ta, bu is a choice between two cereals
at a supermarket and pA2, o2q with A2 “ tp, q, ru is a choice between job offers. Then
the product menu pA, oq “ pA1, o1q b pA2, o2q represents a choice of cereal and a job
offer. The set of actions A “ tpa, pq, pa, qq, pa, rq, pb, pq, pb, qq, pb, rqu consists of all
pairs of choices from A1 and A2. The outcome defined by o “ o1 ` o2 captures no
interaction between the two dimensions of the decision: under pA, oq, the choice of
cereal does not affect the decision maker’s rewards for job offers.

Decomposability concerns a rule’s prediction for product menus.

Axiom 2 (Decomposability). A rule Φ is decomposable if for all menus pA1, o1q, pA2, o2q P

M and their product pA, oq, it holds that

ΦpA, oqpa1,a2q “ ΦpA1, o1qa1 ¨ ΦpA2, o2qa2 (2)

for all pa1, a2q P A.
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Decomposability means that, for product menus, the predicted distribution is
independent across the two dimensions. Moreover, in each dimension, the prediction
is the same as when that decision is made in isolation. In the cereal and job offer
example above, a rule that satisfies decomposability would predict that the choice
of cereal would be independent of the choice of the job offer: Observing one would
not change the prediction of the other. Furthermore, the probabilities that different
cereals are chosen are the same as they would be if the menu included the cereals only.
For example, the decomposability of Φ would imply that ΦpA, oqpa,pq “ ΦpA1, o1qa ¨

ΦpA2, o2qp: The probability of choosing cereal a and job offer p from the product
menu is the product of their probabilities in the two menus.

Note that the product menu is well-defined even for pA1, o1q and pA2, o2q rep-
resenting related choices such as choosing a shirt and choosing a tie. In this case,
the combined decision does not correspond to the product menu pA1, o1q b pA2, o2q,
which represents a hypothetical situation where these two choices are combined as if
they were unrelated. The decomposability axiom only restricts the behavior of the
individual in such a hypothetical situation and does not constrain the rule’s behavior
on menus that are not products.

If we interpret outcomes as monetary rewards or costs, decomposability captures
a sense in which behavior exhibits no wealth effects. This is a strong assumption,
though commonly made. In our model, it originates from the additive way in which
outcomes in a product menu are defined (2). We go beyond additivity in §4, and now
continue with the baseline model.

Some of our results require a mild regularity assumption. For a fixed set of
actions A, we say that a series of menus pA, onq converges to pA, oq if limn onpaq “ opaq

for all a P A.

Axiom 3 (Continuity). A rule Φ is continuous if for any sequence of menus pA, onq

from M converging to pA, oq, we have limn ΦpA, onqa “ ΦpA, oqa for all a P A.

3 Decomposable Rules for O “ R

Recall that the outcome space O “ R represents a decision-maker comparing actions
by a single number, such as their monetary reward or cost. The rewards and costs
are additive across unrelated actions (1).
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The multinomial logit rule with parameter β P R is given by

MNLβpA, oqa “
exppβ ¨ opaqq

ř

bPA exppβ ¨ opbqq

for every menu pA, oq P M.
One can easily verify that multinomial logit satisfies neutrality, decomposability,

and continuity. At first glance, these requirements are quite weak, and many other
rules must satisfy them. Indeed, decomposability constrains a rule only on product
menus, and neutrality does not constrain a rule across menus. For example, the two
axioms do not seem to relate the behavior of a rule on the menus

pA, oq “

"

a1
´17

a2
´17

a3
42

*

pB, rq “

"

b0
0

b1
1

*

.

These menus are indecomposable in the sense that they are not (non-trivial) product
menus. Intuitively, we can define a rule on indecomposable menus arbitrarily in a
neutral way and extend it to all product menus by decomposability. Surprisingly,
this intuition is wrong, and we would not get a decomposable neutral rule unless it
was defined on indecomposable menus in a very particular way.

Theorem 1. Let Φ be a neutral, decomposable, continuous stochastic choice rule for
the outcome space O “ R. Then Φ coincides with the multinomial logit rule for
some β P R.

The constant β in the multinomial logit rule is pinned down by the choice distri-
bution on any non-trivial menu, i.e., on any menu pA, oq P M where o is not constant.
In other words, the behavior of a rule on any non-trivial menu pins down the behavior
on all menus. After discussing other implications of the theorem, we will explain how
two weak axioms—decomposability and neutrality—become strong when combined.

Recall that the family of independent additive random utility (IARU) models used
to model the behavior of a rational utility-maximizing decision-maker is given by

IARUpA, oqa “ P
”

opaq ` εa “ max
bPA

opbq ` εb

ı

,

where opaq is interpreted as the utility of action a and εa are independent shocks
with a continuous distribution F . For β ą 0, multinomial logit can equivalently be
defined as an independent additive random utility model corresponding to the Gumbel
distribution F pxq “ expp´ expp´β ¨ xqq. Note that—although the outcome opaq P R
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was interpreted as the reward or cost of an action a—we did not a priori assume
that the decision-maker is engaged in any sort of utility maximization. Curiously, the
theorem implies that a decision-maker whose choice rule Φ satisfies the assumptions
behaves as if she was a stochastic utility-maximizer (the case of β ą 0) or disutility-
minimizer (β ă 0). The theorem also justifies the interpretation of decomposability
and neutrality as rationality requirements. We see that these requirements imply
rationality in the usual sense of utility maximization but are stronger than that since
only multinomial logit is decomposable among all IARU.

By Theorem 1, a general IARU violates decomposability by inducing correlation
between unrelated choices. For example, consider the probit rule corresponding to the
standard Gaussian distribution F “ Np0, 1q. We examine its outcomes for a menu

pB, rq “

"

b0
0

b1
1

*

(3)

and its “square”

pC, sq “ pB, rq b pB, rq “

"

pb0, b0q

0

pb0, b1q

1

pb1, b0q

1

pb1, b1q

2

*

.

We get ProbitpB, rqb1 » 0.760 and ProbitpC, sqpb1,b1q » 0.617. Since 0.617 ą 0.762 “

0.58, Probit violates decomposability, putting more weight on the maximal-utility
action in pC, sq than a decomposable rule coinciding with probit on pB, rq would put.
Summing Gaussian shocks results in a shock with twice the variance, and so we might
anticipate that keeping the same shock variance in the product menu leads to less
randomness than required for decomposability. Theorem 1 implies that even if we
made the variance or even the shock distribution a function of the menu, we would
not achieve decomposability unless the resulting choice probabilities correspond to
Gumbel-distributed shocks with a parameter independent of the menu.

Theorem 1 is proved in Appendix A, which also contains a family of related
characterizations.4 To illustrate the mechanics behind Theorem 1, we show how
knowing a decomposable neutral rule on a single menu can pin it down for all other
menus. Assume we know ΦpB, rq for pB, rq from (3), and assume that both b0 and b1

are chosen with positive probability. Our goal is to show how this knowledge restricts
4We are grateful to Gabriel Carroll and Marcin Pȩski who suggested the current proof strategy,

simplifying our original proof considerably.
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ΦpA, oq for

pA, oq “

"

a1
´17

a2
´17

a3
42

*

.

By neutrality ΦpA, oqa1 “ ΦpA, oqa2 . We will demonstrate that ΦpA, oqa2 and ΦpA, oqa3

satisfy a certain identity. Consider the product of pA, oq with the n-fold product of
pB, rq:

pA, oq b pB, rq b pB, rq b . . . b pB, rq
looooooooooooooooomooooooooooooooooon

n times

, (4)

where n “ opa3q ´ opa2q “ 59. In this menu, the two actions pa3, b0, b0, . . . , b0q and
pa2, b1, b1, . . . , b1q have the same outcome, and thus have the same probability by
neutrality. Therefore, decomposability implies

ΦpA, oqa3 ¨ pΦpB, rqb0q59 “ ΦpA, oqa2 ¨ pΦpB, rqb1q59.

Combined with the identities ΦpA, oqa1 “ ΦpA, oqa2 and ΦpA, oqa1 ` ΦpA, oqa2 `

ΦpA, oqa3 “ 1, this equation pins down ΦpA, oq, which is therefore determined by
ΦpB, rq. Since |B| “ 2, we can always choose β P R such that ΦpB, rq “ MNLβpB, rq.
Since multinomial logit also satisfies the same identities, we conclude that ΦpA, oq “

MNLβpA, oq.
We now discuss the role of the technical continuity requirement in Theorem 1.

To argue that ΦpB, rq “ MNLpB, rq implies ΦpA, oq “ MNLpA, oq, we did not in-
voke continuity. Indeed, if we focus on choice rules defined only on menus pA, oq

with integer-valued or rational-valued outcomes o, the continuity assumption can be
dropped; see Propositions 2 and 3 in Appendix A. In this setting, in addition to
multinomial logit, we also get the two limiting rules obtained by letting β go to `8

or ´8. These rules denoted by MNL`8 and MNL´8 output the uniform distribution
over the highest-reward or lowest-cost actions

MNL`8pA, oqa “

$

&

%

| argmaxbPA opbq|´1, a P argmaxbPA opbq

0, otherwise

and
MNL´8pA, oqa “ MNL`8pA,´oqa.

These rules do not withstand the continuity test and thus do not appear in Theorem 1.
Another way to exclude these rules is to require positivity, which postulates that every
action is chosen with positive probability.
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Axiom 4 (Positivity). A rule Φ is positive if ΦpA, oqa ą 0 for all menus pA, oq P M
and actions a P A.

Replacing continuity with positivity results in pathological non-measurable ev-
erywhere discontinuous rules, in addition to multinomial logit; see discussion in §4.2
below. Characterizing decomposable neutral rules lacking both positivity and conti-
nuity remains an open question. We conjecture that no such rule is measurable unless
it coincides with some multinomial logit rule.

4 Decomposable Rules for General Outcome Spaces O

So far, we have focused on the outcome space O “ R capturing a decision-maker
choosing actions based on simple numerical outcomes such as monetary rewards or
costs. It turns out that neither the one-dimensional structure of the outcome space
nor the additive structure of unrelated outcomes is critical for our analysis.

Here, we extend the analysis to a more sophisticated decision-maker whose action
choices are driven by outcomes in a general space O. For example, O “ R2 can
be used to model a decision-maker whose choices are affected by two numbers, e.g.,
reward and the cost of the chosen action, utility today and tomorrow, or utilities in
two different states of nature. The set O “ tbounded continuous f : Rě0 Ñ Ru can
represent a decision-maker who cares about infinite payoff streams. A risk-sensitive
decision-maker whose actions result in a lottery, and who bases her decisions on the
mean and the standard deviation only, can be modeled with O “ R ˆ Rě0. If the
whole distribution matters, O “ ∆pRq.

To capture the aforementioned examples, we will impose minimal assumptions
on O. The notions of a menu pA, oq, a collection of menus M, and a stochastic choice
rule Φ extended straightforwardly. Similarly, the axioms—neutrality, positivity, and
continuity (for O endowed with a topology)—need no modifications.

To motivate the extension of decomposability to a general outcome space, we
consider the following example. Let O “ R ˆ Rě0, where the first component is
interpreted as the mean and the second component as the standard deviation of a
stochastic monetary reward. In the following menu, the decision-maker compares two
investment decisions that differ substantially by expected rewards and, even more
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dramatically, by their standard deviation

pA, oq “

"

bonds
`

5
2

˘

crypto
`

20
100

˘

*

. (5)

We assume that O is endowed with a binary operation “˚” corresponding to com-
bining outcomes of actions with stochastically independent outcomes. For example,
consider pA, oq from (5) and suppose that there is another investment opportunity
with rewards that are independent of those from A, say, a lottery ticket with out-
come

`

´0.01
0.05

˘

. We can construct a new menu where the decision-maker compares two
options: (i) buying the lottery ticket and investing in bonds or (ii) buying the ticket
and investing in crypto:

$

&

%

plottery, bondsq
´

´0.01`5?
0.052`0.12

¯

plottery, cryptoq
´

´0.01`20?
0.052`1002

¯

,

.

-

.

The outcomes are defined this way since the sum of two independent random variables
with mean m1 and m2 and standard deviations σ1 and σ2 has mean m1 ` m2 and
standard deviation

a

σ2
1 ` σ2

2. Accordingly, for O representing the mean/standard-
deviation pairs, the binary operation is naturally defined as follows

ˆ

m1

σ1

˙

˚

ˆ

m2

σ2

˙

“

ˆ

m1 ` m2
a

σ2
1 ` σ2

2

˙

. (6)

For a general outcome space O, we assume that it is endowed with a binary
operation ˚ corresponding to combining outcomes of unrelated actions. The existence
of an operation ˚ is justified by the interpretation of the space of outcomes O. Indeed,
an outcome of an action captures all information about it relevant to the decision-
maker. Every action in every menu, including combined ones, must be assigned
an outcome. An outcome assigned to a combination of unrelated actions must be a
function of their outcomes as the latter capture all relevant information. This function
O ˆ O Ñ O is the operation ˚.

We impose the following mild requirements on ˚.

1. Existence of an irrelevant outcome. There exists e P O such that

e ˚ x “ x ˚ e

for any x P O. The decision-maker does not care about an action a having
outcome e in the sense that combining a with any other action b with outcome x
does not change the decision-maker’s perception of b.
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2. Possibility of compensation. For any pair of outcomes x, x1 P O,

either Ds P O : x1 “ s ˚ x or Ds1 P O : x “ s1 ˚ x1.

In other words, any two actions with outcomes x and x1 can be bridged by
combining one of them with an outcome of some other action.

Abusing notation, we call the pair pO, ˚q an outcome space in what follows.
Our analysis from §3 pertains to the outcome space pO, ˚q “ pR,`q, which satis-

fies these requirements. More generally, our requirements on ˚ are satisfied whenever
pO, ˚q is a group. The operation ˚ defined in (6) also satisfies the above requirements
(even though in this case pO, ˚q is not a group), and is also commutative and asso-
ciative. However, we assume neither commutativity nor associativity. In particular,
hearing “good news” and then “bad news” may not be the same as “bad news” and
then “good news” from the decision-maker’s perspective.

Since ˚ corresponds to combining outcomes of unrelated actions, the definition of
a product menu extends straightforwardly. Given two menus pA1, o1q and pA2, o2q,
we define their product pA, oq “ pA1, o1q b pA2, o2q by

A “ A1 ˆ A2, and opa1, a2q “ opa1q ˚ opa2q.

As in the case of pO, ˚q “ pR,`q, the product menu corresponds to combining the
two unrelated choices (or as if they were unrelated).

Once the product menus are defined, the requirement of decomposability (Ax-
iom 2) applies to choice rule with arbitrary outcome spaces pO, ˚q. Indeed, consider
a rule Φ defined on a collection M of menus. This rule is decomposable if

Φ
`

pA1, o1q b pA2, o2q
˘

pa1,a2q
“ ΦpA1, o1qa1 ¨ ΦpA2, o2qa2

for all pA1, o1q, pA2, o2q P M.
In the context of the example of O “ R ˆ Rě0 above with the operation (6),

decomposability means that the choice between bonds and crypto is unaffected by
the presence of a lottery, and thus captures a certain indifference to wealth effects
or background risk. Of course, whether this assumption is justified depends on the
context.

As another example of pO, ˚q consider the following setting of choice under ambi-
guity. Let Θ be a finite set of states. An outcome x is a function x : Θ Ñ R, specifying
reward or cost for each of the states, so that x is a Savage act and O “ RΘ.
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The decision-maker is ambiguous about the state θ P Θ and so she may take into
account all the possible values xθ. For a given state, similarly to §3, monetary rewards
or costs are assumed to be additive over unrelated actions. Thus the operation ˚ is
component-wise addition, or simply addition in RΘ. Here, decomposability captures
the idea that there is a true (but unknown) state, which is fixed across all decision
problem, and so the decision maker compares rewards state by state.

Before stating our main result of this section we will need an additional definition.
A function u : O Ñ R is called a utility representation of the outcome space pO, ˚q

if
ups ˚ tq “ upsq ` uptq for all s, t P O. (7)

In other words, a utility representation assigns a numerical value to each outcome so
that combining outcomes of unrelated actions corresponds to summing their utilities.
For example, if pO, ˚q “ pR,`q, a linear function uptq “ β ¨t is a utility representation;
if pO, ˚q is the mean-variance outcome space (6), a function upm,σq “ β ¨ m ` γ ¨ σ2

provides a utility representation; and if pO, ˚q “ pRΘ,`q as in the choice under
ambiguity example, upxq “

ř

θ qθ ¨ xθ is a utility representation. As discussed below,
these are all continuous utility representations for these outcome spaces. Our second
main result relates decomposability and utility representations.

Theorem 2. Let Φ be a neutral, decomposable, positive stochastic choice rule for an
outcome space pO, ˚q. Then, there exists a utility representation u of pO, ˚q such that

ΦpA, oqa “
exp

´

u
`

opaq
˘

¯

ř

bPA exp
´

u
`

opbq
˘

¯ (8)

for any menu pA, oq P M. The utility representation u is continuous if and only if Φ
is continuous.

Informally, Theorem 2 says that there is a canonical way to assign utilities to
elements of the outcome space so that choices are governed by a multinomial logit
rule with respect to these utilities and summing utilities corresponds to combining
unrelated actions. The constant β in the multinomial logit is normalized to one, as
any other constant can always be absorbed by u.

We conclude that, no matter how sophisticated the decision-maker is, she behaves
like a rational stochastic utility maximizer with a very particular form of stochasticity
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leading to the multinomial logit distribution. This conclusion can be surprising as we
assumed neither that the decision maker is a utility maximizer nor that her choices
are driven by a numerical characteristic of actions.

Theorem 2 also implies that a sophisticated decision-maker using O with non-
commutative or non-associative operation ˚ behaves as if the composition operation
was commutative and associative. Indeed, any utility representation u of pO, ˚q sat-
isfies upx ˚ yq “ upxq ` upyq “ upy ˚ xq and similarly upx ˚ py ˚ zqq “ uppx ˚ yq ˚ zqq.
Hence, the non-commutative or non-associative dimensions of pO, ˚q will all be in the
kernel of the utility representation and will not affect decision-making.

Theorem 2 is proved in Appendix B. The idea is to extract u from Φ as follows. For
each element x P O, consider a binary menu pA, oxq P M with A “ ta, bu, oxpaq “ e

and opbq “ x. We define u by

upxq “ ln

ˆ

ΦpA, oxqb

1 ´ ΦpA, oxqb

˙

(9)

so that Φ is given by the multinomial logit formula (8) on binary menus pA, oxq. By
decomposability of Φ on binary menus, u satisfies the generalized Cauchy equation (7),
i.e., u is a utility representation. The multinomial logit formula (8) is extended from
binary menus to all menus by decomposability and neutrality. Positivity of Φ in
Theorem 2 ensures that u given by (9) is well-defined. Dropping positivity is an open
problem requiring a new proof technique already for the case of pO, ˚q “ pR2,`q.

4.1 Applications

Theorem 2 can be refined for those outcome spaces O, where the set of all utility
representations u admits a simple characterization. Describing all u boils down to
understanding solutions to the generalized Cauchy equation (7)

upx ˚ yq “ upxq ` upyq.

We will see a family of economically-relevant examples below.
The first few examples correspond to the case of a linear space O, equipped with

the operation of addition, e.g., pO, ˚q “ pRd,`q. For such O, the Cauchy equation
becomes

upx ` yq “ upxq ` upyq. (10)
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Lemma 1. Suppose that the outcome space pO, ˚q is a Banach space equipped with
the operation of addition. Then, any utility representation u : O Ñ R continuous at
some x0 P O is a linear map continuous at all x P O. Any utility representation
discontinuous at some x0 is discontinuous everywhere and non-measurable.

Measurability in Lemma 1 is understood in the usual sense, i.e., with respect to
the Borel σ-algebra of O. This lemma is a folk result in the theory of functional
equations. For pO, ˚q “ pR,`q, it dates back to Cauchy. For a general Banach space
pO, ˚q see, e.g., (Kuczma, 2009; Jung, 2011).

4.2 Choice driven by monetary rewards

As a first simple example, consider the familiar case of a decision maker comparing
actions by their monetary rewards or costs, i.e., pO, ˚q “ pR,`q as in §3. By Lemma 1,
any continuous utility representation u : R Ñ R is linear, i.e., upxq “ β ¨ x for some
β P R. Moreover, it suffices to require continuity at a single point x0.

Combining this insight with Theorem 2, we get that any continuous decomposable
positive rule Φ is a multinomial logit rule MNLβ. In other words, we obtain the
conclusion of Theorem 1 under an additional assumption of positivity. While the
result is weaker because of the redundant positivity assumption, this proof technique
highlights that we only need to require continuity at a single menu (with at least two
actions).

By Lemma 1, utility representations discontinuous at one point are necessarily
discontinuous everywhere and are moreover non-measurable. We conclude that so
are discontinuous decomposable positive choice rules. Such rules can be obtained
using discontinuous solutions to the Cauchy equation. Similarly to the existence of
a discontinuous solution to (10), this construction relies on Hamel bases and thus
requires an explicit use of the axiom of choice. To conclude, discontinuous rules are
not more than a technical curiosity.

4.3 Choice under ambiguity

Recall again the example in which Θ is a finite set of states, pO, ˚q “ pRΘ,`q, and
each x P O is an act assigning a monetary reward in each state.

By Lemma 1, any continuous utility representation u : RΘ Ñ R is linear, and so
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can be written as
upxq “ β ¨

ÿ

θPΘ

pθ ¨ p´1qσθ ¨ xθ

for some β ě 0, σ : Θ Ñ t0, 1u, and p P ∆pΘq, where ∆pΘq denotes the set of
probability distributions over Θ. The distribution p can be interpreted as the decision-
maker’s prior over the states, and σθ determines whether the component xθ is treated
as a reward or a cost.

By Theorem 2, any decision maker whose choices follow a continuous decompos-
able positive rule Φ, behaves as a stochastic expected utility maximizer with some
prior p over the set of states and Gumbel-distributed shocks:

ΦpA, oqa “
exp

´

β ¨
ř

θPΘ pθ ¨ p´1qσθ ¨ opaqθ

¯

ř

bPA exp
´

β ¨
ř

θPΘ pθ ¨ p´1qσθ ¨ opbqθ

¯ . (11)

To rule out the situation where some components of x are treated as rewards and some
as costs, one can impose a simple monotonicity requirement. If the choice probability
is non-decreasing in the θ-component of the outcome, one can assume σθ “ 0 in (11).
Moreover, it suffices to require this monotonicity at a single menu with at least two
actions.

4.4 Intertemporal choice

Consider a decision-maker who chooses an action taking into account the stream of
payoffs x : T Ñ R that it generates, where T “ Rě0 is set of time periods. We assume
that these payoffs x are continuous and stop after some point in time. Hence, the space
of outcomes O is the set of all continuous and compactly-supported functions x : T Ñ

R. We equip O with the operation of addition and the topology induced by the sup-
norm. By the Riesz representation theorem (see Folland, 1999, Theorem 7.17), any
continuous linear functional on O can be represented as integration against a finite
signed measure µ on T . Lemma 1 implies that any continuous utility representation
u of pO,`q has the following form

upxq “

ż

T

xptq dµptq
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for some finite signed measure µ on T . Thus, by Theorem 2, any decision maker
whose choices follow a continuous decomposable positive rule Φ is given by

ΦpA, oqa “
exp

´

ş

T
opaqt dµptq

¯

ř

bPA exp
´

ş

T
opbqt dµptq

¯ . (12)

As above, an additional monotonicity assumption yields that µ is a positive measure.

4.5 Risk-sensitive choice

Now, suppose that the actions generate stochastic payoffs. In the simplest case dis-
cussed above, the decision-maker cares only about the mean m and the standard
deviation σ ě 0 of the payoff and thus the outcome space is O “ R ˆ Rě0 with the
operation ˚ defined in (6). It is easy to see that any continuous utility representation
u : R ˆ Rě0 Ñ R is a mean-variance utility

upm,σq “ γ1 ¨ m ` γ2 ¨ σ2. (13)

Indeed, any continuous utility representation u defines a continuous solution v to the
additive Cauchy equation (10) by

vpy1, y2q “ u
`

y1,
a

y2 ` |y2|
˘

´ u
`

0,
a

|y2|
˘

.

By Lemma 1, v is linear, and thus u has the desired form.
Theorem 2, implies that any continuous decomposable positive rule Φ is given by

ΦpA, oqa “
exp

´

γ1 ¨ mpaq ` γ2 ¨ σpaq2
¯

ř

bPA exp
´

γ1 ¨ mpbq ` γ2 ¨ σpbq2
¯ . (14)

More generally, consider a decision-maker who takes into account the entire payoff
distribution, and thus an outcome x is the element of ∆pRq. Let O be the set of all
probability distributions on R, with finite n moments for some n ě 0. The operation ˚

is the convolution, which corresponds to summing independent random variables.
The topology is defined so that the n moments are continuous functionals on O: the
distance between two distributions x and y is given by the weighted total variation
distance

dpx, yq “

ż

R
p1 ` |t|qnd|x ´ y|ptq (15)

so that the k moments are continuous functionals on O. The following result is a
direct corollary of Mattner (2004).
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Lemma 2. Let the outcome space pO, ˚q be the set of all probability distributions with
n ě 0 finite moments, the operation of convolution, and topology induced by (15).
Then, any continuous utility representation u : O Ñ R has the following form

upxq “

n
ÿ

l“1

γlκlpxq, (16)

where κl is the l-th cumulant of x and γ1, . . . , γn are some fixed real numbers.

Cumulants are additive, i.e., κlpx ˚ yq “ κlpxq ` κlpyq, which is why representa-
tion (16) satisfies the generalized Cauchy equation (7). The first two cumulants are
the mean and the variance, and so (16) extends (13).5

By Theorem 2, any continuous decomposable positive rule Φ has the following
form

ΦpA, oqa “
exp

´

řn
l“1 γlκlpopaqq

¯

ř

bPA exp
´

řn
l“1 γlκlpopbqq

¯ .

An interesting corollary of Lemma 2 is that in the case n “ 0, in which O “ ∆pRq

endowed with the total-variation distance, there are no continuous utility representa-
tions u : O Ñ R except for u ” 0. Thus, the only continuous decomposable positive
rules are those that pick an action uniformly at random.

4.6 Finite streams of prizes

We next consider an example of an outcome space with a non-commutative opera-
tion ˚. Let P be a set of prize types, and let O be the set of finite streams of prizes.
Formally, O is the set of finite sequences x “ px1, . . . , xnq with elements in P . The
operation ˚ is concatenation:

px1, . . . , xmq ˚ py1, . . . , ynq “ px1, . . . , xm, y1, . . . , ynq.

Note that this operation is not commutative: receiving the stream x and then y is
not the same as receiving y and then x.

5Recall that the cumulants of a distribution x are defined by the following formula

κlpxq “

ˆ

1

il
¨
dl

dαl
log

ż

R
exp

`

iαt
˘

dxptq

˙ˇ

ˇ

ˇ

ˇ

α“0

,

where i is the imaginary unit.
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In the context of this operation, exploring decomposability corresponds to study-
ing decision-makers whose choice probabilities are invariant to previously received
streams. A standard argument shows that every utility representation u : O Ñ R is
of the form

upz1, . . . , zkq “
ÿ

pPP

wppq ¨ |tl : zl “ pu|.

where w : P Ñ R is any function. In other words, we assign a value wppq to each
prize type p and define the utility of a stream as the sum of values for each of the
prizes in the stream.

By Theorem 2, any decomposable positive rule Φ has the form

ΦpA, oqa “
exp

´

ř

pPP wppq ¨ |tl : opaql “ pu|

¯

ř

bPA exp
´

ř

pPP wppq ¨ |tl : opbql “ pu|

¯

for some w : P Ñ R. This example highlights that in non-commutative cases, the
choice probabilities can only be driven by commutative components of O, which in
this case correspond to counting the number of appearances of each prize type in a
stream.

4.7 Matrices as outcomes

In this section, we discuss a mathematical example which does not admit a natu-
ral economic interpretation but nevertheless highlights an interesting application of
Theorem 2.

Suppose O is the set of all non-degenerate (i.e., invertible) nˆn matrices with the
operation ˚ given by the matrix product. The next lemma follows from Chamberlin
and Wolfe (1953).

Lemma 3. Let the outcome space pO, ˚q be the set of non-degenerate n ˆ n matri-
ces with the operation of multiplication. Then, any continuous utility representation
u : O Ñ R has the following form

upxq “ β ¨ ln
ˇ

ˇ det x
ˇ

ˇ (17)

for some β P R.
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The determinant is multiplicative, i.e., detpx ˚ yq “ detpxq ¨ detpyq, and thus the
utility representation (17) satisfies (7). We conclude that any continuous decompos-
able positive rule Φ takes the form

ΦpA, oqa “

ˇ

ˇ det opaq
ˇ

ˇ

β

ř

bPA

ˇ

ˇ det opbq
ˇ

ˇ

β
.

5 Framing effects and approximate neutrality

Our neutrality axiom captures a weak sense in which outcomes, rather than action
labels, are what drives choice. In this section, we relax this assumption, allowing for
framing effects which affect choice probabilities even when there are no differences in
outcomes. We show that under an appropriate notion of approximate neutrality, our
results remain the same.

Fix an arbitrary outcome space O and consider a rule Φ defined on a collection
of menus M. We now formulate the approximate versions of our main axioms.

Axiom 5 (Approximate Neutrality). A rule Φ is approximately neutral with
parameter εneut ě 0 if for any menu pA, oq in M and any a, a1 P A such that opaq “

opa1q it holds that ΦpA, oqa ď p1 ` εneutqΦpA, oqa1.

Approximate neutrality is a natural relaxation of neutrality which allows actions
with the same outcome to be chosen with different probabilities, but limits the ratio
between them. For zero values of εneut we obtain the familiar requirement of exact
neutrality (Axiom 1).

The main result of this section shows that under decomposability, approximate
neutrality is the same as exact neutrality.

Proposition 1. For any outcome space pO, ˚q, every decomposable rule Φ satisfying
approximate neutrality with any parameter εneut ą 0 is neutral.

In other words, decomposability and approximate neutrality imply exact neutral-
ity.6 As a corollary, we can relax neutrality to approximate neutrality in Theorems 1
and 2 without altering the conclusion. Note that in the hypothesis of Proposition 1

6A similar phenomenon in the theory of functional equations is known as superstability (see, e.g.,
Jung, 2011, Chapter 10). An equation is superstable if an approximate solution is always exact.
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there is no assumption that εneut is small. Moreover, the proof contained in Ap-
pendix C demonstrates that the same conclusion holds even for εneut that is allowed
to depend on the menu, as long as it grows sub-linearly with the size of the menu.

6 Approximate decomposability

Real decision-makers may violate exact decomposability. For example, the choice of
cereal and shirt may be negatively correlated because the cognitive effort required
to choose a cereal reduces the quality of the choice of shirt. In this section, we
relax decomposability in a similar way to our relaxation of neutrality in the previous
section. We explore the robustness of our results to approximate decomposability, and
show that when approximate decomposability holds, then so do approximate versions
of Theorems 1 and 2. The conclusions allow for approximate decomposability and
approximate neutrality simultaneously.

Axiom 6 (Approximate Decomposability). A rule Φ is approximately decom-
posable with parameter εdecomp ě 0 if for all menus pA1, o1q, pA2, o2q P M and their
product pA, oq, it holds that

ΦpA, oqpa1,a2q ď p1 ` εdecompq ¨ ΦpA1, o1qa1 ¨ ΦpA2, o2qa2

ΦpA1, o1qa1 ¨ ΦpA2, o2qa2 ď p1 ` εdecompq ¨ ΦpA, oqpa1,a2q.

for all pa1, a2q P A.

6.1 Robustness for O “ R

Consider the benchmark case of §3, where the outcome space is O “ R with the
operation of addition.

A rule Φ on M is δ-close to a multinomial logit with parameter β P R if for any
menu pA, oq P M there is a function s : A Ñ r´δ, δs such that

ΦpA, oqa “
exp pβ ¨ opaq ` spaqq

ř

bPA exp pβ ¨ opbq ` spbqq
.

The utility shock s may depend on the menu pA, oq and can capture framing effects.

Theorem 3. Let Φ be a continuous stochastic choice rule for the outcome space O “

R satisfying approximate neutrality and approximate decomposability with parameters
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εneut ě 0 and εdecomp ě 0, respectively. Then there exists a unique β P R such that Φ
is εdecomp-close to a multinomial logit rule with parameter β P R.

We see that rules satisfying our approximate axioms are close to those that satisfy
the exact ones, i.e., to multinomial logit. We note that the closeness of Φ to logit
does not depend on the approximation parameter in the neutrality axiom. This effect
has the same origin as in Proposition 1.

The theorem is proved in Appendix D. The idea is to consider an auxiliary rule
Υ defined by

ΥpA, oqa “ lim
nÑ8

n

b

ΦpA, oqbn
pa,...,aq

,

where pA, oqbn denotes the product of pA, oq with itself n times. It turns out that
Υ satisfies exact decomposability and neutrality and is close to Φ by construction.
Thus Theorem 3 follows from applying the characterization of decomposable neutral
rules to Υ.

6.2 Robusteness for general outcome spaces O

Theorem 2 for general outcome space O shows that decomposable positive neutral Φ
coincides with multinomial logit for some additive utility function u : O Ñ R. The
possibility to replace neutrality and decomposability with their approximate versions
is tightly related to the so-called Ulam stability of the Cauchy functional equation.

Consider the Cauchy equation for the outcome space pO, ˚q

upx ˚ yq “ upxq ` upyq for all x, y P O. (18)

Informally, the equation is stable if any approximate solution is close to the exact
one. Formally, consider ε ą 0 and suppose that there is δ ą 0 such that for any
function w satisfying

ˇ

ˇwpx ˚ yq ´ wpxq ` wpyq
ˇ

ˇ ď ε for all x, y P O. (19)

there is a solution u of (18) such that

|upxq ´ wpxq| ď δ for all x P O.

If such a pair pε, δq exists, equation (18) is called pε, δq-stable. If, for every δ ą 0,
there is an ε ą 0 such that the equation is pε, δq-stable, then we say that the equation
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is Ulam stable. This is an upper-hemicontinuity-type condition for the set of solutions
to (19) as ε tends to zero.

We note that whether or not the Cauchy equation is stable is a property of the
space pO, ˚q. For example, O “ R with addition and, more generally, any Banach
space O are pε, εq-stable for any ε ą 0 as conjectured by Ulam and proved by Hyers
(1941); see a survey by Hyers and Rassias (1992) for other examples.

Similarly to the previous section, we say that a rule Φ is δ-close to multinomial
logit if there is a utility representation u : O Ñ R and, for any menu pA, oq P M,
there is a function s : A Ñ r´δ, δs such that

ΦpA, oqa “
exp

`

u
`

opaq
˘

` spaq
˘

ř

bPA exp
`

u
`

opbq
˘

` spbq
˘ .

We stress that u in this definition solves the exact Cauchy equation (18), not the
approximate one (19).

Theorem 4. Consider an outcome space pO, ˚q such that the Cauchy equation (18) is
Ulam stable. Then, for every δ ą 0 there exists an εdecomp ą 0 such that every positive,
εneut-neutral, εdecomp-decomposable, stochastic choice rule Φ (with any εneut ě 0) is
δ-close to multinomial logit.

Theorem 4 is a particular case of a more general result relating δ to εdecomp; see
Theorem 5 in Appendix E.

Recall that the examples discussed in §4—ambiguous monetary rewards (11),
inter-temporal choice (12), and risk sensitive choice driven by mean and variance of
rewards (14)—correspond to a Banach space pO, ˚q. Combining Theorem 5 with the
result of Hyers (1941), we get that for any Banach space O, any positive εneut-neutral
εdecomp-decomposable Φ is

´

10εdecomp`2ε2decomp

¯

-close to multinomial logit. Similarly
to Theorem 3, this bound does not depend on the value of εneut. Hyers (1941) also
demonstrates that if an approximate solution w to the Cauchy equation is continuous
for at least one point, then it is close to a globally continuous exact solution u. Thus,
under an additional assumption of continuity of Φ, the utility representation u is a
continuous linear functional on O since such functionals exhaust continuous solutions
of the Cauchy equation on a Banach space. Consequently, the functional forms for
a rule Φ established in (11), (12), and (14) are robust to replacing neutrality and
decomposability with their approximate versions.
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7 Conclusion

This paper explores a novel approach to stochastic choice and study decomposability
as our main assumption. We show that in very general settings, decision-makers who
satisfy decomposability choose using multinomial logit applied to a utility function.

An interesting direction for future research is to relax decomposability and only
require that in a product menu, the choice distribution has the same marginals as
in the component menus, but to drop the independence requirement; e.g., allow the
choice of shirts and cereals to be correlated, but require that the probability that a
particular shirt is chosen does not change when this is considered in conjunction with
a choice of cereal (see the marginality condition proposed by Chambers, Masatlioglu,
and Turansick, 2021). This relaxation allows for choice rules beyond multinomial
logit, such as mixed logit rule obtained via averaging multinomial logits with different
parameters. We conjecture that there are no other neutral continuous rules satisfying
this condition.
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A Proof of Theorem 1 and Related Results for O Ă R

Recall that A is a fixed non-empty set of possible actions that is closed under the
operation of forming ordered pairs.7 For a subset of reals R Ă R, denote by MR the
collection of all menus pA, uq with A Ă A and u : A Ñ R. Apart from R “ R, we
will consider R equal to the set of integers Z or rational numbers Q. In other words,
MR is the set of all menus with the set of outcomes O “ R. We will say that Φ is a
stochastic choice rule with outcomes in R if it is defined for menus pA, uq P MR but
may not be defined beyond.

Theorem 1 characterizes choice rules with O “ R that satisfy neutrality, decom-
posability, and continuity. We prove it in three steps. First, we formulate and prove
a version of the characterization for rules with O “ Z without the continuity assump-
tion, then deduce the result for O “ Q, and finally derive the theorem from the result
for Q by applying continuity.

7Note that A must be infinite, since if a P A then so are pa, aq, pa, pa, aqq, etc.
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Recall that the multinomial logit rule with parameter β P R is denoted by MNLβ

and is given by

MNLβpA, uqa “
exppβ ¨ opaqq

ř

bPA exppβ ¨ opbqq
.

We also consider the limiting cases for β Ñ ˘8 denoted by MNL`8 and MNL´8;
these are the rules that output the uniform distribution over the highest-outcome and
the lowest-outcome actions, respectively. We will refer to MNLβ with β P R Y t˘8u

as the generalized multinomial logit rule.

Proposition 2. Let Φ be a neutral, decomposable stochastic choice rule for the out-
come space O “ Z. Then Φ coincides with the generalized multinomial logit rule
MNLβ for some β P R Y t˘8u.

Proof of Proposition 2. Consider a menu

pB, rq “

"

b0
0

b1
1

*

and for i P t0, 1u denote pi “ ΦpB, rqbi . Since p0 ` p1 “ 1, at least one of these
probabilities is non-zero.

We now show that ΦpB, rq determines the outcome of ΦpA, oq for any other menu
pA, oq P MZ. If all actions in A have the same outcome, then ΦpA, oqa “ 1{|A| for
all a P A by neutrality. Henceforth, we focus on menus where not all outcomes are
the same. We show that for any pair of actions a and a1 such that opaq ą opa1q, the
following identity holds:

ΦpA, oqa ¨ p0
opaq´opa1q “ ΦpA, oqa1 ¨ p1

opaq´opa1q. (20)

Denote n “ opaq ´ opa1q ą 0 and consider an auxiliary menu

pA, oq b pB, rq b pB, rq b . . . b pB, rq
looooooooooooooooomooooooooooooooooon

n times

.

The actions pa, b0, . . . , b0q and pa1, b1, . . . , b1q have the same outcome, opaq. By neu-
trality, these actions are assigned the same probability by Φ. Expressing these prob-
abilities via decomposability, we get (20).

With the help of identity (20), we obtain the following answer for ΦpA, oq, de-
pending on whether p0 and p1 are positive or zero.
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If p0 “ 0, then choosing a to be an action with the highest outcome, we conclude
from (20) that ΦpA, oqa1 “ 0 for any a1 with opa1q ă opaq. Thus only the actions
with the highest outcomes can be assigned a non-zero probability. By neutrality,
we conclude that ΦpA, oq is the uniform distribution over actions with the highest
outcomes, and thus Φ “ MNL`8.

Similarly, if p1 “ 0, we conclude that ΦpA, oq is the uniform distribution over
actions with the lowest outcomes, i.e., Φ “ MNL´8.

Finally, consider the case where both p0 and p1 are non-zero. Denote β “

lnpp1{p0q. Let a1 be an action with the lowest outcome. Denote γpA,oq “ ΦpA, oqa1 ¨

expp´β ¨ opa1qq. Hence, for any action a P A, identity (20) can be rewritten as follows

ΦpA, oqa “ γpA,oq ¨ exppβ ¨ opaqq.

Since
ř

b ΦpA, oqb “ 1, we obtain 1 “ γpA,oq ¨
ř

bPA exppβ ¨ opbqq. Thus

ΦpA, oqa “
exppβ ¨ opaqq

ř

bPA exppβ ¨ opbqq
,

i.e., Φ is the multinomial logit rule with parameter β.

Proposition 2 implies an analogous result for rational utilities.

Proposition 3. Let Φ be a neutral, decomposable stochastic choice rule for the out-
come space O “ Q. Then Φ coincides with the generalized multinomial logit rule
MNLβ for some β P R Y t˘8u.

Proof. Given Φ with O “ Q, consider a family of rules Φk, k “ 1, 2, . . . with O “ Z
by

ΦkpA, oq “ Φ

ˆ

A,
1

k
¨ o

˙

. (21)

Each Φk is a neutral, decomposable rule. Hence, Proposition 2 implies that there is
βk P RY t˘8u such that Φk coincides with the generalized multinomial logit MNLβk .
By (21),

Φ1pA, oq “ ΦkpA, k ¨ oq

for any pA, oq P MZ. Thus β1 “ k ¨ βk.
Consider now an arbitrary menu pA, oq P MQ and let k be such that k ¨ o is

integer-valued. We can express ΦpA, oq as follows:

ΦpA, oq “ Φ

ˆ

A,
1

k
¨ pk ¨ oq

˙

“ Φk pA, k ¨ oq “ MNLβk pA, k ¨ oq .
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Multinomial logit has the following property MNLβpA, α ¨ oq “ MNLα¨βpA, oq. Using
this property and that β1 “ k ¨ βk, we obtain

ΦpA, oq “ MNLβk pA, k ¨ oq “ MNLk¨βk pA, oq “ MNLβ1 pA, oq .

Thus Φ equals the generalized multinomial logit with parameter β “ β1 for every
menu pA, oq P MQ.

We now turn to rules for outcomes O “ R and are ready to prove Theorem 1
characterizing neutral, decomposable, continuous rules. Recall that pA, onq converges
to pA, oq if limn onpaq “ upaq for all a P A. A rule Φ is continuous if limn ΦpA, onqa “

ΦpA, uqa for all a P A when limnpA, onq “ pA, oq.

Proof of Theorem 1. We aim to show that any stochastic choice rules Φ with O “ R
satisfying neutrality, decomposability, and continuity is the multinomial logit rule
MNLβ for some β P R.

By Proposition 3, we know that there exists β P R Y t˘8u such that Φ coincides
with MNLβ on the set of menus with rational utilities MQ. We now demonstrate
that β cannot equal ˘8 by checking that MNL˘8 does not admit a continuous
extension from MQ to MR. We first focus on MNL8 and consider a sequence of
menus pA, onq P MQ with A “ ta0, a1u, onpa0q “ 0 and onpa1q “ 1{n. The limit
menu pA, oq has zero utility for both actions, and thus MNL`8pA, oq is the uniform
distribution over A. However, MNL`8pA, onq puts the whole mass on a1 and thus
limn MNL`8pA, onq ‰ MNL`8pA, oq. Since MNL´βpB, rq “ MNLβpB,´rq for any
menu pB, rq, discontinuity of MNL´8 follows from that of MNL`8.

We conclude that Φ “ MNLβ with β P R for menus from the dense set MQ Ă MR.
Both rules Φ and MNLβ are continuous and thus coincide on MR.

B Proof of Theorem 2

Proof. Recall that e denotes the identity element of pO, ˚q. For each element x P O
of the outcome space, fix a menu

pAx, oxq “

!ae
e

ax
x

)

that has two actions with outcomes e and x. Let px “ ΦpAx, oxqax be the probability
that the action with outcome x is chosen in this menu.
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Define the function u : O Ñ R by

upxq “ ln
px

1 ´ px
. (22)

Note that this logarithm is finite by the positivity of Φ.
We now demonstrate that u is a utility representation of O, i.e., that it satisfies

the generalized Cauchy equation upx ˚ yq “ upxq ` upyq for all x, y P O. Consider a
product menu

pB, oq “

´

pAx, oxq b pAy, oyq

¯

b pAx˚y, ox˚yq.

Recall that the associativity of ˚ is not assumed, so we must be careful about the
order of operations. The constructed product menu contains actions

b “
`

pae, aeq, ax˚y

˘

and b1 “
`

pax, ayq, ae
˘

.

Computing their outcomes, we get

opbq “ pe ˚ eq ˚ px ˚ yq “ x ˚ y and opb1q “ px ˚ yq ˚ e “ x ˚ y,

where we used the fact that e is both a left and a right identity. Since the outcomes
of b and b1 are the same, neutrality of Φ implies

ΦpB, oqb “ ΦpB, oqb1 .

By decomposability of Φ, this identity can be rewritten as follows

p1 ´ pxq ¨ p1 ´ pyq ¨ px˚y “ px ¨ py ¨ p1 ´ px˚yq.

Taking the logarithm and using the definition of u, we obtain

upx ˚ yq “ upxq ` upyq

and conclude that u is a utility representation of O. We stress that the proof of this
fact uses neither associativity nor commutativity of ˚.

We now consider an arbitrary menu pA, oq and demonstrate that ΦpA, oq is given
by the multinomial logit with constructed utility function (8). Let a, b P A be two
distinct actions. By the assumption 2 on the operation ˚, there is x P O such that
opaq “ x ˚ opbq, or there is y P O such that opbq “ y ˚ opaq, or both. Without loss of
generality, we assume that opaq “ x ˚ opbq. Consider the product menu

pAx, oxq b pA, oq.
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This menu contains two actions

pae, aq and pax, bq

with equal outcomes

e ˚ opaq “ opaq and x ˚ opa1q “ opaq.

By neutrality, Φ assigns equal probabilities to pae, aq and pax, bq. Applying decom-
posability, we obtain the following identity

p1 ´ pxq ¨ ΦpA, oqa “ px ¨ ΦpA, oqb.

Thus
ΦpA, oqa

ΦpA, oqb
“

px
1 ´ px

“ exp
`

upxq
˘

, (23)

where the denominators are non-zero by positivity of Φ.
As opaq “ x ˚ opbq, we get upopaqq “ upxq ` upopbqq. Expressing upxq “ upopaqq ´

upopbqq and plugging it into (23), we get

ΦpA, oqa

ΦpA, oqb
“

exp
´

u
`

opaq
˘

¯

exp
´

u
`

opbq
˘

¯ .

Since a and b were arbitrary, and
ř

bPA ΦpA, oqb “ 1, we conclude that

ΦpA, oqa “
exp

´

u
`

opaq
˘

¯

ř

bPA exp
´

u
`

opbq
˘

¯ , (24)

i.e., Φ is multinomial logit.
It remains to check the equivalence between the continuity of Φ and that of u. If

u : O Ñ R is a continuous utility representation, then Φ given by (24) is continuous
since the right-hand side of (24) is a continuous function of the profile of outcomes. In
the opposite direction, we suppose that Φ is continuous and show that upxnq Ñ upxq

for any sequence xn Ñ x in O. Fix a binary set of actions A “ ta, bu and consider
outcome functions on and o given by onpaq “ opaq “ x, onpbq “ xn, and opbq “ x.
Thus pA, onq converges to the menu with identical outcomes pA, oq. By continuity,
ΦpA, onq converges to the uniform distribution ΦpA, oq. By (24), we get

exp
´

u
`

xn

˘

¯

exp
´

u
`

x
˘

¯ “
ΦpA, onqb

ΦpA, onqa
Ñ

ΦpA, oqb

ΦpA, oqa
“ 1
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and so upxnq converges to upxq. Thus u is continuous.

C Proof of Proposition 1

We prove the proposition and then discuss various extensions.

Proof of Proposition 1. Let Φ be a decomposable rule satisfying approximate neu-
trality with parameter εneut ą 0. Our goal is to demonstrate that it is neutral. In
other words, we need to show that, for any menus pA, oq and actions a, a1 P A with
the same outcome opaq “ opa1q, the probabilities assigned by Φ to a and a1 are the
same.

If one of a or a1 has zero probability, then the other also has zero probability by
approximate neutrality. Hence, we can focus on the case where ΦpA, oqa ą 0 and
ΦpA1, o1qa1 ą 0.

Consider a menu pA, oqbn equal to the n-fold product of pA, oq with itself. The
two actions actions pa, . . . , aq and pa1, . . . , a1q have the same outcomes. Thus, by
approximate neutrality,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ln
Φ

´

pA, oqbn
¯

pa,...,aq

Φ
´

pA, oqbn
¯

pa1,...,a1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď lnp1 ` εneutq (25)

On the other hand, by decomposability,

Φ
´

pA, oqbn
¯

pa,...,aq
“

´

ΦpA, oqa

¯n

, and Φ
´

pA, oqbn
¯

pa1,...,a1q
“

´

ΦpA, oqa1

¯n

. (26)

Plugging these identities in (25), we get
ˇ

ˇ

ˇ

ˇ

ln
ΦpA, oqa

ΦpA, oqa1

ˇ

ˇ

ˇ

ˇ

ď
1

n
¨ lnp1 ` εneutq. (27)

Since n is arbitrary, ΦpA, oqa “ ΦpA, oqa1 and thus Φ is neutral.

The proof suggests two straightforward generalizations of Proposition 1. First, we
can allow εneut to depend on the menu, i.e., εneut “ εneutrpB, rqs. Indeed, by (27), the
conclusion of the proposition holds as long as

n
a

1 ` εneutrpA, oqbns Ñ 1, as n Ñ 8.
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In particular, if εneutrpB, rqs grows sub-linearly with the size of the menu |B|, then
εneut-neutrality implies neutrality.

Proposition 1 also extends to rules Φ that are both approximately neutral and
approximately decomposable with parameters εneut ě 0 and εdecomp ě 0. For such Φ,
identities (26) hold up to a multiplicative factor p1 ` εdecompqn and we get

ˇ

ˇ

ˇ

ˇ

ln
ΦpA, oqa

ΦpA, oqa1

ˇ

ˇ

ˇ

ˇ

ď
1

n

´

lnp1 ` εneutq ` 2 ¨ ln
`

p1 ` εdecompqn
˘

¯

instead of (27). Letting n go to infinity, we conclude that

ΦpA, oqa ď p1 ` εdecompq2 ¨ ΦpA, oqa1 .

Thus any εneut-neutral εdecomp-decomposable Φ is also ε1
neut-neutral with

ε1
neut “ min

!

εneut, 2εdecomp ` ε2decomp

)

. (28)

D Proof of Theorem 3

Recall that the outcome space is O “ R and Φ is a continuous rule satisfying approx-
imate neutrality and approximate decomposability with parameters εdecomp ě 0 and
εneut ě 0. Our goal is to demonstrate that Φ is εdecomp-close to multinational logit.
The proof is split into several lemmas. The first one demonstrates that any rule Φ

from the statement of the theorem satisfies a stronger neutrality notion that we are
about to define.

We call two menus pA, oq and pA1, o1q equivalent if there exists a bijection σ : A Ñ

A1 such that opaq “ o1pa1q for all a P A and a1 “ σpaq. Equivalence means that the
menus are the same up to renaming the actions. A rule Ψ is strongly neutral if for
equivalent pA, oq and pA1, o1q we have

ΨpA, oqa “ ΨpA1, o1qa1 when opaq “ o1pa1q.

Strong neutrality means that the profile of outcomes is a sufficient statistic for choice
probabilities. Similarly, Ψ is approximately strongly neutral with a parameter
εs´neut ě 0 if

ΨpA, oqa ď p1 ` εs´neutqΨpA1, o1qa1 when opaq “ o1pa1q.
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It is easy to see that approximate strong neutrality implies approximate neutrality
with the same parameter. By Theorem 2, exact neutrality and decomposability imply
strong neutrality. The following lemma shows that this implication extends to the
approximate axioms.

Lemma 4. Let Ψ be a rule satisfying approximate neutrality and decomposability with
parameters εneut ě 0 and εdecomp ě 0, respectively. Then Ψ is approximately strongly
neutral with parameter εs´neut such that 1 ` εs´neut “ p1 ` εneutqp1 ` εdecompq2.

The lemma implies that the rule Φ from the statement of the theorem is approx-
imately strongly neutral.

Proof of Lemma 4. Consider equivalent menus pA, oq and pA1, o1q and let σ : A Ñ A1

be the bijection such that opaq “ o1pa1q for all a P A and a1 “ σpaq. Fix a and
a1 “ σpaq. In a product menu pB, rq “ pA, oqˆpA1, o1q, actions pa, b1q and pσ´1pb1q, a1q

have the same outcomes. Hence, approximate neutrality implies

ΨpB, rqpa,b1q ď p1 ` εneutqΨpB, rqpσ´1pb1q, a1q.

Expanding both sides via approximate decomposability, we get

1

1 ` εdecomp

ΨpA, oqa ¨ ΨpA1, o1qb1 ď p1 ` εneutqp1 ` εdecompqΨpA, oqσ´1pb1q ¨ ΨpA1, o1qa1 .

Summing both sides over b1 P A1 and using the fact that probabilities sum up to one,
we obtain

ΨpA, oqa ď p1 ` εneutqp1 ` εdecompq2 ¨ ΨpA1, o1qa1

and conclude that Ψ is approximately strongly neutral with parameter εs´neut.

For a menu pA, oq, we denote (as above) by pA, oqbn the product of pA, oq with
itself n times. Given a rule Φ from the statement of the theorem, we define an
auxiliary rule ΥpA, oq as follows:

ΥpA, oqa “ lim
nÑ8

n

c

Φ
´

pA, oqbn
¯

pa,...,aq
. (29)

We will demonstrate that this limit exists and that Υ is close to Φ. Moreover, we will
see that Υ satisfies exact decomposability and neutrality.
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Lemma 5. The limit in (29) exists and

Φ
´

pA, oqbn
¯

pa,...,aq
ď p1 ` εdecompq

´

ΥpA, oqa

¯n

(30)
´

ΥpA, oqa

¯n

ď p1 ` εdecompqΦ
´

pA, oqbn
¯

pa,...,aq

for any n ě 1.

Proof. We first consider the case ΦpA, oqa “ 0. By approximate decomposability,
Φ

`

pA, oqbn
˘

pa,...,aq
is also zero. Thus the limit (29) exists, equals zero, and inequali-

ties (30) are satisfied trivially.
We now assume ΦpA, oqa ą 0. Denote

fn “ ln
´

Φ
´

pA, oqbn
¯

pa,...,aq

¯

.

By the approximate decomposability,

|fn`m ´ fn ´ fm| ď lnp1 ` εdecompq (31)

for any n,m ě 1. We need the following standard result about subadditive sequences.

Lemma (Fekete’s subadditive lemma). Consider a sequence of real numbers gn, n ě

1, with the subadditivity property: gn`m ď gn ` gm. Then, there exists a limit γ “

limnÑ8
gn
n

P R Y t´8u and gn satisfies the lower bound gn ě γ ¨ n for any n ě 1.

Inequality (31) implies that the two sequences gn “ fn ` lnp1 ` εdecompq and
g1
n “ ´fn ` lnp1 ` εdecompq are both subadditive. By Fekete’s lemma, there exists a

limit
γ “ lim

nÑ8

fn
n

P R, and |fn ´ γ ¨ n| ď lnp1 ` εdecompq.

Expressing the limit in the definition (29) of Υ through fn, we get

ΥpA, oqa “ lim
nÑ8

n

c

Φ
´

pA, oqbn
¯

pa,...,aq
“ exp

ˆ

lim
nÑ8

fn
n

˙

“ exppγq.

Thus the limit in (29) exists. Moreover, the inequalities (30) hold as they are equiv-
alent to |fn ´ γ ¨ n| ď lnp1 ` εdecompq.

Lemma 6. Υ is neutral.
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To prove this and other statements below, we will use the notation Ωp1q to denote
a quantity bounded away from zero and infinity. Formally, a sequence hn ě 0, n ě 1,
satisfies hn “ Ωp1q if there exist constants α ą 0 and N0 such that α ď hn ď 1{α for
any n ě N0.

Proof. Consider a menu pA, oq and a pair of actions a, a1 P A with opaq “ opa1q. Our
goal is to show that ΥpA, oqa “ ΥpA, oqa1 . By the approximate neutrality of Φ,

Φ
´

pA, oqbn
¯

pa,...,aq
“ Ωp1q ¨ Φ

´

pA, oqbn
¯

pa1,...,aq1
.

By the definition of Υ, we get

ΥpA, oqa “ lim
nÑ8

n

c

Φ
´

pA, oqbn
¯

pa,...,aq

“ lim
nÑ8

n

c

Ωp1q ¨ Φ
´

pA, oqbn
¯

pa1,...,a1q

“ lim
nÑ8

n
a

Ωp1q ¨ lim
nÑ8

n

c

Φ
´

pA, oqbn
¯

pa1,...,a1q

“ lim
nÑ8

n

c

Φ
´

pA, oqbn
¯

pa1,...,a1q

“ ΥpA, oqa1 .

Thus ΥpA, oqa “ ΥpA, oqa1 and so Υ is neutral.

Lemma 7. Υ is decomposable.

Proof. Consider a pair of menus pA1, o1q and pA2, o2q and let pA, oq “ pA1, o1q b

pA2, o2q. Our goal is to show that ΥpA, oqpa,bq “ ΥpA1, o1qa ¨ ΥpA2, o2qb. By the
definition of Υ,

ΥpA, oqpa,bq “ lim
nÑ8

n

c

Φ
´

pA, oqbn
¯

ppa,bq,...,pa,bqq
.

Menus pA, oqbn and pA1, o1q
bnbpA2, o2q

bn are equivalent and the actions ppa, bq, . . . , pa, bqq

and
`

pa, . . . , aq, pb, . . . , bq
˘

have the same outcomes. By Lemma 4 and approximate
decomposability, we obtain

Φ
´

pA, oqbn
¯

ppa,bq,...,pa,bqq
“ Ωp1q ¨ Φ

´

pA1, o1q
bn

¯

pa...,aq
¨ Φ

´

pA2, o2qbn
¯

pb...,bq
.
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Thus

ΥpA, oqpa,bq “ lim
nÑ8

n

c

Ωp1q ¨ Φ
´

pA1, o1qbn
¯

pa...,aq
¨ Φ

´

pA2, o2qbn
¯

pb...,bq

“ lim
nÑ8

n
a

Ωp1q ¨ lim
nÑ8

n

c

Φ
´

pA1, o1qbnqpa...,aq ¨ lim
nÑ8

n

c

Φ
´

pA2, o2qbn
¯

pb...,bq

“ ΥpA1, o1qa ¨ ΥpA2, o2qb.

We conclude that Υ is decomposable.

From the definition of Υ, it is not apparent that the probabilities of all the actions
sum up to one. The following lemma verifies this.

Lemma 8. For any menu pA, oq, we have
ÿ

aPA

ΥpA, oqa “ 1.

Proof. Consider a menu pA, oq and its n-fold product pA, oqbn.
Since ΦpA, oqbn is a probability measure, we get

1 “
ÿ

tPAˆ...ˆA

Φ
´

pA, oqbn
¯

t
(32)

Assuming that n Ñ 8, we approximately express each of the terms ΦpA, uqbn
t in

this sum through Υ. For each a P A, denote by naptq the number of times a enters
t P A ˆ . . . ˆ A. By approximate decomposability and approximate strong neutrality
(Lemma 4),

Φ
´

pA, oqbn
¯

t
“ Ωp1q ¨

ź

aPA

Φ
´

pA, oqbnaptq
¯

pa,...,aq

Using inequalities (30), we obtain

Φ
´

pA, oqbn
¯

t
“ Ωp1q ¨

ź

aPA

`

ΥpA, oqa
˘naptq

.

Plugging this expression into (32) gives

1 “
ÿ

tPAˆ...ˆA

Ωp1q ¨
ź

aPA

`

ΥpA, oqa
˘naptq

“ Ωp1q ¨

˜

ÿ

aPA

ΥpA, oqa

¸n

.

Thus
ÿ

aPA

ΥpA, oqa “ lim
nÑ8

n
a

Ωp1q “ 1.

We conclude that ΥpA, oq is indeed a probability distribution over A.
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Proof of Theorem 3. Consider a continuous rule Φ satisfying approximate neutrality
and decomposability with parameters εneut and εdecomp.

Let Υ be defined by formula (29). As we established in Lemmas 5, 6, 7, and 8, Υ
is a decomposable neutral rule that is close to Φ in the following sense

ΦpA, oqa ď p1 ` εdecompqΥpA, oqa (33)

ΥpA, oqa ď p1 ` εdecompqΦpA, oqa

Consider a restriction of Υ to the collection MQ of menus pA, oq with rational-
valued o. By Proposition 3, there is β P R Y t˘8u such that Υ coincides with the
generalized logit MNLβ for any pA, oq P MQ. We now show that the case of infinite
β is ruled out by continuity of Φ. Towards contradiction, suppose that β “ `8

and so Υ “ MNLβpA, oq is the uniform distribution over the highest-outcome actions
A˚ “ argmax opaq. By (33), ΦpA, oq places non-zero weight on actions a P A˚ only
and ΦpA, oqa ě 1{p|A˚| ¨ p1 ` εdecompqq. Consider a sequence of menus pA, onq with
A “ ta0, a1u and onpa0q “ 0, onpa1q “ 1{n as in the proof of Theorem 1. We obtain
that limn ΦpA, onqa0 “ 0 but ΦpA, oqa0 ě 1{p2 ¨ p1 ` εdecompqq for the limiting menu
pA, oq “ limnpA, onq. This contradiction with continuity of Φ implies that β cannot be
equal `8. The case of β “ ´8 is also ruled out as MNL´8pA, oq “ MNL`8pA,´oq.

We conclude that there exists β P R such that, for any menu with rational out-
comes pA, oq P MQ,

ΦpA, oqa ď p1 ` εdecompqMNLβpA, oqa (34)

MNLβpA, oqa ď p1 ` εdecompqΦpA, oqa

Since MQ is dense in the set of all menus and the rules Φ and MNLβ are continuous,
the inequalities hold for all menus pA, oq.

Since MNLpA, oqa ą 0 for any action and menu, the inequalities (34) imply that
ΦpA, oqa ą 0. Define

spaq “ ln

ˆ

ΦpA, oqa

MNLβpA, oqa

˙

.

By (34), we get |spaq| ď lnp1 ` εdecompq. Since lnp1 ` xq ď x,

|spaq| ď εdecomp.

We conclude that ΦpA, oqa is proportional to exppβ ¨ opaq ` spaqq, where s : A Ñ

r´εdecomp, εdecomps. Thus Φ is εdecomp-close to MNLβ.
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Finally, we check that β P R such that Φ is εdecomp-close to MNLβ is unique.
Indeed, suppose that Φ is εdecomp-close both to MNLβ and MNLβ1 . Therefore, for any
menu pA, oq and a P A,

1

p1 ` εdecompq2
ď

MNLβpA, oqa

MNLβ1

pA, oqa
ď p1 ` εdecompq2. (35)

Consider a binary menu pB, rq with B “ tb0, b1u and outcomes rpbiq “ i and take
pA, oq in (35) equal to the n-fold product pA, oq “ pB, rqbn. Picking a “ pb1, . . . , b1q

and letting n go infinity, we get that β “ β1. Thus β is unique and the proof is
completed.

E Proof of Theorem 4

Theorem 4 claims that a positive εneut-neutral and εdecomp-decomposable rule Φ for
a general outcome space pO, ˚q that is Ulam stable must be close to multinomial
logit. We prove here an extension of this theorem providing an explicit bound on the
distance in terms of pεneut, εdecompq. Recall that a generalized Cauchy equation

upx ˚ yq “ upxq ` upyq for all x, y P O. (36)

is pε, δq-stable if for any function w solving the ε-approximate equation
ˇ

ˇwpx ˚ yq ´ wpxq ` wpyq
ˇ

ˇ ď ε for all x, y P O (37)

there is a solution u of (36) such that

|upxq ´ wpxq| ď δ for all x P O.

Theorem 5. Consider an outcome space O such that the Cauchy equation (36) is
pε, δq-stable with δ “ dpεq and any ε ą 0. Let Φ be a positive εneut-neutral εdecomp-
decomposable stochastic choice rule with some εneut ě 0 and εdecomp ě 0. Then Φ is
´

2εdecomp ` εneut ` dp4εdecomp ` εneutq
¯

-close to multinomial logit.

As established in (28), any εneut-neutral εdecomp-decomposable rule is also p2εdecomp`

ε2decompq-neutral. Combining this insight with Theorem 5, we obtain that Φ from the
statement is

´

4εdecomp ` ε2decomp ` dp6εdecomp ` ε2decompq

¯

-close to multinomial logit,
where the bound no longer depends on εneut. This completes the proof of Theorem 4.
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Proof of Theorem 5. The proof resembles that of Theorem 2 with the exception that
exact equalities are replaced with approximate ones.

As in the proof of Theorem 2, for each element x P O of the outcome space, fix a
menu

pAx, oxq “

!ae
e

ax
x

)

,

and let px “ ΦpAx, oxqax .
We define

wpxq “ ln
px

1 ´ px
.

By positivity, w is finite.
We now demonstrate that w solves the approximate Cauchy equation (37) with

ε “ 4εdecomp ` εneut, i.e.,

|wpx ˚ yq ´ wpxq ´ wpyq| ď ε

for all x, y P O. Consider a product menu

pB, oq “

´

pAx, oxq b pAy, oyq

¯

b pAx˚y, ox˚yq.

The constructed product menu contains actions

b “
`

pae, aeq, ax˚y

˘

and b1 “
`

pax, ayq, ae
˘

.

Computing their outcomes, we get

opbq “ pe ˚ eq ˚ px ˚ yq “ x ˚ y and opb1q “ px ˚ yq ˚ e “ x ˚ y,

where we used the fact that e is both a left and a right identity. Since the outcomes
of b and b1 are the same, approximate neutrality of Φ implies

ˇ

ˇ

ˇ

ˇ

ln
ΦpB, oqb

ΦpB, oqb1

ˇ

ˇ

ˇ

ˇ

ď lnp1 ` εneutq.

By approximate decomposability applied twice,
ˇ

ˇ

ˇ

ˇ

ln
ΦpB, oqb

p1 ´ pxq ¨ p1 ´ pyq ¨ px˚y

ˇ

ˇ

ˇ

ˇ

ď lnpp1 ` εdecompq2q

and
ˇ

ˇ

ˇ

ˇ

ln
ΦpB, oqb1

px ¨ py ¨ p1 ´ px˚yq

ˇ

ˇ

ˇ

ˇ

ď lnpp1 ` εdecompq2q.
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Combining these inequalities, we get
ˇ

ˇ

ˇ

ˇ

ln
p1 ´ pxq ¨ p1 ´ pyq ¨ px˚y

px ¨ py ¨ p1 ´ px˚yq

ˇ

ˇ

ˇ

ˇ

ď 2 lnpp1 ` εdecompq2q ` lnp1 ` εneutq.

Since lnp1`tq ď t for any t ą ´1, the right-hand side does not exceed 4εdecomp`εneut.
Expressing the left-hand side through the function w, we get

ˇ

ˇwpx ˚ yq ´ wpxq ´ wpyq
ˇ

ˇ ď 4εdecomp ` εneut.

Since the Cauchy equation is assumed to be pε, dpεqq-stable, we conclude that there
is a utility representation u : O Ñ R solving the exact Cauchy equation

upx ˚ yq “ upxq ` upyq

and such that

|upxq ´ wpxq| ď dpεq with ε “ 4εdecomp ` εneut.

We now consider an arbitrary menu pA, oq. Let a, b P A be two distinct actions.
By the assumption 2 on the operation ˚, there is x P O such that opaq “ x ˚ opa1q,
or there is y P O such that opa1q “ y ˚ opaq, or both. Without loss of generality, we
assume that opaq “ x ˚ opa1q. Consider the product menu

pC, sq “ pAx, oxq b pA, oq.

This menu contains two actions

c “ pae, aq and c1 “ pax, bq

with equal outcomes

spcq “ e ˚ opaq “ opaq and spc1q “ x ˚ opbq “ opbq.

By approximate neutrality,
ˇ

ˇ

ˇ

ˇ

ln
ΦpC, sqc

ΦpC, sqc1

ˇ

ˇ

ˇ

ˇ

ď lnp1 ` εneutq ď εneut.

Approximate decomposability implies
ˇ

ˇ

ˇ

ˇ

ln
ΦpC, sqc

p1 ´ pxq ¨ ΦpA, oqa

ˇ

ˇ

ˇ

ˇ

ď lnp1 ` εdecompq ď εdecomp
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and
ˇ

ˇ

ˇ

ˇ

ln
ΦpC, s1qc1

px ¨ ΦpA, oqb

ˇ

ˇ

ˇ

ˇ

ď lnp1 ` εdecompq ď εdecomp.

Thus
ˇ

ˇ

ˇ

ˇ

ln
p1 ´ pxq ¨ ΦpA, oqa

px ¨ ΦpA, oqb

ˇ

ˇ

ˇ

ˇ

ď 2εdecomp ` εneut.

We conclude that
ˇ

ˇ

ˇ

ˇ

ln
ΦpA, oqa

ΦpA, oqb
´ wpxq

ˇ

ˇ

ˇ

ˇ

ď 2εdecomp ` εneut.

Expressing the approximate solution w through the exact solution u, we obtain
ˇ

ˇ

ˇ

ˇ

ln
ΦpA, oqa

ΦpA, oqb
´ upxq

ˇ

ˇ

ˇ

ˇ

ď 2εdecomp ` εneut ` dpεq

Since, opaq “ x ˚ opbq and u solves the Cauchy equation, we get upopaqq “ upxq `

upopbqq. Expressing upxq “ upopaqq ´ upopbqq and plugging it back we obtain
ˇ

ˇ

ˇ

ˇ

ln
ΦpA, oqa

ΦpA, oqb
´ upopaqq ` upopbqq

ˇ

ˇ

ˇ

ˇ

ď 2εdecomp ` εneut ` dpεq.

Fix some b1 P A and define

spaq “ lnΦpA, oqa ´ upaq ` C,

where the constant C is selected so that spb1q “ 0. We conclude that

|spaq| ď 2εdecomp ` εneut ` dpεq for any a P A.

On the other hand,

ΦpA, oqa

ΦpA, oqb
“

exp
´

u
`

opaq ` spaq
˘

¯

exp
´

u
`

opbq ` spbq
˘

¯

and so
ΦpA, oqa “

exp
`

u
`

opaq
˘

` spaq
˘

ř

bPA exp
`

u
`

opbq
˘

` spbq
˘ .

Thus Φ is
´

2εdecomp ` εneut ` dp4εdecomp ` εneutq
¯

-close to multinomial logit.

48


	Introduction
	Related literature

	Model
	Decomposable Rules for O=R
	Decomposable Rules for General Outcome Spaces O
	Applications
	Choice driven by monetary rewards
	Choice under ambiguity
	Intertemporal choice
	Risk-sensitive choice
	Finite streams of prizes
	Matrices as outcomes

	Framing effects and approximate neutrality
	Approximate decomposability
	Robustness for O=R
	Robusteness for general outcome spaces O

	Conclusion
	Proof of Theorem 1 and Related Results for OR
	Proof of Theorem 2
	Proof of Proposition 1
	Proof of Theorem 3
	Proof of Theorem 4

