Working papers
-
On social networks that support learning (with Itai Arieli and Rann Smorodinsky)
October 2020
slides, talk (CMID20, June 2020)
subsumes the old WP titled "Can society learn without opinion leaders?"
Whether or not a given social network aggregates information depends not only on the topology of the network and information available to agents but also on the order in which they make their decisions. We consider a model with Bayes-rational agents and identify the topological property sufficient for aggregation for most of the orders. We use this property and the insights from the theory of expander graphs to show that learning is possible without opinion leaders and that it can be robust to the elimination of large groups of agents.
-
Feasible joint posterior beliefs (with Itai Arieli, Yakov Babichenko, and Omer Tamuz)
accepted by the Journal of Political Economy (JPE)
February 2020, arXiv:2002.11362
slides, talk, poster, lightening talk (EC2020, July 2020),
We study the set of possible joint posterior belief distributions of a group of agents who share a common prior regarding a binary state, and who observe some information structure. For two agents we introduce a quantitative version of Aumann's Agreement Theorem and show that it is equivalent to a characterization of feasible distributions due to Dawid et al. (1995). For any number of agents, we characterize feasible distributions in terms of a "no-trade" condition. We use these characterizations to study information structures with independent posteriors. We also study persuasion problems with multiple receivers, exploring the extreme feasible distributions.
-
Fair Division with minimal sharing (with Erel Segal-Halevi)
R&R in Operations Research
August 2019, arXiv:1908.01669
slides (De Aequa Divisione workshop on Fair Division, LUISS, Rome, May 2019)
Siblings inherited several apartments would not be satisfied by an allocation giving them an apartment with probability 50% or envy-free up to one apartment. We suggest a new approach to fair division with valuable items, which bridges the modern "divisible" and "indivisible" literature: sharing minimization. The problem of sharing-minimization among fair Pareto-optimal allocations turns out to be algorithmically-tractable for almost all instances.
-
Algorithms for Competitive Division of Chores (with Simina Branzei)
R&R in Mathematics of Operations Research
July 2019, arXiv:1907.01766
slides (Algorithms Seminar, TAU, March 2019)
This is the first explicit algorithm for computing market equilibria of "non-convex" exchange economies that have disconnected equilibrium set. We avoid the "black-box" of Cell-Enumeration technique, used in the literature, by the novel approach based on enumeration of all the faces of the Pareto frontier via a simple 2-agent reduction.
The results are applied to approximately fair division of indivisible chores.
-
Representative Committees of Peers (with Reshef Meir and Moshe Tennenholtz)
R&R in the Journal of Artificial Intelligence Research (JAIR)
June 2020, arXiv:2006.07837
A population of voters must elect representatives among themselves to decide on a sequence of possibly unforeseen binary issues. Voters care only about the final decision, not the elected representatives. While an issue-by-issue vote by all voters would maximize social welfare, we are interested in how well the preferences of the population can be approximated by a small committee.
-
Protecting the Protected Group: Circumventing Harmful Fairness (with Omer Ben-Porat and Moshe Tennenholtz)
accepted by AAAI-21 (The Thirty-Fifth AAAI Conference on Artificial Intelligence)
May 2019, arXiv:1905.10546
Fairness constraints used for Fair Machine Learning may harm the protected group because the "price of fairness" is reallocated to this group by self-interested decision makers (e.g., a bank giving loans).
-
A simple online fair division problem (with Herve Moulin and Anna Bogomolnaia)
accepted by Management Science
March 2019, arXiv:1903.10361
slides with a different set of results including exact Price of Fairness for general bargaining (CompEcon seminar at HUJI, May 2019)
We propose a new family of allocation rules that, using minimal statistical information about the environment, achieve fairness and welfare guarantees. These are the first results on dynamic resource allocation that combine both fairness and efficiency design objectives.
Selected publications
-
Competitive division of a mixed manna (with Anna Bogomolnaia, Herve Moulin, and Elena Yanovskaya)
Econometrica, 2017, vol.85:6, p.1847-1871
preprint: arXiv:1702.00616
slides (CompEcon seminar, HUJI, November 2017)
-
A polynomial-time algorithm for computing a Pareto optimal and almost proportional allocation (with Haris Aziz and Herve Moulin)
Operations Research Letters, 2020, Volume 48, Issue 5, Pages 573-578
preprint: arXiv:1909.00740
In this note, we show that Pareto-optimal and almost-fair (Proportional up to 1 item) allocations of a mixture of indivisible goods and bads always exist and can be computed in strongly-polynomial time. The technique is based on the trading-cycle algorithm for finding divisible Pareto-improvements from the recent working paper "Fair division with minimal sharing" with Erel Segal-Halevi and on an extension of Barman-Krishnamurthy rounding.
-
Dividing bads under additive utilities (with Anna Bogomolnaia, Herve Moulin, and Elena Yanovskaya)
Social Choice and Welfare, 2019, vol.52:3, p.395-417
preprint: arXiv:1608.01540
Dynamic Games and Applications, 2018, vol.8:1, p. 180-198
preprint: arXiv:1509.01727