# Methods of Optimal Transportation in Bayesian Persuasion & Auctions

Fedor Sandomirskiy

Technion, Haifa & Higher School of Economics, St.Petersburg e-mail: fedor.sandomirskiy@gmail.com homepage: https://www.fedors.info/

#### Economic applications of non-classic transportation problems

Classic Transportation Problem Given: the utility function  $u : [0,1]^2 \to \mathbb{R}$ , marginals  $\mu_1, \mu_2 \in \Delta([0,1])$ Find:  $T_u(\mu_1, \mu_2) = \max_{\substack{\mu \in \Delta([0,1]^2) \\ \text{with marginals } \mu_i}} \int u(x_1, x_2) d\mu(x_1, x_2).$ 

Non-classic problems:

- free marginals:  $\mu_i$  are not fixed but must satisfy certain constraints
- multi-marginal problems

#### Economic applications of non-classic transportation problems

#### **Classic Transportation Problem**

Given: the utility function  $u : [0,1]^2 \to \mathbb{R}$ , marginals  $\mu_1, \mu_2 \in \Delta([0,1])$ Find:

$$T_u(\mu_1, \mu_2) = \max_{\substack{\mu \in \Delta([0, 1]^2) \\ \text{with marginals } \mu_i}} \int u(x_1, x_2) d\mu(x_1, x_2)$$

Non-classic problems:

- free marginals:  $\mu_i$  are not fixed but must satisfy certain constraints
- multi-marginal problems

#### Economic applications of non-classic transportation problems

#### **Classic Transportation Problem**

Given: the utility function  $u: [0,1]^2 \to \mathbb{R}$ , marginals  $\mu_1, \mu_2 \in \Delta([0,1])$ Find:

$$T_u(\mu_1, \mu_2) = \max_{\substack{\mu \in \Delta([0, 1]^2) \\ \text{with marginals } \mu_i}} \int u(x_1, x_2) d\mu(x_1, x_2).$$

#### Non-classic problems:

- free marginals:  $\mu_i$  are not fixed but must satisfy certain constraints
- multi-marginal problems

- Bayesian persuasion: the key model of strategic communication
  - standard setting has 1 receiver
  - $\geq$  2 receivers  $\rightarrow$  optimal transport<sup>1</sup>
- Optimal multi-good auctions: how to optimally sell m goods to n buyers with i.i.d. values?<sup>2</sup>

<sup>1</sup>Arieli, I., Babichenko, Y., Sandomirskiy, F., & Tamuz, O. (2020) Feasible Joint Posterior Beliefs

<sup>2</sup>C.Daskalakis, A.Deckelbaum, C.Tzamos (2017) Strong Duality for a Multiple-Good Monopolist Econometrica

# Bayesian persuasion

#### The question:

How to induce the desired behavior of a decision-maker by changing the information available to him?

• A young field. The origin:

#### **Bayesian persuasion**

<u>E Kamenica</u>, <u>M Gentzkow</u> - American Economic Review, 2011 - aeaweb.org When is it possible for one person to persuade another to change her action? We consider a symmetric information model where a sender chooses a signal to reveal to a receiver, who then takes a noncontractible action that affects the welfare of both players. We derive ...

☆ 55 Cited by 949 Related articles All 38 versions

• Popularity: often explicit solutions, many applications<sup>3</sup>

<sup>&</sup>lt;sup>3</sup>E. Kamenica (2019) Bayesian persuasion and information design Annual Review of Economics

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes  $\theta$ , Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes  $\theta$ , Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

# What should P do?

- Reveal no information  $\Longrightarrow$  nobody is convicted
- Reveal  $\theta \Longrightarrow 25\%$  are convicted
- Send a signal  $s \in S$  with  $\theta$ -dependent probabilities  $\pi_{\theta} \in \Delta(S)$ :

• J's posterior 
$$x = \mathbb{P}( heta = 1 \mid s)$$
 and  $\prec$ 

acquits 
$$x < 0.5$$
.

• P's problem:

maximize  $\mathbb{E}[\mathbf{1}_{x\geq 0.5}]$  over signiling policies  $(S,\pi)$ 

The optimum: 
$$\frac{S = \{\text{"maybe innocent", "guilty"}\}}{\pi_{\theta=0}}$$
$$\frac{1}{\pi_{\theta=1}}$$
$$\frac{1}{\frac{1}{3}}$$
$$\frac{2}{3}$$
Convicts 50%

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes  $\theta$ , Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

# What should P do?

- Reveal no information  $\Longrightarrow$  nobody is convicted
- Reveal  $\theta \Longrightarrow 25\%$  are convicted
- Send a signal  $s \in S$  with  $\theta$ -dependent probabilities  $\pi_{\theta} \in \Delta(S)$ :

• J's posterior 
$$x = \mathbb{P}( heta = 1 \mid s)$$
 and  $\langle$ 

$$\left( \right)$$
 acquits  $x <$ 

• P's problem:

maximize  $\mathbb{E}[\mathbb{1}_{x\geq 0.5}]$  over signiling policies  $(S,\pi)$ 



- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes  $\theta$ , Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

# What should P do?

- Reveal no information  $\Longrightarrow$  nobody is convicted
- Reveal  $\theta \Longrightarrow 25\%$  are convicted
- Send a signal  $s \in S$  with  $\theta$ -dependent probabilities  $\pi_{\theta} \in \Delta(S)$ :

• J's posterior 
$$x = \mathbb{P}(\theta = 1 \mid s)$$
 and  $\begin{cases} \text{convicts} \\ \end{array}$ 

• P's problem:

maximize  $\mathbb{E}[\mathbb{1}_{k\geq 0.5}]$  over signiling policies  $(S, \pi)$ 

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes  $\theta$ , Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

# What should P do?

- Reveal no information  $\Longrightarrow$  nobody is convicted
- Reveal  $\theta \Longrightarrow 25\%$  are convicted
- Send a signal  $s \in S$  with  $\theta$ -dependent probabilities  $\pi_{\theta} \in \Delta(S)$ :

• J's posterior 
$$x = \mathbb{P}(\theta = 1 \mid s)$$
 and 
$$\begin{cases} \text{convicts} \quad x \ge 0.5 \\ \text{acquits} \quad x < 0.5. \end{cases}$$

• P's problem:

 $\begin{array}{c|c} \text{maximize} & \mathbb{E}[\mathbbm{1}_{x\geq 0.5}] & \text{over signlling policies } (S,\pi) \\ \bullet & \text{The optimum:} & \frac{S = \{\text{``maybe innocent'', ``guilty''}\}}{\pi_{\theta=0} & 1 & 0 \\ \pi_{\theta=1} & \frac{1}{3} & \frac{2}{3} \\ \text{Convicts 50\%!} \end{array}$ 

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes  $\theta$ , Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

# What should P do?

- Reveal no information  $\Longrightarrow$  nobody is convicted
- Reveal  $\theta \Longrightarrow 25\%$  are convicted
- Send a signal  $s \in S$  with  $\theta$ -dependent probabilities  $\pi_{\theta} \in \Delta(S)$ :

• J's posterior 
$$x = \mathbb{P}(\theta = 1 \mid s)$$
 and 
$$\begin{cases} \text{convicts} & x \ge 0.5 \\ \text{acquits} & x < 0.5. \end{cases}$$

• P's problem:

 $\begin{array}{c|c} \text{maximize} & \mathbb{E}[\mathbb{1}_{x\geq 0.5}] & \text{over signlling policies } (S,\pi) \\ \bullet & \text{The optimum:} & \frac{S = \{\text{"maybe innocent", "guilty"}\}}{\pi_{\theta=0}} \\ & \pi_{\theta=1} & \frac{1}{3} & \frac{2}{3} \\ & \text{Convicts 50\%!} \end{array}$ 

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes  $\theta$ , Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

## What should P do?

- Reveal no information  $\Longrightarrow$  nobody is convicted
- Reveal  $\theta \Longrightarrow 25\%$  are convicted
- Send a signal  $s \in S$  with  $\theta$ -dependent probabilities  $\pi_{\theta} \in \Delta(S)$ :

• J's posterior 
$$x = \mathbb{P}(\theta = 1 \mid s)$$
 and 
$$\begin{cases} \text{convicts} & x \ge 0.5 \\ \text{acquits} & x < 0.5. \end{cases}$$

• P's problem:

 $\begin{array}{c|c} \text{maximize} \quad \mathbb{E}[\mathbbm{1}_{x\geq 0.5}] \quad \text{over signlling policies } (S,\pi) \\ \bullet \quad \text{The optimum:} \quad \frac{S = \{\text{``maybe innocent'', ``guilty''}\}}{\pi_{\theta=0} & 1 & 0 \\ \pi_{\theta=1} & \frac{1}{3} & \frac{2}{3} \end{array}$ 

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes  $\theta$ , Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

## What should P do?

- Reveal no information  $\Longrightarrow$  nobody is convicted
- Reveal  $\theta \Longrightarrow 25\%$  are convicted
- Send a signal  $s \in S$  with  $\theta$ -dependent probabilities  $\pi_{\theta} \in \Delta(S)$ :

• J's posterior 
$$x = \mathbb{P}(\theta = 1 \mid s)$$
 and 
$$\begin{cases} \text{convicts} & x \ge 0.5 \\ \text{acquits} & x < 0.5. \end{cases}$$

• P's problem:

maximize 
$$\mathbb{E} \left[ \mathbb{1}_{x \geq 0.5} \right]$$
 over signling policies  $(S, \pi)$ 

• The optimum: 
$$\begin{array}{c|c} S = \left\{ \text{``maybe innocent'', ``guilty''} \right\} \\ \hline \pi_{\theta=0} & 1 & 0 \\ \pi_{\theta=1} & \frac{1}{3} & \frac{2}{3} \\ \hline \text{Convicts 50\%!} \end{array}$$

- Employers and universities: θ =quality of a student (good/bad), U wants a good placement for any student, E wants good candidates.
  - Explains coarse grading in schools, universities, and industries:<sup>4</sup> "When recruiters call me up and ask me for the three best people, I tell them, "No! I will give you the names of the six best."

Robert J. Gordon, Econ. dept., Northwestern

<sup>&</sup>lt;sup>4</sup>Ostrovsky, Schwarz (2010) Information disclosure and unraveling in matching markets. AER

# Some other applications:

- Employers and universities: θ =quality of a student (good/bad), U wants a good placement for any student, E wants good candidates.
  - Explains coarse grading in schools, universities, and industries:<sup>4</sup> "When recruiters call me up and ask me for the three best people, I tell them, "No! I will give you the names of the six best."

Robert J. Gordon, Econ. dept., Northwestern

- Buyers and Sellers : θ = quality of the product (good/bad), S wants to sell any product, B wants a good product.
  - Explains why you cannot order the apts by rating or price on  ${\sf AirBNB}^5$

 $^{\rm 4} \rm Ostrovsky,$  Schwarz (2010) Information disclosure and unraveling in matching markets. AER

 $^5 \rm Romanyuk,$  Smolin (2019) Cream skimming and information design in matching markets. AEJ

# Some other applications:

- Employers and universities: θ =quality of a student (good/bad), U wants a good placement for any student, E wants good candidates.
  - Explains coarse grading in schools, universities, and industries:<sup>4</sup> "When recruiters call me up and ask me for the three best people, I tell them, "No! I will give you the names of the six best."

Robert J. Gordon, Econ. dept., Northwestern

- Buyers and Sellers : θ = quality of the product (good/bad), S wants to sell any product, B wants a good product.
  - $\bullet~\mbox{Explains why you cannot order the apts by rating or price on AirBNB^5$
- Police & drivers: θ = whether the region is patrolled (yes/no).
   P wants D to obey the speed limit, D wants to obey only if the region is patrolled.

 $^{4}\mbox{Ostrovsky},$  Schwarz (2010) Information disclosure and unraveling in matching markets. AER

 $^5 \rm Romanyuk, Smolin (2019)$  Cream skimming and information design in matching markets. AEJ

- A random state  $heta \in \{0,1\}$  with prior probability  $p = \mathbb{P}( heta = 1)$
- Definition: A distribution μ ∈ Δ([0, 1]) is a feasible distribution of posteriors if there exists<sup>6</sup> a sigma-field<sup>7</sup> *F* such that P(θ = 1 | *F*) has distribution μ.

**Persuasion problem** 

**Given:** prior p and utility u = u(x)

Find:

$$V(p) = \max_{\text{feasible } \mu \in \Delta([0,1])} \int_{[0,1]} u(x) d\mu(x)$$

<sup>6</sup>The probability space must be rich enough, say [0, 1] with the Lebesgue measure. <sup>7</sup>Interpretation:  $\mathcal{F}$  is generated by a signal:  $\mathcal{F} = \sigma(s)$ 

- A random state  $heta \in \{0,1\}$  with prior probability  $p = \mathbb{P}( heta = 1)$
- Definition: A distribution μ ∈ Δ([0, 1]) is a feasible distribution of posteriors if there exists<sup>6</sup> a sigma-field<sup>7</sup> *F* such that P(θ = 1 | *F*) has distribution μ.

```
Persuasion problem

Given: prior p and utility u = u(x)

Find:

V(p) = \max_{\text{feasible } \mu \in \Delta([0, 1])} \int_{[0, 1]} u(x) d\mu(x)
```

<sup>6</sup>The probability space must be rich enough, say [0, 1] with the Lebesgue measure. <sup>7</sup>Interpretation:  $\mathcal{F}$  is generated by a signal:  $\mathcal{F} = \sigma(s)$ 

- A random state  $heta \in \{0,1\}$  with prior probability  $p = \mathbb{P}( heta = 1)$
- Definition: A distribution μ ∈ Δ([0, 1]) is a feasible distribution of posteriors if there exists<sup>6</sup> a sigma-field<sup>7</sup> *F* such that P(θ = 1 | *F*) has distribution μ.

#### Persuasion problem

**Given:** prior p and utility u = u(x)

#### Find:

$$V(p) = \max_{\text{feasible } \mu \in \Delta([0,1])} \int_{[0,1]} u(x) d\mu(x)$$

<sup>6</sup>The probability space must be rich enough, say [0, 1] with the Lebesgue measure. <sup>7</sup>Interpretation:  $\mathcal{F}$  is generated by a signal:  $\mathcal{F} = \sigma(s)$ 

Necessary condition for feasibility (the martingale property):

$$\int_{[0,1]} x d\mu(x) = p$$

Necessary condition for feasibility (the martingale property):

$$\int_{[0,1]} x d\mu(x) = p$$

The splitting lemma (Aumann & Maschler / Blackwell / folk)

$$\mu$$
 is feasible  $\iff \int_{[0,1]} x d\mu(x) = p.$ 

The splitting lemma (Aumann & Maschler / Blackwell / folk)

$$\mu$$
 is feasible  $\iff \int_{[0,1]} x d\mu(x) = p.$ 

Persuasion reduces to

$$V(p) = \max_{\substack{\mu \in \Delta([0,1]): \\ \int xd\mu = p}} \int_{[0,1]} u(x)d\mu(x)$$

# The classic model with 1 receiver

The splitting lemma (Aumann & Maschler / Blackwell / folk)

$$\mu$$
 is feasible  $\iff \int_{[0,1]} x d\mu(x) = p.$ 

Persuasion reduces to

$$V(p) = \max_{\substack{\mu \in \Delta([0,1]): \\ \int xd\mu = p}} \int_{[0,1]} u(x)d\mu(x)$$

Cav [u]-theorem (Aumann & Maschler, 60ies) V(p) = Cav [u](p), where  $Cav [u] = \min_{\substack{\text{concave } f: \\ f \ge u}} f$ 

# The classic model with 1 receiver

The splitting lemma (Aumann & Maschler / Blackwell / folk)

$$\mu$$
 is feasible  $\iff \int_{[0,1]} x d\mu(x) = p.$ 

Persuasion reduces to

$$V(p) = \max_{\substack{\mu \in \Delta([0,1]): \\ \int xd\mu = p}} \int_{[0,1]} u(x)d\mu(x)$$

Cav [u]-theorem (Aumann & Maschler, 60ies)

$$V(p) = \operatorname{Cav}[u](p)$$
, where  $\operatorname{Cav}[u] = \min_{\substack{\text{concave } f: \\ f \ge u}} f$ 

Proof:

"
$$\leq$$
:"  $u \leq \operatorname{Cav}[u] \Rightarrow V \leq \operatorname{Cav}[u]$  by Jensen's inequality  
">":  $V > u$ , V is concave  $\Rightarrow V > \operatorname{Cav}[u]$ .

9

# The classic model with 1 receiver

Example: back to the court

$$p = 0.25$$
 and  $u(x) = \mathbb{1}_{x \ge 0.5}$ 

The function u and its concavification:



The optimal  $\mu = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_{\frac{1}{2}}$ .

- $heta \in \{0,1\}$  with prior probability  $p = \mathbb{P}( heta = 1)$
- Definition: μ ∈ Δ([0,1]<sup>n</sup>) is feasible ⇐⇒ ∃ sigma-fields F<sub>1</sub>,...F<sub>n</sub> such that the vector of posteriors x = (x<sub>1</sub>,...x<sub>n</sub>) ~ μ, where x<sub>i</sub> = ℙ(θ = 1 | F<sub>i</sub>).

<sup>&</sup>lt;sup>8</sup>Arieli, I., Babichenko, Y., Sandomirskiy, F., & Tamuz, O. (2020) Feasible Joint Posterior Beliefs

- $heta \in \{0,1\}$  with prior probability  $p = \mathbb{P}( heta = 1)$
- Definition: μ ∈ Δ([0,1]<sup>n</sup>) is feasible ⇒ ∃ sigma-fields F<sub>1</sub>,...F<sub>n</sub> such that the vector of posteriors x = (x<sub>1</sub>,...x<sub>n</sub>) ~ μ, where x<sub>i</sub> = ℙ(θ = 1 | F<sub>i</sub>).

<sup>&</sup>lt;sup>8</sup>Arieli, I., Babichenko, Y., Sandomirskiy, F., & Tamuz, O. (2020) Feasible Joint Posterior Beliefs

- $heta \in \{0,1\}$  with prior probability  $p = \mathbb{P}( heta = 1)$
- **Definition:**  $\mu \in \Delta([0,1]^n)$  is feasible  $\iff \exists$  sigma-fields  $\mathcal{F}_1, \ldots \mathcal{F}_n$  such that the vector of posteriors  $x = (x_1, \ldots x_n) \sim \mu$ , where  $x_i = \mathbb{P}(\theta = 1 | \mathcal{F}_i).$

#### Persuasion problem

**Given:** prior p and utility u = u(x)

Find:

$$V(p) = \max_{\text{feasible } \mu} \int_{[0,1]^n} u(x) d\mu(x)$$

<sup>&</sup>lt;sup>8</sup>Arieli, I., Babichenko, Y., Sandomirskiy, F., & Tamuz, O. (2020) Feasible Joint Posterior Beliefs

# $n \ge 2$ receivers<sup>8</sup>

- $heta \in \{0,1\}$  with prior probability  $p = \mathbb{P}( heta = 1)$
- Definition:  $\mu \in \Delta([0,1]^n)$  is feasible  $\iff \exists$  sigma-fields  $\mathcal{F}_1, \ldots \mathcal{F}_n$ such that the vector of posteriors  $x = (x_1, \ldots x_n) \sim \mu$ , where  $x_i = \mathbb{P}(\theta = 1 \mid \mathcal{F}_i).$

#### Persuasion problem

**Given:** prior p and utility u = u(x)

Find:

$$V(p) = \max_{\text{feasible } \mu} \int_{[0,1]^n} u(x) d\mu(x)$$

#### **Examples with** n = 2:

- creating discord  $u = |x_1 x_2|^{\alpha}$
- minimizing covariance  $u = -(x_1 p)(x_2 p)$

<sup>8</sup>Arieli, I., Babichenko, Y., Sandomirskiy, F., & Tamuz, O. (2020) Feasible Joint Posterior Beliefs

- For  $\mu \in [0,1]^n$  denote the marginals by  $\mu_1,\ldots,\mu_n$
- The martingale property

$$\int_{[0,1]} x_i d\mu_i(x_i) = p, \quad \forall i = 1, \dots n$$

is necessary but not sufficient for feasibility

# $n \ge 2$ receivers: criterion of feasibility

- For  $\mu \in [0,1]^n$  denote the marginals by  $\mu_1,\ldots,\mu_n$
- The martingale property

$$\int_{[0,1]} x_i d\mu_i(x_i) = p, \quad \forall i = 1, \dots n$$

is necessary but not sufficient for feasibility

#### Criterion of feasibility

$$\mu \in \Delta([0,1]^n) \text{ is feasible} \iff \exists \nu^0, \nu^1 \in \Delta([0,1]^n) \text{ s.t.}$$
$$\mu = (1-p) \cdot \nu^0 + p \cdot \nu^1 \qquad \text{and} \qquad \frac{d\nu_i^1(x_i)}{d\nu_i^0(x_i)} = \frac{x_i}{1-x_i}, \ \forall i = 1, \dots n$$

# $n \ge 2$ receivers: criterion of feasibility

- For  $\mu \in [0,1]^n$  denote the marginals by  $\mu_1,\ldots,\mu_n$
- The martingale property

$$\int_{[0,1]} x_i d\mu_i(x_i) = p, \quad \forall i = 1, \dots n$$

is necessary but not sufficient for feasibility

#### Criterion of feasibility

$$\mu \in \Delta([0,1]^n)$$
 is feasible  $\iff \exists \nu^0, \nu^1 \in \Delta([0,1]^n)$  s.t.

$$\mu = (1 - p) \cdot \nu^0 + p \cdot \nu^1$$
 and  $\frac{d\nu_i^1(x_i)}{d\nu_i^0(x_i)} = \frac{x_i}{1 - x_i}, \quad \forall i = 1, \dots n$ 

*Proof:* let  $\nu^0$  and  $\nu^1$  be the conditional distributions of  $(x_1, \ldots x_n)$  given  $\theta = 0$  or  $\theta = 1$ , respectively.

$$V(p) = \max_{\text{feasible } \mu} \int_{[0,1]^n} u(x) d\mu(x) =$$

$$\mu = (1-p) \cdot \nu^0 + p \cdot \nu^1 \quad \text{s.t. marginals satisfy} \quad \frac{d\nu_i^1(x_i)}{d\nu_i^0(x_i)} = \frac{x_i}{1-x_i} \quad (\bigstar) \Big]$$

$$= \max_{\text{marginals } \nu_i^0 : (\bigstar) \text{ holds}} \left[ (1-p) \cdot \max_{\nu^0} \int u d\nu^0 + p \cdot \max_{\nu^1} \int u d\nu^1 \right]$$

$$V(p) = \max_{\text{feasible } \mu} \int_{[0,1]^n} u(x) d\mu(x) = \left[ \mu = (1-p) \cdot \nu^0 + p \cdot \nu^1 \quad \text{s.t. marginals satisfy} \quad \frac{d\nu_i^1(x_i)}{d\nu_i^0(x_i)} = \frac{x_i}{1-x_i} \quad (\bigstar) \right]$$
$$= \max_{\text{marginals } \nu_i^0 : (\bigstar) \text{ holds}} \left[ (1-p) \cdot \max_{\nu^0} \int u d\nu^0 + p \cdot \max_{\nu^1} \int u d\nu^1 \right]$$

$$V(p) = \max_{\text{feasible } \mu} \int_{[0,1]^n} u(x) d\mu(x) =$$

$$\mu = (1-p) \cdot \nu^0 + p \cdot \nu^1 \quad \text{s.t. marginals satisfy} \quad \frac{d\nu_i^1(x_i)}{d\nu_i^0(x_i)} = \frac{x_i}{1-x_i} \quad (\bigstar) ]$$

$$= \max_{\text{marginals } \nu_i^{\theta} : (\bigstar) \text{ holds}} \left[ (1-p) \cdot \max_{\nu^0} \int u d\nu^0 + p \cdot \max_{\nu^1} \int u d\nu^1 \right]$$

## $n \ge 2$ receivers: persuasion as transportation

$$V(p) = \max_{ ext{feasible } \mu} \int_{[0,1]^n} u(x) d\mu(x) =$$

$$\left[\mu = (1-p) \cdot \nu^0 + p \cdot \nu^1 \quad \text{s.t. marginals satisfy} \quad \frac{d\nu_i^1(x_i)}{d\nu_i^0(x_i)} = \frac{x_i}{1-x_i} \quad (\bigstar)\right]$$

$$= \max_{\text{marginals } \nu_i^{\theta} : (\bigstar) \text{ holds}} \left[ (1-p) \cdot \max_{\nu^0} \int u d\nu^0 + p \cdot \max_{\nu^1} \int u d\nu^1 \right]$$

## Conclusion

$$V(p) = \max_{ ext{marginals } 
u_i^{ heta} : (\bigstar) ext{ holds }} \left[ (1-p)T(
u_1^0,
u_2^0) + p \cdot T(
u_1^1,
u_2^1) 
ight].$$

## n=2 receivers: some explicit solutions for $p=\frac{1}{2}$

• 
$$u = |x_1 - x_2|^{\alpha}$$
 with  $\alpha \in (0, 2]$ .

• 
$$u = |x_1 - x_2|^{\alpha}$$
 with  $\alpha \in (0, 2]$ . Optimal  $\mu$ :



n = 2 receivers: some explicit solutions for  $p = \frac{1}{2}$ 

• 
$$u = |x_1 - x_2|^{\alpha}$$
 with  $\alpha \in (0, 2]$ . Optimal  $\mu$ :



•  $\min \operatorname{Cov}(x_1, x_2) = ????$ 

n=2 receivers: some explicit solutions for  $p=\frac{1}{2}$ 

•  $u = |x_1 - x_2|^{\alpha}$  with  $\alpha \in (0, 2]$ . Optimal  $\mu$ :



• min  $Cov(x_1, x_2) = -\frac{1}{32}$ . Optimal  $\mu$ :



- Direct approach
- Dual approach
- Hilbert-space approach (in the paper)

- Direct approach
  - For *n* = 2 with quadratic *u*(*x*<sub>1</sub>, *x*<sub>2</sub>), the transportation problem has explicit solutions: anti-monotone coupling
  - Maximization over marginals = an exercise in the calculus of variations
- Dual approach
- Hilbert-space approach (in the paper)

- Direct approach
- Dual approach

An analog of Kantorovich-Rubinstein duality:

$$V(p) = \min_{\substack{\text{functions } (f_i)_{i=1...n}}} \left[ (1-p) \cdot \max_{x} \left( u(x) + \sum_{i=1}^n x_i \cdot f_i(x_i) \right) + \right. \\ \left. + p \cdot \max_{x} \left( u(x) - \sum_{i=1}^n (1-x_i) f_i(x_i) \right) \right]$$

Guess primal and dual solutions: zero gap ensures optimality.

• Hilbert-space approach (in the paper)

- Direct approach
- Dual approach
- Hilbert-space approach (in the paper)
  - $\xi \to \mathbb{E}[\xi \mid \mathcal{F}]$  is an orthogonal projection in  $L^2$
  - {all orthogonal projections of  $\xi\} =$  the sphere of radius  $\frac{\|\xi\|}{2}$  centered at  $\frac{\xi}{2}$
  - quadratic objective u can be expressed through scalar products in  $L^2$
  - ullet  $\Rightarrow$  a simple optimization problem on the sphere!

- Direct approach
- Dual approach
- Hilbert-space approach (in the paper)
  - $\xi \to \mathbb{E}[\xi \mid \mathcal{F}]$  is an orthogonal projection in  $L^2$
  - {all orthogonal projections of  $\xi\} =$  the sphere of radius  $\frac{\|\xi\|}{2}$  centered at  $\frac{\xi}{2}$
  - quadratic objective u can be expressed through scalar products in  $L^2$
  - ullet  $\Rightarrow$  a simple optimization problem on the sphere!

- Direct approach
- Dual approach
- Hilbert-space approach (in the paper)
  - $\xi \to \mathbb{E}[\xi \mid \mathcal{F}]$  is an orthogonal projection in  $L^2$
  - {all orthogonal projections of  $\xi\} =$  the sphere of radius  $\frac{\|\xi\|}{2}$  centered at  $\frac{\xi}{2}$
  - quadratic objective u can be expressed through scalar products in  $L^2$
  - $\bullet \ \Rightarrow$  a simple optimization problem on the sphere!

- Direct approach
- Dual approach
- Hilbert-space approach (in the paper)
  - $\xi \to \mathbb{E}[\xi \mid \mathcal{F}]$  is an orthogonal projection in  $L^2$
  - {all orthogonal projections of  $\xi\} =$  the sphere of radius  $\frac{\|\xi\|}{2}$  centered at  $\frac{\xi}{2}$
  - quadratic objective u can be expressed through scalar products in  $L^2$
  - $\bullet \ \Rightarrow$  a simple optimization problem on the sphere!

- Direct approach
- Dual approach
- Hilbert-space approach (in the paper)

**Open question:** Anything beyond quadratic *u*? Other sources of explicit solutions?

- Persuasion problem is an infinite-dimensional LP: maximization of a linear functional over a convex set of feasible distributions  $\mu$
- Bauer's principle: optimum is at an extreme points

- Persuasion problem is an infinite-dimensional LP: maximization of a linear functional over a convex set of feasible distributions  $\mu$
- Bauer's principle: optimum is at an extreme points

- Persuasion problem is an infinite-dimensional LP: maximization of a linear functional over a convex set of feasible distributions  $\mu$
- Bauer's principle: optimum is at an extreme points

What we know about extreme points?

## $n \ge 2$ receivers: general property of solutions

- Persuasion problem is an infinite-dimensional LP: maximization of a linear functional over a convex set of feasible distributions  $\mu$
- Bauer's principle: optimum is at an extreme points

### What we know about extreme points?

• There are extreme  $\mu$  with countable support:



 Extreme μ are supported on a subset of [0, 1]<sup>n</sup> of zero Lebesgue measure (a corollary of the theorem by Lindenstrauss (1965))

## $n \ge 2$ receivers: general property of solutions

- Persuasion problem is an infinite-dimensional LP: maximization of a linear functional over a convex set of feasible distributions  $\mu$
- Bauer's principle: optimum is at an extreme points

### What we know about extreme points?

• There are extreme  $\mu$  with countable support:



 Extreme μ are supported on a subset of [0,1]<sup>n</sup> of zero Lebesgue measure (a corollary of the theorem by Lindenstrauss (1965))

**Question:** Non-atomic extreme  $\mu$ ?

# Optimal way to sell multiple goods

- *n* agents, *m* goods
- values  $v_{i,j}$  are i.i.d. with density f

### How to maximize revenue from selling? Assumptions:

- f is known, realizations of  $v_{i,j}$  are not
- each agent acts in his best interests

- *n* agents, *m* goods
- values  $v_{i,j}$  are i.i.d. with density f

### How to maximize revenue from selling? Assumptions:

- f is known, realizations of  $v_{i,j}$  are not
- each agent acts in his best interests

## The model

- *n* agents, *m* goods
- values  $v_{i,j}$  are i.i.d. with density f

### How to maximize revenue from selling? Assumptions:

- f is known, realizations of  $v_{i,j}$  are not
- each agent acts in his best interests

## What is known?

- $n \ge 2, m = 1$  (the classic auction theory): everything
- $n = 1, m \ge 2$  (selling many goods to one agent):
  - optimal mechanisms in particular cases
  - connections to optimal transport
- $n \ge 2, m \ge 2$  (auctions with multiple goods): nothing

• How to sell one good to one agent with the value  $v \sim f(v) dv$ ?

- How to sell one good to one agent with the value  $v \sim f(v) dv$ ?
- "take it or leave it"-mechanism:
  - either pay p and get the good
  - or pay 0 and get nothing

- How to sell one good to one agent with the value  $v \sim f(v) dv$ ?
- "take it or leave it"-mechanism:
  - either pay p and get the good
  - or pay 0 and get nothing

the best choice of the price  $p^* = \arg \max_p p \cdot \int_p^{\infty} f(v) dv$ 

- How to sell one good to one agent with the value  $v \sim f(v) dv$ ?
- "take it or leave it"-mechanism:
  - either pay p and get the good
  - or pay 0 and get nothing

the best choice of the price  $p^* = \arg \max_p p \cdot \int_p^{\infty} f(v) dv$ 

#### Theorem (Myerson (1981))

Take it or leave it with  $p^*$  is the optimal mechanism

• the agent has i.i.d. values  $v = (v_1, \ldots, v_m) \sim f(v) dv$ 

- if the agent gets the bundle of goods x = (x<sub>1</sub>,...,x<sub>m</sub>) ∈ [0,1]<sup>m</sup> for price p, his utility is ⟨x, v⟩ - p
- Is selling each good separately always optimal?
- Is bundling all goods together always optimal?
- Is  $x \in \{0,1\}^m$  enough?
- menu mechanism: chose the best option from the menu
  - pay 0 get 0
  - pay p get x
  - pay *p*' pay *x*'
  - ....

- the agent has i.i.d. values  $v = (v_1, \ldots, v_m) \sim f(v) dv$
- if the agent gets the bundle of goods x = (x<sub>1</sub>,...,x<sub>m</sub>) ∈ [0,1]<sup>m</sup> for price p, his utility is ⟨x, v⟩ - p
- Is selling each good separately always optimal?
- Is bundling all goods together always optimal?
- Is  $x \in \{0,1\}^m$  enough?
- menu mechanism: chose the best option from the menu
  - pay 0 get 0
  - pay p get x
  - pay *p*' pay *x*'
  - ....

- the agent has i.i.d. values  $v = (v_1, \ldots, v_m) \sim f(v) dv$
- if the agent gets the bundle of goods x = (x<sub>1</sub>,...,x<sub>m</sub>) ∈ [0,1]<sup>m</sup> for price p, his utility is ⟨x, v⟩ - p
- Is selling each good separately always optimal?
- Is bundling all goods together always optimal?
- Is  $x \in \{0,1\}^m$  enough?
- menu mechanism: chose the best option from the menu
  - pay 0 get 0
  - pay p get x
  - pay *p*' pay *x*'
  - ....

- the agent has i.i.d. values  $v = (v_1, \ldots, v_m) \sim f(v) dv$
- if the agent gets the bundle of goods x = (x<sub>1</sub>,...,x<sub>m</sub>) ∈ [0,1]<sup>m</sup> for price p, his utility is ⟨x, v⟩ - p
- Is selling each good separately always optimal? No
- Is bundling all goods together always optimal?
- Is  $x \in \{0,1\}^m$  enough?
- menu mechanism: chose the best option from the menu
  - pay 0 get 0
  - pay p get x
  - pay *p*' pay *x*'
  - ....

- the agent has i.i.d. values  $v = (v_1, \ldots, v_m) \sim f(v) dv$
- if the agent gets the bundle of goods x = (x<sub>1</sub>,...,x<sub>m</sub>) ∈ [0,1]<sup>m</sup> for price p, his utility is ⟨x, v⟩ - p
- Is selling each good separately always optimal? No
- Is bundling all goods together always optimal?
- Is  $x \in \{0,1\}^m$  enough?
- menu mechanism: chose the best option from the menu
  - pay 0 get 0
  - pay p get x
  - pay *p*' pay *x*'
  - ....

- the agent has i.i.d. values  $v = (v_1, \ldots, v_m) \sim f(v) dv$
- if the agent gets the bundle of goods x = (x<sub>1</sub>,...,x<sub>m</sub>) ∈ [0,1]<sup>m</sup> for price p, his utility is ⟨x, v⟩ - p
- Is selling each good separately always optimal? No
- Is bundling all goods together always optimal? No
- Is  $x \in \{0,1\}^m$  enough?
- menu mechanism: chose the best option from the menu
  - pay 0 get 0
  - pay p get x
  - pay *p*' pay *x*'
  - ....

- the agent has i.i.d. values  $v = (v_1, \ldots, v_m) \sim f(v) dv$
- if the agent gets the bundle of goods x = (x<sub>1</sub>,...,x<sub>m</sub>) ∈ [0,1]<sup>m</sup> for price p, his utility is ⟨x, v⟩ - p
- Is selling each good separately always optimal? No
- Is bundling all goods together always optimal? No
- Is  $x \in \{0,1\}^m$  enough?
- menu mechanism: chose the best option from the menu
  - pay 0 get 0
  - pay p get x
  - pay *p*' pay *x*'
  - ....

- the agent has i.i.d. values  $v = (v_1, \ldots, v_m) \sim f(v) dv$
- if the agent gets the bundle of goods x = (x<sub>1</sub>,...,x<sub>m</sub>) ∈ [0,1]<sup>m</sup> for price p, his utility is ⟨x, v⟩ - p
- Is selling each good separately always optimal? No
- Is bundling all goods together always optimal? No
- Is  $x \in \{0,1\}^m$  enough? No
- menu mechanism: chose the best option from the menu
  - pay 0 get 0
  - pay p get x
  - pay *p*' pay *x*'
  - ....

- the agent has i.i.d. values  $v = (v_1, \ldots, v_m) \sim f(v) dv$
- if the agent gets the bundle of goods x = (x<sub>1</sub>,...,x<sub>m</sub>) ∈ [0,1]<sup>m</sup> for price p, his utility is ⟨x, v⟩ - p
- Is selling each good separately always optimal? No
- Is bundling all goods together always optimal? No
- Is  $x \in \{0,1\}^m$  enough? No
- menu mechanism: chose the best option from the menu
  - pay 0 get 0
  - pay p get x
  - pay p' pay x'
  - ....

# $m \ge 2$ goods, n = 1 agent: optimal mechanisms

- the agent has i.i.d. values  $v = (v_1, \ldots, v_m) \sim f(v) dv$
- if the agent gets the bundle of goods x = (x<sub>1</sub>,...,x<sub>m</sub>) ∈ [0,1]<sup>m</sup> for price p, his utility is ⟨x, v⟩ p
- Is selling each good separately always optimal? No
- Is bundling all goods together always optimal? No
- Is  $x \in \{0,1\}^m$  enough? No
- menu mechanism: chose the best option from the menu
  - pay 0 get 0
  - pay p get x
  - pay *p*' pay *x*'
  - ....

### **Revelation principle**

Any mechanism is equivalent to a menu mechanism.

• the menu  $M \subset \mathbb{R}_+ imes [0,1]^m$ 

• utility obtained by an agent with values  $v = (v_1, \ldots, v_m)$ :

$$u_M(v) = \max_{(p,x)\in M} \langle x,v\rangle - p,$$

• *u<sub>M</sub>* is convex and

$$x(v) = \partial u_M(v), \quad p(v) = u_M(v) - \langle x(v), v \rangle$$

• the menu  $M \subset \mathbb{R}_+ imes [0,1]^m$ 

• utility obtained by an agent with values  $v = (v_1, \ldots, v_m)$ :

$$u_M(v) = \max_{(p,x)\in M} \langle x,v\rangle - p,$$

• *u<sub>M</sub>* is convex and

$$x(v) = \partial u_M(v), \quad p(v) = u_M(v) - \langle x(v), v \rangle$$

- the menu  $M \subset \mathbb{R}_+ imes [0,1]^m$
- utility obtained by an agent with values  $v = (v_1, \ldots, v_m)$ :

$$u_M(v) = \max_{(p,x)\in M} \langle x,v\rangle - p,$$

• *u<sub>M</sub>* is convex and

$$x(v) = \partial u_M(v), \quad p(v) = u_M(v) - \langle x(v), v \rangle$$

- the menu  $M \subset \mathbb{R}_+ imes [0,1]^m$
- utility obtained by an agent with values  $v = (v_1, \ldots, v_m)$ :

$$u_M(v) = \max_{(p,x)\in M} \langle x,v\rangle - p,$$

• *u<sub>M</sub>* is convex and

$$x(v) = \partial u_M(v), \quad p(v) = u_M(v) - \langle x(v), v \rangle$$

### Theorem (Rochet and Chone (1998))

 $M \leftrightarrow u_M$  is a bijection between menus and convex  $u_M$  with  $u_M(0) = 0$ and  $\partial u_M \in [0, 1]^m$ .

- the menu  $M \subset \mathbb{R}_+ imes [0,1]^m$
- utility obtained by an agent with values  $v = (v_1, \ldots, v_m)$ :

$$u_M(v) = \max_{(p,x)\in M} \langle x,v\rangle - p,$$

• *u<sub>M</sub>* is convex and

$$x(v) = \partial u_M(v), \quad p(v) = u_M(v) - \langle x(v), v \rangle$$

### Theorem (Rochet and Chone (1998))

 $M \leftrightarrow u_M$  is a bijection between menus and convex  $u_M$  with  $u_M(0) = 0$ and  $\partial u_M \in [0, 1]^m$ .

Revenue maximization becomes:

$$R_m(f) = \max_{\substack{\text{convex } u\\ u(0) = 0, \ \partial u \in [0,1]^m}} \int_{\mathbb{R}^m_+} \left( u(v) - \left\langle \partial u(v), v \right\rangle \right) f(v) dv.$$

- the menu  $M \subset \mathbb{R}_+ imes [0,1]^m$
- utility obtained by an agent with values  $v = (v_1, \ldots, v_m)$ :

$$u_M(v) = \max_{(p,x)\in M} \langle x,v\rangle - p,$$

• *u<sub>M</sub>* is convex and

$$x(v) = \partial u_M(v), \quad p(v) = u_M(v) - \langle x(v), v \rangle$$

### Theorem (Rochet and Chone (1998))

 $M \leftrightarrow u_M$  is a bijection between menus and convex  $u_M$  with  $u_M(0) = 0$ and  $\partial u_M \in [0, 1]^m$ .

Revenue maximization becomes:

$$R_m(f) = \max_{\substack{\text{convex } u\\ u(0) = 0, \ \partial u \in [0,1]^m}} \int_{\mathbb{R}^m_+} \left( u(v) - \left\langle \partial u(v), v \right\rangle \right) f(v) dv.$$

- the menu  $M \subset \mathbb{R}_+ imes [0,1]^m$
- utility obtained by an agent with values  $v = (v_1, \ldots, v_m)$ :

$$u_M(v) = \max_{(p,x)\in M} \langle x,v\rangle - p,$$

• *u<sub>M</sub>* is convex and

$$x(v) = \partial u_M(v), \quad p(v) = u_M(v) - \langle x(v), v \rangle$$

### Theorem (Rochet and Chone (1998))

 $M \leftrightarrow u_M$  is a bijection between menus and convex  $u_M$  with  $u_M(0) = 0$ and  $\partial u_M \in [0, 1]^m$ .

Revenue maximization becomes:

$$R_m(f) = \max_{\substack{\text{convex } u\\ u(0) = 0, \ \partial u \in [0,1]^m}} \int_{\mathbb{R}^m_+} \left( u(v) - \left\langle \partial u(v), v \right\rangle \right) f(v) dv.$$

$$R_m(f) = \max_{\substack{\text{convex } u\\ u(0) = 0, \ \partial u \in [0, 1]^m}} \int_{\mathbb{R}^m_+} \left( u(v) - \left\langle \partial u(v), v \right\rangle \right) f(v) dv$$

$$R_m(f) = \max_{\substack{\text{convex } u\\ u(0) = 0, \ \partial u \in [0,1]^m}} \int_{\mathbb{R}^m_+} \left( u(v) - \left\langle \frac{\partial u(v)}{\partial u(v)}, v \right\rangle \right) f(v) dv =$$

[integrating by parts]

$$R_m(f) = \max_{\substack{\text{convex } u\\u(0) = 0, \ \partial u \in [0, 1]^m}} \int_{\mathbb{R}^m_+} \left( u(v) - \left\langle \partial u(v), v \right\rangle \right) f(v) dv = \\ \begin{bmatrix} \text{integrating by parts} \end{bmatrix} \\ = \max_{\substack{\text{convex } u\\u(0) = 0, \ \partial u \in [0, 1]^m}} \int_{\mathbb{R}^m_+} u(v) d\psi,$$

where  $d\psi = \left((m+1)f(v) + \sum_{j=1}^{m} v_i \partial_{v_i} f\right) dv$  (not necessary positive!)

$$R_m(f) = \max_{\substack{\text{convex } u\\ u(0) = 0, \ \partial u \in [0, 1]^m}} \int_{\mathbb{R}^m_+} u(v) d\psi$$

$$R_m(f) = \max_{\substack{\text{convex } u\\ u(0) = 0, \ \partial u \in [0, 1]^m}} \int_{\mathbb{R}^m_+} u(v) d\psi$$

### What is the dual problem?

$$R_m(f) = \max_{\substack{\text{convex } u\\ u(0) = 0, \ \partial u \in [0, 1]^m}} \int_{\mathbb{R}^m_+} u(v) d\psi$$

#### What is the dual problem?

Definition: 2nd-order stochastic dominance

 $\phi \succ_{\mathit{SD}} \nu \Longleftrightarrow \int g d\phi \geq \int g d\nu \;\; {
m for \; any \; convex \; monotone \; g}$ 

$$R_m(f) = \max_{\substack{\text{convex } u\\ u(0) = 0, \ \partial u \in [0, 1]^m}} \int_{\mathbb{R}^m_+} u(v) d\psi$$

#### What is the dual problem?

# **Definition:** 2nd-order stochastic dominance $\phi \succ_{SD} \nu \iff \int g d\phi \ge \int g d\nu \text{ for any convex monotone g}$

# Theorem (Daskalakis et al (2017)) $R_m(f) = \min_{\substack{\text{positive measures } \mu \\ \text{on } \mathbb{R}^m_+ \times \mathbb{R}^m_+ \\ \mu_1 - \mu_2 \succ_{SD} \psi}} \int_{\mathbb{R}^m_+ \times \mathbb{R}^m_+} \|v - v'\|_1 d\mu(v, v')$

Definition: 2nd-order stochastic dominance

$$\phi \succ_{\mathit{SD}} \nu \Longleftrightarrow \int g d\phi \geq \int g d\nu \;\; {\rm for \; any \; convex \; monotone \; g}$$



**Explicit solutions for** m = 2:

- Uniform on [0,1]: each good for  $\frac{2}{3}$  or both for  $\frac{4-\sqrt{2}}{3}$
- Exponential: sell the goods only together
- Beta distribution  $Cv^{\alpha-1}(1-v)^{\beta-1}dv$ : continual menu!!!

Definition: 2nd-order stochastic dominance

$$\phi \succ_{\mathit{SD}} \nu \Longleftrightarrow \int g d\phi \geq \int g d\nu \;\; {\rm for \; any \; convex \; monotone \; g}$$



**Explicit solutions for** m = 2:

- Uniform on [0, 1]: each good for  $\frac{2}{3}$  or both for  $\frac{4-\sqrt{2}}{3}$
- Exponential: sell the goods only together
- Beta distribution  $Cv^{\alpha-1}(1-v)^{\beta-1}dv$ : continual menu!!!

Definition: 2nd-order stochastic dominance

$$\phi \succ_{\mathit{SD}} \nu \Longleftrightarrow \int g d\phi \geq \int g d\nu \;\; {\rm for \; any \; convex \; monotone \; g}$$



**Explicit solutions for** m = 2:

- Uniform on [0,1]: each good for  $\frac{2}{3}$  or both for  $\frac{4-\sqrt{2}}{3}$
- Exponential: sell the goods only together
- Beta distribution  $Cv^{\alpha-1}(1-v)^{\beta-1}dv$ : continual menu!!!

### **Open problem:** Optimal mechanisms for $n, m \ge 2$ ?

• Even m = n = 2 with i.i.d. uniform values is open.

**Open problem:** Optimal mechanisms for  $n, m \ge 2$ ?

• Even m = n = 2 with i.i.d. uniform values is open.

Can we use the same approach?

- Border's theorem<sup>9</sup> reduces the question to 1-agent mechanisms.
- As before: 1-agent mechanisms  $\leftrightarrow$  convex u
- Border's theorem  $\rightarrow$  new constraint on *u* subsuming  $\partial u \in [0,1]^m$ :

$$\partial_{v_j} u(v) \prec_{SD} \xi^{n-1} \quad \forall j = 1, \dots m,$$

where v is random with density f and  $\xi$  is uniform on [0, 1].

<sup>&</sup>lt;sup>9</sup>S.Hart, P.Reny (2015) Implementation of reduced form mechanisms: a simple approach and a new characterization Economic Theory Bulletin

- Border's theorem<sup>9</sup> reduces the question to 1-agent mechanisms.
- As before: 1-agent mechanisms  $\leftrightarrow$  convex u
- Border's theorem  $\rightarrow$  new constraint on *u* subsuming  $\partial u \in [0,1]^m$ :

 $\partial_{v_j} u(v) \prec_{SD} \xi^{n-1} \quad \forall j = 1, \dots m,$ 

where v is random with density f and  $\xi$  is uniform on [0, 1].

<sup>&</sup>lt;sup>9</sup>S.Hart, P.Reny (2015) Implementation of reduced form mechanisms: a simple approach and a new characterization Economic Theory Bulletin

- $\bullet\,$  Border's theorem  $^9$  reduces the question to 1-agent mechanisms.
- As before: 1-agent mechanisms  $\leftrightarrow$  convex u
- Border's theorem  $\rightarrow$  new constraint on u subsuming  $\partial u \in [0,1]^m$ :

$$\partial_{v_j} u(v) \prec_{SD} \xi^{n-1} \quad \forall j = 1, \dots m,$$

where v is random with density f and  $\xi$  is uniform on [0, 1].

<sup>&</sup>lt;sup>9</sup>S.Hart, P.Reny (2015) Implementation of reduced form mechanisms: a simple approach and a new characterization Economic Theory Bulletin

- Border's theorem reduces the question to 1-agent mechanisms.
- As before: 1-agent mechanisms  $\leftrightarrow$  convex u
- Border's theorem  $\rightarrow$  new constraint on *u* subsuming  $\partial u \in [0,1]^m$ :

$$\partial_{v_j} u(v) \prec_{SD} \xi^{n-1} \quad \forall j = 1, \dots m,$$

where v is random with density f and  $\xi$  is uniform on [0, 1].

### **Corollary:**

 $R_{n,m}(f) = \max_{\substack{\text{convex monotone } u\\ u(0) = 0, \ \partial_{v_j} u(v) \prec_{SD} \xi^{n-1} \forall j}$ 

$$n \cdot \int_{\mathbb{R}^m_+} \left( u(v) - \langle \partial u(v), v \rangle \right) f(v) dv.$$

# $m \ge 2$ goods, $n \ge 2$ agents?!?

Can we use the same approach? To some extent:

- Border's theorem reduces the question to 1-agent mechanisms.
- As before: 1-agent mechanisms  $\leftrightarrow$  convex u
- Border's theorem  $\rightarrow$  new constraint on *u* subsuming  $\partial u \in [0,1]^m$ :

$$\partial_{v_j} u(v) \prec_{SD} \xi^{n-1} \quad \forall j = 1, \dots m,$$

where v is random with density f and  $\xi$  is uniform on [0, 1].

### Corollary:

$$R_{n,m}(f) = \max_{\substack{\text{convex monotone } u\\ u(0) = 0, \ \partial_{v_j} u(v) \prec_{SD} \xi^{n-1} \forall j}} n \cdot \int_{\mathbb{R}^m_+} \left( u(v) - \langle \partial u(v), v \rangle \right) f(v) dv.$$

Question: Any explicit solutions? Any handy dual?

Applications we haven't talked about:

- Robustness of probabilistic models w.r.t. prior distribution: Kantorovich metric (aka Wasserstein or earth-mover distance)
- Allocation markets with transferable utility (Shapley-Scarf): maximal-welfare matchings are the solutions to optimal transport
- Repeated games with incomplete information lead to multi-marginal martingale transportation problems<sup>9</sup>
- and many others...

 $<sup>{}^9</sup>$ F.Gensbittel (2015) Extensions of the Cav(u) theorem for repeated games with incomplete information on one side. Mathematics of Operations Research

# The end

Applications we haven't talked about:

- Robustness of probabilistic models w.r.t. prior distribution: Kantorovich metric (aka Wasserstein or earth-mover distance)
- Allocation markets with transferable utility (Shapley-Scarf): maximal-welfare matchings are the solutions to optimal transport
- Repeated games with incomplete information lead to multi-marginal martingale transportation problems<sup>9</sup>
- and many others...

# Thank you!

<sup>&</sup>lt;sup>9</sup>F.Gensbittel (2015) Extensions of the Cav(u) theorem for repeated games with incomplete information on one side. Mathematics of Operations Research