Methods of Optimal Transportation in Bayesian Persuasion & Auctions

Fedor Sandomirskiy

Technion, Haifa & Higher School of Economics, St.Petersburg e-mail: fedor.sandomirskiy@gmail.com homepage: https://www.fedors.info/

Economic applications of non-classic transportation problems

Classic Transportation Problem Given: the utility function $u : [0,1]^2 \to \mathbb{R}$, marginals $\mu_1, \mu_2 \in \Delta([0,1])$ Find: $T_u(\mu_1, \mu_2) = \max_{\substack{\mu \in \Delta([0,1]^2) \\ \text{with marginals } \mu_i}} \int u(x_1, x_2) d\mu(x_1, x_2).$

Non-classic problems:

- free marginals: μ_i are not fixed but must satisfy certain constraints
- multi-marginal problems

Economic applications of non-classic transportation problems

Classic Transportation Problem

Given: the utility function $u : [0,1]^2 \to \mathbb{R}$, marginals $\mu_1, \mu_2 \in \Delta([0,1])$ Find:

$$T_u(\mu_1, \mu_2) = \max_{\substack{\mu \in \Delta([0, 1]^2) \\ \text{with marginals } \mu_i}} \int u(x_1, x_2) d\mu(x_1, x_2)$$

Non-classic problems:

- free marginals: μ_i are not fixed but must satisfy certain constraints
- multi-marginal problems

Economic applications of non-classic transportation problems

Classic Transportation Problem

Given: the utility function $u: [0,1]^2 \to \mathbb{R}$, marginals $\mu_1, \mu_2 \in \Delta([0,1])$ Find:

$$T_u(\mu_1, \mu_2) = \max_{\substack{\mu \in \Delta([0, 1]^2) \\ \text{with marginals } \mu_i}} \int u(x_1, x_2) d\mu(x_1, x_2).$$

Non-classic problems:

- free marginals: μ_i are not fixed but must satisfy certain constraints
- multi-marginal problems

- Bayesian persuasion: the key model of strategic communication
 - standard setting has 1 receiver
 - \geq 2 receivers \rightarrow optimal transport¹
- Optimal multi-good auctions: how to optimally sell m goods to n buyers with i.i.d. values?²

¹Arieli, I., Babichenko, Y., Sandomirskiy, F., & Tamuz, O. (2020) Feasible Joint Posterior Beliefs

²C.Daskalakis, A.Deckelbaum, C.Tzamos (2017) Strong Duality for a Multiple-Good Monopolist Econometrica

Bayesian persuasion

The question:

How to induce the desired behavior of a decision-maker by changing the information available to him?

• A young field. The origin:

Bayesian persuasion

<u>E Kamenica</u>, <u>M Gentzkow</u> - American Economic Review, 2011 - aeaweb.org When is it possible for one person to persuade another to change her action? We consider a symmetric information model where a sender chooses a signal to reveal to a receiver, who then takes a noncontractible action that affects the welfare of both players. We derive ...

☆ 55 Cited by 949 Related articles All 38 versions

• Popularity: often explicit solutions, many applications³

³E. Kamenica (2019) Bayesian persuasion and information design Annual Review of Economics

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes θ , Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes θ , Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

What should P do?

- Reveal no information \Longrightarrow nobody is convicted
- Reveal $\theta \Longrightarrow 25\%$ are convicted
- Send a signal $s \in S$ with θ -dependent probabilities $\pi_{\theta} \in \Delta(S)$:

• J's posterior
$$x = \mathbb{P}(heta = 1 \mid s)$$
 and \prec

acquits
$$x < 0.5$$
.

• P's problem:

maximize $\mathbb{E}[\mathbf{1}_{x\geq 0.5}]$ over signiling policies (S,π)

The optimum:
$$\frac{S = \{\text{"maybe innocent", "guilty"}\}}{\pi_{\theta=0}}$$
$$\frac{1}{\pi_{\theta=1}}$$
$$\frac{1}{\frac{1}{3}}$$
$$\frac{2}{3}$$
Convicts 50%

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes θ , Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

What should P do?

- Reveal no information \Longrightarrow nobody is convicted
- Reveal $\theta \Longrightarrow 25\%$ are convicted
- Send a signal $s \in S$ with θ -dependent probabilities $\pi_{\theta} \in \Delta(S)$:

• J's posterior
$$x = \mathbb{P}(heta = 1 \mid s)$$
 and \langle

$$\left(\right)$$
 acquits $x <$

• P's problem:

maximize $\mathbb{E}[\mathbb{1}_{x\geq 0.5}]$ over signiling policies (S,π)

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes θ , Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

What should P do?

- Reveal no information \Longrightarrow nobody is convicted
- Reveal $\theta \Longrightarrow 25\%$ are convicted
- Send a signal $s \in S$ with θ -dependent probabilities $\pi_{\theta} \in \Delta(S)$:

• J's posterior
$$x = \mathbb{P}(\theta = 1 \mid s)$$
 and $\begin{cases} \text{convicts} \\ \end{array}$

• P's problem:

maximize $\mathbb{E}[\mathbb{1}_{k\geq 0.5}]$ over signiling policies (S, π)

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes θ , Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

What should P do?

- Reveal no information \Longrightarrow nobody is convicted
- Reveal $\theta \Longrightarrow 25\%$ are convicted
- Send a signal $s \in S$ with θ -dependent probabilities $\pi_{\theta} \in \Delta(S)$:

• J's posterior
$$x = \mathbb{P}(\theta = 1 \mid s)$$
 and
$$\begin{cases} \text{convicts} \quad x \ge 0.5 \\ \text{acquits} \quad x < 0.5. \end{cases}$$

• P's problem:

 $\begin{array}{c|c} \text{maximize} & \mathbb{E}[\mathbbm{1}_{x\geq 0.5}] & \text{over signlling policies } (S,\pi) \\ \bullet & \text{The optimum:} & \frac{S = \{\text{``maybe innocent'', ``guilty''}\}}{\pi_{\theta=0} & 1 & 0 \\ \pi_{\theta=1} & \frac{1}{3} & \frac{2}{3} \\ \text{Convicts 50\%!} \end{array}$

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes θ , Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

What should P do?

- Reveal no information \Longrightarrow nobody is convicted
- Reveal $\theta \Longrightarrow 25\%$ are convicted
- Send a signal $s \in S$ with θ -dependent probabilities $\pi_{\theta} \in \Delta(S)$:

• J's posterior
$$x = \mathbb{P}(\theta = 1 \mid s)$$
 and
$$\begin{cases} \text{convicts} & x \ge 0.5 \\ \text{acquits} & x < 0.5. \end{cases}$$

• P's problem:

 $\begin{array}{c|c} \text{maximize} & \mathbb{E}[\mathbb{1}_{x\geq 0.5}] & \text{over signlling policies } (S,\pi) \\ \bullet & \text{The optimum:} & \frac{S = \{\text{"maybe innocent", "guilty"}\}}{\pi_{\theta=0}} \\ & \pi_{\theta=1} & \frac{1}{3} & \frac{2}{3} \\ & \text{Convicts 50\%!} \end{array}$

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes θ , Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

What should P do?

- Reveal no information \Longrightarrow nobody is convicted
- Reveal $\theta \Longrightarrow 25\%$ are convicted
- Send a signal $s \in S$ with θ -dependent probabilities $\pi_{\theta} \in \Delta(S)$:

• J's posterior
$$x = \mathbb{P}(\theta = 1 \mid s)$$
 and
$$\begin{cases} \text{convicts} & x \ge 0.5 \\ \text{acquits} & x < 0.5. \end{cases}$$

• P's problem:

 $\begin{array}{c|c} \text{maximize} \quad \mathbb{E}[\mathbbm{1}_{x\geq 0.5}] \quad \text{over signlling policies } (S,\pi) \\ \bullet \quad \text{The optimum:} \quad \frac{S = \{\text{``maybe innocent'', ``guilty''}\}}{\pi_{\theta=0} & 1 & 0 \\ \pi_{\theta=1} & \frac{1}{3} & \frac{2}{3} \end{array}$

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes θ , Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

What should P do?

- Reveal no information \Longrightarrow nobody is convicted
- Reveal $\theta \Longrightarrow 25\%$ are convicted
- Send a signal $s \in S$ with θ -dependent probabilities $\pi_{\theta} \in \Delta(S)$:

• J's posterior
$$x = \mathbb{P}(\theta = 1 \mid s)$$
 and
$$\begin{cases} \text{convicts} & x \ge 0.5 \\ \text{acquits} & x < 0.5. \end{cases}$$

• P's problem:

maximize
$$\mathbb{E} \left[\mathbb{1}_{x \geq 0.5} \right]$$
 over signling policies (S, π)

• The optimum:
$$\begin{array}{c|c} S = \left\{ \text{``maybe innocent'', ``guilty''} \right\} \\ \hline \pi_{\theta=0} & 1 & 0 \\ \pi_{\theta=1} & \frac{1}{3} & \frac{2}{3} \\ \hline \text{Convicts 50\%!} \end{array}$$

- Employers and universities: θ =quality of a student (good/bad), U wants a good placement for any student, E wants good candidates.
 - Explains coarse grading in schools, universities, and industries:⁴ "When recruiters call me up and ask me for the three best people, I tell them, "No! I will give you the names of the six best."

Robert J. Gordon, Econ. dept., Northwestern

⁴Ostrovsky, Schwarz (2010) Information disclosure and unraveling in matching markets. AER

Some other applications:

- Employers and universities: θ =quality of a student (good/bad), U wants a good placement for any student, E wants good candidates.
 - Explains coarse grading in schools, universities, and industries:⁴ "When recruiters call me up and ask me for the three best people, I tell them, "No! I will give you the names of the six best."

Robert J. Gordon, Econ. dept., Northwestern

- Buyers and Sellers : θ = quality of the product (good/bad), S wants to sell any product, B wants a good product.
 - Explains why you cannot order the apts by rating or price on ${\sf AirBNB}^5$

 $^{\rm 4} \rm Ostrovsky,$ Schwarz (2010) Information disclosure and unraveling in matching markets. AER

 $^5 \rm Romanyuk,$ Smolin (2019) Cream skimming and information design in matching markets. AEJ

Some other applications:

- Employers and universities: θ =quality of a student (good/bad), U wants a good placement for any student, E wants good candidates.
 - Explains coarse grading in schools, universities, and industries:⁴ "When recruiters call me up and ask me for the three best people, I tell them, "No! I will give you the names of the six best."

Robert J. Gordon, Econ. dept., Northwestern

- Buyers and Sellers : θ = quality of the product (good/bad), S wants to sell any product, B wants a good product.
 - $\bullet~\mbox{Explains why you cannot order the apts by rating or price on AirBNB^5$
- Police & drivers: θ = whether the region is patrolled (yes/no).
 P wants D to obey the speed limit, D wants to obey only if the region is patrolled.

 $^{4}\mbox{Ostrovsky},$ Schwarz (2010) Information disclosure and unraveling in matching markets. AER

 $^5 \rm Romanyuk, Smolin (2019)$ Cream skimming and information design in matching markets. AEJ

- A random state $heta \in \{0,1\}$ with prior probability $p = \mathbb{P}(heta = 1)$
- Definition: A distribution μ ∈ Δ([0, 1]) is a feasible distribution of posteriors if there exists⁶ a sigma-field⁷ *F* such that P(θ = 1 | *F*) has distribution μ.

Persuasion problem

Given: prior p and utility u = u(x)

Find:

$$V(p) = \max_{\text{feasible } \mu \in \Delta([0,1])} \int_{[0,1]} u(x) d\mu(x)$$

⁶The probability space must be rich enough, say [0, 1] with the Lebesgue measure. ⁷Interpretation: \mathcal{F} is generated by a signal: $\mathcal{F} = \sigma(s)$

- A random state $heta \in \{0,1\}$ with prior probability $p = \mathbb{P}(heta = 1)$
- Definition: A distribution μ ∈ Δ([0, 1]) is a feasible distribution of posteriors if there exists⁶ a sigma-field⁷ *F* such that P(θ = 1 | *F*) has distribution μ.

```
Persuasion problem

Given: prior p and utility u = u(x)

Find:

V(p) = \max_{\text{feasible } \mu \in \Delta([0, 1])} \int_{[0, 1]} u(x) d\mu(x)
```

⁶The probability space must be rich enough, say [0, 1] with the Lebesgue measure. ⁷Interpretation: \mathcal{F} is generated by a signal: $\mathcal{F} = \sigma(s)$

- A random state $heta \in \{0,1\}$ with prior probability $p = \mathbb{P}(heta = 1)$
- Definition: A distribution μ ∈ Δ([0, 1]) is a feasible distribution of posteriors if there exists⁶ a sigma-field⁷ *F* such that P(θ = 1 | *F*) has distribution μ.

Persuasion problem

Given: prior p and utility u = u(x)

Find:

$$V(p) = \max_{\text{feasible } \mu \in \Delta([0,1])} \int_{[0,1]} u(x) d\mu(x)$$

⁶The probability space must be rich enough, say [0, 1] with the Lebesgue measure. ⁷Interpretation: \mathcal{F} is generated by a signal: $\mathcal{F} = \sigma(s)$

Necessary condition for feasibility (the martingale property):

$$\int_{[0,1]} x d\mu(x) = p$$

Necessary condition for feasibility (the martingale property):

$$\int_{[0,1]} x d\mu(x) = p$$

The splitting lemma (Aumann & Maschler / Blackwell / folk)

$$\mu$$
 is feasible $\iff \int_{[0,1]} x d\mu(x) = p.$

The splitting lemma (Aumann & Maschler / Blackwell / folk)

$$\mu$$
 is feasible $\iff \int_{[0,1]} x d\mu(x) = p.$

Persuasion reduces to

$$V(p) = \max_{\substack{\mu \in \Delta([0,1]): \\ \int xd\mu = p}} \int_{[0,1]} u(x)d\mu(x)$$

The classic model with 1 receiver

The splitting lemma (Aumann & Maschler / Blackwell / folk)

$$\mu$$
 is feasible $\iff \int_{[0,1]} x d\mu(x) = p.$

Persuasion reduces to

$$V(p) = \max_{\substack{\mu \in \Delta([0,1]): \\ \int xd\mu = p}} \int_{[0,1]} u(x)d\mu(x)$$

Cav [u]-theorem (Aumann & Maschler, 60ies) V(p) = Cav [u](p), where $Cav [u] = \min_{\substack{\text{concave } f: \\ f \ge u}} f$

The classic model with 1 receiver

The splitting lemma (Aumann & Maschler / Blackwell / folk)

$$\mu$$
 is feasible $\iff \int_{[0,1]} x d\mu(x) = p.$

Persuasion reduces to

$$V(p) = \max_{\substack{\mu \in \Delta([0,1]): \\ \int xd\mu = p}} \int_{[0,1]} u(x)d\mu(x)$$

Cav [u]-theorem (Aumann & Maschler, 60ies)

$$V(p) = \operatorname{Cav}[u](p)$$
, where $\operatorname{Cav}[u] = \min_{\substack{\text{concave } f: \\ f \ge u}} f$

Proof:

"
$$\leq$$
:" $u \leq \operatorname{Cav}[u] \Rightarrow V \leq \operatorname{Cav}[u]$ by Jensen's inequality
">": $V > u$, V is concave $\Rightarrow V > \operatorname{Cav}[u]$.

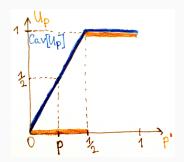
9

The classic model with 1 receiver

Example: back to the court

$$p = 0.25$$
 and $u(x) = \mathbb{1}_{x \ge 0.5}$

The function u and its concavification:



The optimal $\mu = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_{\frac{1}{2}}$.

- $heta \in \{0,1\}$ with prior probability $p = \mathbb{P}(heta = 1)$
- Definition: μ ∈ Δ([0,1]ⁿ) is feasible ⇐⇒ ∃ sigma-fields F₁,...F_n such that the vector of posteriors x = (x₁,...x_n) ~ μ, where x_i = ℙ(θ = 1 | F_i).

⁸Arieli, I., Babichenko, Y., Sandomirskiy, F., & Tamuz, O. (2020) Feasible Joint Posterior Beliefs

- $heta \in \{0,1\}$ with prior probability $p = \mathbb{P}(heta = 1)$
- Definition: μ ∈ Δ([0,1]ⁿ) is feasible ⇒ ∃ sigma-fields F₁,...F_n such that the vector of posteriors x = (x₁,...x_n) ~ μ, where x_i = ℙ(θ = 1 | F_i).

⁸Arieli, I., Babichenko, Y., Sandomirskiy, F., & Tamuz, O. (2020) Feasible Joint Posterior Beliefs

- $heta \in \{0,1\}$ with prior probability $p = \mathbb{P}(heta = 1)$
- **Definition:** $\mu \in \Delta([0,1]^n)$ is feasible $\iff \exists$ sigma-fields $\mathcal{F}_1, \ldots \mathcal{F}_n$ such that the vector of posteriors $x = (x_1, \ldots x_n) \sim \mu$, where $x_i = \mathbb{P}(\theta = 1 | \mathcal{F}_i).$

Persuasion problem

Given: prior p and utility u = u(x)

Find:

$$V(p) = \max_{\text{feasible } \mu} \int_{[0,1]^n} u(x) d\mu(x)$$

⁸Arieli, I., Babichenko, Y., Sandomirskiy, F., & Tamuz, O. (2020) Feasible Joint Posterior Beliefs

$n \ge 2$ receivers⁸

- $heta \in \{0,1\}$ with prior probability $p = \mathbb{P}(heta = 1)$
- Definition: $\mu \in \Delta([0,1]^n)$ is feasible $\iff \exists$ sigma-fields $\mathcal{F}_1, \ldots \mathcal{F}_n$ such that the vector of posteriors $x = (x_1, \ldots x_n) \sim \mu$, where $x_i = \mathbb{P}(\theta = 1 \mid \mathcal{F}_i).$

Persuasion problem

Given: prior p and utility u = u(x)

Find:

$$V(p) = \max_{\text{feasible } \mu} \int_{[0,1]^n} u(x) d\mu(x)$$

Examples with n = 2:

- creating discord $u = |x_1 x_2|^{\alpha}$
- minimizing covariance $u = -(x_1 p)(x_2 p)$

⁸Arieli, I., Babichenko, Y., Sandomirskiy, F., & Tamuz, O. (2020) Feasible Joint Posterior Beliefs

- For $\mu \in [0,1]^n$ denote the marginals by μ_1,\ldots,μ_n
- The martingale property

$$\int_{[0,1]} x_i d\mu_i(x_i) = p, \quad \forall i = 1, \dots n$$

is necessary but not sufficient for feasibility

$n \ge 2$ receivers: criterion of feasibility

- For $\mu \in [0,1]^n$ denote the marginals by μ_1,\ldots,μ_n
- The martingale property

$$\int_{[0,1]} x_i d\mu_i(x_i) = p, \quad \forall i = 1, \dots n$$

is necessary but not sufficient for feasibility

Criterion of feasibility

$$\mu \in \Delta([0,1]^n) \text{ is feasible} \iff \exists \nu^0, \nu^1 \in \Delta([0,1]^n) \text{ s.t.}$$
$$\mu = (1-p) \cdot \nu^0 + p \cdot \nu^1 \qquad \text{and} \qquad \frac{d\nu_i^1(x_i)}{d\nu_i^0(x_i)} = \frac{x_i}{1-x_i}, \ \forall i = 1, \dots n$$

$n \ge 2$ receivers: criterion of feasibility

- For $\mu \in [0,1]^n$ denote the marginals by μ_1,\ldots,μ_n
- The martingale property

$$\int_{[0,1]} x_i d\mu_i(x_i) = p, \quad \forall i = 1, \dots n$$

is necessary but not sufficient for feasibility

Criterion of feasibility

$$\mu \in \Delta([0,1]^n)$$
 is feasible $\iff \exists \nu^0, \nu^1 \in \Delta([0,1]^n)$ s.t.

$$\mu = (1 - p) \cdot \nu^0 + p \cdot \nu^1$$
 and $\frac{d\nu_i^1(x_i)}{d\nu_i^0(x_i)} = \frac{x_i}{1 - x_i}, \quad \forall i = 1, \dots n$

Proof: let ν^0 and ν^1 be the conditional distributions of $(x_1, \ldots x_n)$ given $\theta = 0$ or $\theta = 1$, respectively.

$$V(p) = \max_{\text{feasible } \mu} \int_{[0,1]^n} u(x) d\mu(x) =$$

$$\mu = (1-p) \cdot \nu^0 + p \cdot \nu^1 \quad \text{s.t. marginals satisfy} \quad \frac{d\nu_i^1(x_i)}{d\nu_i^0(x_i)} = \frac{x_i}{1-x_i} \quad (\bigstar) \Big]$$

$$= \max_{\text{marginals } \nu_i^0 : (\bigstar) \text{ holds}} \left[(1-p) \cdot \max_{\nu^0} \int u d\nu^0 + p \cdot \max_{\nu^1} \int u d\nu^1 \right]$$

$$V(p) = \max_{\text{feasible } \mu} \int_{[0,1]^n} u(x) d\mu(x) = \left[\mu = (1-p) \cdot \nu^0 + p \cdot \nu^1 \quad \text{s.t. marginals satisfy} \quad \frac{d\nu_i^1(x_i)}{d\nu_i^0(x_i)} = \frac{x_i}{1-x_i} \quad (\bigstar) \right]$$
$$= \max_{\text{marginals } \nu_i^0 : (\bigstar) \text{ holds}} \left[(1-p) \cdot \max_{\nu^0} \int u d\nu^0 + p \cdot \max_{\nu^1} \int u d\nu^1 \right]$$

$$V(p) = \max_{\text{feasible } \mu} \int_{[0,1]^n} u(x) d\mu(x) =$$

$$\mu = (1-p) \cdot \nu^0 + p \cdot \nu^1 \quad \text{s.t. marginals satisfy} \quad \frac{d\nu_i^1(x_i)}{d\nu_i^0(x_i)} = \frac{x_i}{1-x_i} \quad (\bigstar)]$$

$$= \max_{\text{marginals } \nu_i^{\theta} : (\bigstar) \text{ holds}} \left[(1-p) \cdot \max_{\nu^0} \int u d\nu^0 + p \cdot \max_{\nu^1} \int u d\nu^1 \right]$$

$n \ge 2$ receivers: persuasion as transportation

$$V(p) = \max_{ ext{feasible } \mu} \int_{[0,1]^n} u(x) d\mu(x) =$$

$$\left[\mu = (1-p) \cdot \nu^0 + p \cdot \nu^1 \quad \text{s.t. marginals satisfy} \quad \frac{d\nu_i^1(x_i)}{d\nu_i^0(x_i)} = \frac{x_i}{1-x_i} \quad (\bigstar)\right]$$

$$= \max_{\text{marginals } \nu_i^{\theta} : (\bigstar) \text{ holds}} \left[(1-p) \cdot \max_{\nu^0} \int u d\nu^0 + p \cdot \max_{\nu^1} \int u d\nu^1 \right]$$

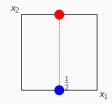
Conclusion

$$V(p) = \max_{ ext{marginals }
u_i^{ heta} : (\bigstar) ext{ holds }} \left[(1-p)T(
u_1^0,
u_2^0) + p \cdot T(
u_1^1,
u_2^1)
ight].$$

n=2 receivers: some explicit solutions for $p=\frac{1}{2}$

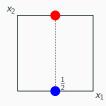
•
$$u = |x_1 - x_2|^{\alpha}$$
 with $\alpha \in (0, 2]$.

•
$$u = |x_1 - x_2|^{\alpha}$$
 with $\alpha \in (0, 2]$. Optimal μ :



n = 2 receivers: some explicit solutions for $p = \frac{1}{2}$

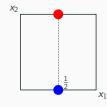
•
$$u = |x_1 - x_2|^{\alpha}$$
 with $\alpha \in (0, 2]$. Optimal μ :



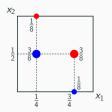
• $\min \operatorname{Cov}(x_1, x_2) = ????$

n=2 receivers: some explicit solutions for $p=\frac{1}{2}$

• $u = |x_1 - x_2|^{\alpha}$ with $\alpha \in (0, 2]$. Optimal μ :



• min $Cov(x_1, x_2) = -\frac{1}{32}$. Optimal μ :



- Direct approach
- Dual approach
- Hilbert-space approach (in the paper)

- Direct approach
 - For *n* = 2 with quadratic *u*(*x*₁, *x*₂), the transportation problem has explicit solutions: anti-monotone coupling
 - Maximization over marginals = an exercise in the calculus of variations
- Dual approach
- Hilbert-space approach (in the paper)

- Direct approach
- Dual approach

An analog of Kantorovich-Rubinstein duality:

$$V(p) = \min_{\substack{\text{functions } (f_i)_{i=1...n}}} \left[(1-p) \cdot \max_{x} \left(u(x) + \sum_{i=1}^n x_i \cdot f_i(x_i) \right) + \right. \\ \left. + p \cdot \max_{x} \left(u(x) - \sum_{i=1}^n (1-x_i) f_i(x_i) \right) \right]$$

Guess primal and dual solutions: zero gap ensures optimality.

• Hilbert-space approach (in the paper)

- Direct approach
- Dual approach
- Hilbert-space approach (in the paper)
 - $\xi \to \mathbb{E}[\xi \mid \mathcal{F}]$ is an orthogonal projection in L^2
 - {all orthogonal projections of $\xi\} =$ the sphere of radius $\frac{\|\xi\|}{2}$ centered at $\frac{\xi}{2}$
 - quadratic objective u can be expressed through scalar products in L^2
 - ullet \Rightarrow a simple optimization problem on the sphere!

- Direct approach
- Dual approach
- Hilbert-space approach (in the paper)
 - $\xi \to \mathbb{E}[\xi \mid \mathcal{F}]$ is an orthogonal projection in L^2
 - {all orthogonal projections of $\xi\} =$ the sphere of radius $\frac{\|\xi\|}{2}$ centered at $\frac{\xi}{2}$
 - quadratic objective u can be expressed through scalar products in L^2
 - ullet \Rightarrow a simple optimization problem on the sphere!

- Direct approach
- Dual approach
- Hilbert-space approach (in the paper)
 - $\xi \to \mathbb{E}[\xi \mid \mathcal{F}]$ is an orthogonal projection in L^2
 - {all orthogonal projections of $\xi\} =$ the sphere of radius $\frac{\|\xi\|}{2}$ centered at $\frac{\xi}{2}$
 - quadratic objective u can be expressed through scalar products in L^2
 - $\bullet \ \Rightarrow$ a simple optimization problem on the sphere!

- Direct approach
- Dual approach
- Hilbert-space approach (in the paper)
 - $\xi \to \mathbb{E}[\xi \mid \mathcal{F}]$ is an orthogonal projection in L^2
 - {all orthogonal projections of $\xi\} =$ the sphere of radius $\frac{\|\xi\|}{2}$ centered at $\frac{\xi}{2}$
 - quadratic objective u can be expressed through scalar products in L^2
 - $\bullet \ \Rightarrow$ a simple optimization problem on the sphere!

- Direct approach
- Dual approach
- Hilbert-space approach (in the paper)

Open question: Anything beyond quadratic *u*? Other sources of explicit solutions?

- Persuasion problem is an infinite-dimensional LP: maximization of a linear functional over a convex set of feasible distributions μ
- Bauer's principle: optimum is at an extreme points

- Persuasion problem is an infinite-dimensional LP: maximization of a linear functional over a convex set of feasible distributions μ
- Bauer's principle: optimum is at an extreme points

- Persuasion problem is an infinite-dimensional LP: maximization of a linear functional over a convex set of feasible distributions μ
- Bauer's principle: optimum is at an extreme points

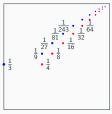
What we know about extreme points?

$n \ge 2$ receivers: general property of solutions

- Persuasion problem is an infinite-dimensional LP: maximization of a linear functional over a convex set of feasible distributions μ
- Bauer's principle: optimum is at an extreme points

What we know about extreme points?

• There are extreme μ with countable support:



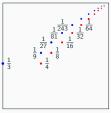
 Extreme μ are supported on a subset of [0, 1]ⁿ of zero Lebesgue measure (a corollary of the theorem by Lindenstrauss (1965))

$n \ge 2$ receivers: general property of solutions

- Persuasion problem is an infinite-dimensional LP: maximization of a linear functional over a convex set of feasible distributions μ
- Bauer's principle: optimum is at an extreme points

What we know about extreme points?

• There are extreme μ with countable support:



 Extreme μ are supported on a subset of [0,1]ⁿ of zero Lebesgue measure (a corollary of the theorem by Lindenstrauss (1965))

Question: Non-atomic extreme μ ?

Optimal way to sell multiple goods

- *n* agents, *m* goods
- values $v_{i,j}$ are i.i.d. with density f

How to maximize revenue from selling? Assumptions:

- f is known, realizations of $v_{i,j}$ are not
- each agent acts in his best interests

- *n* agents, *m* goods
- values $v_{i,j}$ are i.i.d. with density f

How to maximize revenue from selling? Assumptions:

- f is known, realizations of $v_{i,j}$ are not
- each agent acts in his best interests

The model

- *n* agents, *m* goods
- values $v_{i,j}$ are i.i.d. with density f

How to maximize revenue from selling? Assumptions:

- f is known, realizations of $v_{i,j}$ are not
- each agent acts in his best interests

What is known?

- $n \ge 2, m = 1$ (the classic auction theory): everything
- $n = 1, m \ge 2$ (selling many goods to one agent):
 - optimal mechanisms in particular cases
 - connections to optimal transport
- $n \ge 2, m \ge 2$ (auctions with multiple goods): nothing

• How to sell one good to one agent with the value $v \sim f(v) dv$?

- How to sell one good to one agent with the value $v \sim f(v) dv$?
- "take it or leave it"-mechanism:
 - either pay p and get the good
 - or pay 0 and get nothing

- How to sell one good to one agent with the value $v \sim f(v) dv$?
- "take it or leave it"-mechanism:
 - either pay p and get the good
 - or pay 0 and get nothing

the best choice of the price $p^* = \arg \max_p p \cdot \int_p^{\infty} f(v) dv$

- How to sell one good to one agent with the value $v \sim f(v) dv$?
- "take it or leave it"-mechanism:
 - either pay p and get the good
 - or pay 0 and get nothing

the best choice of the price $p^* = \arg \max_p p \cdot \int_p^{\infty} f(v) dv$

Theorem (Myerson (1981))

Take it or leave it with p^* is the optimal mechanism

• the agent has i.i.d. values $v = (v_1, \ldots, v_m) \sim f(v) dv$

- if the agent gets the bundle of goods x = (x₁,...,x_m) ∈ [0,1]^m for price p, his utility is ⟨x, v⟩ - p
- Is selling each good separately always optimal?
- Is bundling all goods together always optimal?
- Is $x \in \{0,1\}^m$ enough?
- menu mechanism: chose the best option from the menu
 - pay 0 get 0
 - pay p get x
 - pay *p*' pay *x*'
 -

- the agent has i.i.d. values $v = (v_1, \ldots, v_m) \sim f(v) dv$
- if the agent gets the bundle of goods x = (x₁,...,x_m) ∈ [0,1]^m for price p, his utility is ⟨x, v⟩ - p
- Is selling each good separately always optimal?
- Is bundling all goods together always optimal?
- Is $x \in \{0,1\}^m$ enough?
- menu mechanism: chose the best option from the menu
 - pay 0 get 0
 - pay p get x
 - pay *p*' pay *x*'
 -

- the agent has i.i.d. values $v = (v_1, \ldots, v_m) \sim f(v) dv$
- if the agent gets the bundle of goods x = (x₁,...,x_m) ∈ [0,1]^m for price p, his utility is ⟨x, v⟩ - p
- Is selling each good separately always optimal?
- Is bundling all goods together always optimal?
- Is $x \in \{0,1\}^m$ enough?
- menu mechanism: chose the best option from the menu
 - pay 0 get 0
 - pay p get x
 - pay *p*' pay *x*'
 -

- the agent has i.i.d. values $v = (v_1, \ldots, v_m) \sim f(v) dv$
- if the agent gets the bundle of goods x = (x₁,...,x_m) ∈ [0,1]^m for price p, his utility is ⟨x, v⟩ - p
- Is selling each good separately always optimal? No
- Is bundling all goods together always optimal?
- Is $x \in \{0,1\}^m$ enough?
- menu mechanism: chose the best option from the menu
 - pay 0 get 0
 - pay p get x
 - pay *p*' pay *x*'
 -

- the agent has i.i.d. values $v = (v_1, \ldots, v_m) \sim f(v) dv$
- if the agent gets the bundle of goods x = (x₁,...,x_m) ∈ [0,1]^m for price p, his utility is ⟨x, v⟩ - p
- Is selling each good separately always optimal? No
- Is bundling all goods together always optimal?
- Is $x \in \{0,1\}^m$ enough?
- menu mechanism: chose the best option from the menu
 - pay 0 get 0
 - pay p get x
 - pay *p*' pay *x*'
 -

- the agent has i.i.d. values $v = (v_1, \ldots, v_m) \sim f(v) dv$
- if the agent gets the bundle of goods x = (x₁,...,x_m) ∈ [0,1]^m for price p, his utility is ⟨x, v⟩ - p
- Is selling each good separately always optimal? No
- Is bundling all goods together always optimal? No
- Is $x \in \{0,1\}^m$ enough?
- menu mechanism: chose the best option from the menu
 - pay 0 get 0
 - pay p get x
 - pay *p*' pay *x*'
 -

- the agent has i.i.d. values $v = (v_1, \ldots, v_m) \sim f(v) dv$
- if the agent gets the bundle of goods x = (x₁,...,x_m) ∈ [0,1]^m for price p, his utility is ⟨x, v⟩ - p
- Is selling each good separately always optimal? No
- Is bundling all goods together always optimal? No
- Is $x \in \{0,1\}^m$ enough?
- menu mechanism: chose the best option from the menu
 - pay 0 get 0
 - pay p get x
 - pay *p*' pay *x*'
 -

- the agent has i.i.d. values $v = (v_1, \ldots, v_m) \sim f(v) dv$
- if the agent gets the bundle of goods x = (x₁,...,x_m) ∈ [0,1]^m for price p, his utility is ⟨x, v⟩ - p
- Is selling each good separately always optimal? No
- Is bundling all goods together always optimal? No
- Is $x \in \{0,1\}^m$ enough? No
- menu mechanism: chose the best option from the menu
 - pay 0 get 0
 - pay p get x
 - pay *p*' pay *x*'
 -

- the agent has i.i.d. values $v = (v_1, \ldots, v_m) \sim f(v) dv$
- if the agent gets the bundle of goods x = (x₁,...,x_m) ∈ [0,1]^m for price p, his utility is ⟨x, v⟩ - p
- Is selling each good separately always optimal? No
- Is bundling all goods together always optimal? No
- Is $x \in \{0,1\}^m$ enough? No
- menu mechanism: chose the best option from the menu
 - pay 0 get 0
 - pay p get x
 - pay p' pay x'
 -

$m \ge 2$ goods, n = 1 agent: optimal mechanisms

- the agent has i.i.d. values $v = (v_1, \ldots, v_m) \sim f(v) dv$
- if the agent gets the bundle of goods x = (x₁,...,x_m) ∈ [0,1]^m for price p, his utility is ⟨x, v⟩ p
- Is selling each good separately always optimal? No
- Is bundling all goods together always optimal? No
- Is $x \in \{0,1\}^m$ enough? No
- menu mechanism: chose the best option from the menu
 - pay 0 get 0
 - pay p get x
 - pay *p*' pay *x*'
 -

Revelation principle

Any mechanism is equivalent to a menu mechanism.

• the menu $M \subset \mathbb{R}_+ imes [0,1]^m$

• utility obtained by an agent with values $v = (v_1, \ldots, v_m)$:

$$u_M(v) = \max_{(p,x)\in M} \langle x,v\rangle - p,$$

• *u_M* is convex and

$$x(v) = \partial u_M(v), \quad p(v) = u_M(v) - \langle x(v), v \rangle$$

• the menu $M \subset \mathbb{R}_+ imes [0,1]^m$

• utility obtained by an agent with values $v = (v_1, \ldots, v_m)$:

$$u_M(v) = \max_{(p,x)\in M} \langle x,v\rangle - p,$$

• *u_M* is convex and

$$x(v) = \partial u_M(v), \quad p(v) = u_M(v) - \langle x(v), v \rangle$$

- the menu $M \subset \mathbb{R}_+ imes [0,1]^m$
- utility obtained by an agent with values $v = (v_1, \ldots, v_m)$:

$$u_M(v) = \max_{(p,x)\in M} \langle x,v\rangle - p,$$

• *u_M* is convex and

$$x(v) = \partial u_M(v), \quad p(v) = u_M(v) - \langle x(v), v \rangle$$

- the menu $M \subset \mathbb{R}_+ imes [0,1]^m$
- utility obtained by an agent with values $v = (v_1, \ldots, v_m)$:

$$u_M(v) = \max_{(p,x)\in M} \langle x,v\rangle - p,$$

• *u_M* is convex and

$$x(v) = \partial u_M(v), \quad p(v) = u_M(v) - \langle x(v), v \rangle$$

Theorem (Rochet and Chone (1998))

 $M \leftrightarrow u_M$ is a bijection between menus and convex u_M with $u_M(0) = 0$ and $\partial u_M \in [0, 1]^m$.

- the menu $M \subset \mathbb{R}_+ imes [0,1]^m$
- utility obtained by an agent with values $v = (v_1, \ldots, v_m)$:

$$u_M(v) = \max_{(p,x)\in M} \langle x,v\rangle - p,$$

• *u_M* is convex and

$$x(v) = \partial u_M(v), \quad p(v) = u_M(v) - \langle x(v), v \rangle$$

Theorem (Rochet and Chone (1998))

 $M \leftrightarrow u_M$ is a bijection between menus and convex u_M with $u_M(0) = 0$ and $\partial u_M \in [0, 1]^m$.

Revenue maximization becomes:

$$R_m(f) = \max_{\substack{\text{convex } u\\ u(0) = 0, \ \partial u \in [0,1]^m}} \int_{\mathbb{R}^m_+} \left(u(v) - \left\langle \partial u(v), v \right\rangle \right) f(v) dv.$$

- the menu $M \subset \mathbb{R}_+ imes [0,1]^m$
- utility obtained by an agent with values $v = (v_1, \ldots, v_m)$:

$$u_M(v) = \max_{(p,x)\in M} \langle x,v\rangle - p,$$

• *u_M* is convex and

$$x(v) = \partial u_M(v), \quad p(v) = u_M(v) - \langle x(v), v \rangle$$

Theorem (Rochet and Chone (1998))

 $M \leftrightarrow u_M$ is a bijection between menus and convex u_M with $u_M(0) = 0$ and $\partial u_M \in [0, 1]^m$.

Revenue maximization becomes:

$$R_m(f) = \max_{\substack{\text{convex } u\\ u(0) = 0, \ \partial u \in [0,1]^m}} \int_{\mathbb{R}^m_+} \left(u(v) - \left\langle \partial u(v), v \right\rangle \right) f(v) dv.$$

- the menu $M \subset \mathbb{R}_+ imes [0,1]^m$
- utility obtained by an agent with values $v = (v_1, \ldots, v_m)$:

$$u_M(v) = \max_{(p,x)\in M} \langle x,v\rangle - p,$$

• *u_M* is convex and

$$x(v) = \partial u_M(v), \quad p(v) = u_M(v) - \langle x(v), v \rangle$$

Theorem (Rochet and Chone (1998))

 $M \leftrightarrow u_M$ is a bijection between menus and convex u_M with $u_M(0) = 0$ and $\partial u_M \in [0, 1]^m$.

Revenue maximization becomes:

$$R_m(f) = \max_{\substack{\text{convex } u\\ u(0) = 0, \ \partial u \in [0,1]^m}} \int_{\mathbb{R}^m_+} \left(u(v) - \left\langle \partial u(v), v \right\rangle \right) f(v) dv.$$

$$R_m(f) = \max_{\substack{\text{convex } u\\ u(0) = 0, \ \partial u \in [0, 1]^m}} \int_{\mathbb{R}^m_+} \left(u(v) - \left\langle \partial u(v), v \right\rangle \right) f(v) dv$$

$$R_m(f) = \max_{\substack{\text{convex } u\\ u(0) = 0, \ \partial u \in [0,1]^m}} \int_{\mathbb{R}^m_+} \left(u(v) - \left\langle \frac{\partial u(v)}{\partial u(v)}, v \right\rangle \right) f(v) dv =$$

[integrating by parts]

$$R_m(f) = \max_{\substack{\text{convex } u\\u(0) = 0, \ \partial u \in [0, 1]^m}} \int_{\mathbb{R}^m_+} \left(u(v) - \left\langle \partial u(v), v \right\rangle \right) f(v) dv = \\ \begin{bmatrix} \text{integrating by parts} \end{bmatrix} \\ = \max_{\substack{\text{convex } u\\u(0) = 0, \ \partial u \in [0, 1]^m}} \int_{\mathbb{R}^m_+} u(v) d\psi,$$

where $d\psi = \left((m+1)f(v) + \sum_{j=1}^{m} v_i \partial_{v_i} f\right) dv$ (not necessary positive!)

$$R_m(f) = \max_{\substack{\text{convex } u\\ u(0) = 0, \ \partial u \in [0, 1]^m}} \int_{\mathbb{R}^m_+} u(v) d\psi$$

$$R_m(f) = \max_{\substack{\text{convex } u\\ u(0) = 0, \ \partial u \in [0, 1]^m}} \int_{\mathbb{R}^m_+} u(v) d\psi$$

What is the dual problem?

$$R_m(f) = \max_{\substack{\text{convex } u\\ u(0) = 0, \ \partial u \in [0, 1]^m}} \int_{\mathbb{R}^m_+} u(v) d\psi$$

What is the dual problem?

Definition: 2nd-order stochastic dominance

 $\phi \succ_{\mathit{SD}} \nu \Longleftrightarrow \int g d\phi \geq \int g d\nu \;\; {
m for \; any \; convex \; monotone \; g}$

$$R_m(f) = \max_{\substack{\text{convex } u\\ u(0) = 0, \ \partial u \in [0, 1]^m}} \int_{\mathbb{R}^m_+} u(v) d\psi$$

What is the dual problem?

Definition: 2nd-order stochastic dominance $\phi \succ_{SD} \nu \iff \int g d\phi \ge \int g d\nu \text{ for any convex monotone g}$

Theorem (Daskalakis et al (2017)) $R_m(f) = \min_{\substack{\text{positive measures } \mu \\ \text{on } \mathbb{R}^m_+ \times \mathbb{R}^m_+ \\ \mu_1 - \mu_2 \succ_{SD} \psi}} \int_{\mathbb{R}^m_+ \times \mathbb{R}^m_+} \|v - v'\|_1 d\mu(v, v')$

Definition: 2nd-order stochastic dominance

$$\phi \succ_{\mathit{SD}} \nu \Longleftrightarrow \int g d\phi \geq \int g d\nu \;\; {\rm for \; any \; convex \; monotone \; g}$$

Explicit solutions for m = 2:

- Uniform on [0,1]: each good for $\frac{2}{3}$ or both for $\frac{4-\sqrt{2}}{3}$
- Exponential: sell the goods only together
- Beta distribution $Cv^{\alpha-1}(1-v)^{\beta-1}dv$: continual menu!!!

Definition: 2nd-order stochastic dominance

$$\phi \succ_{\mathit{SD}} \nu \Longleftrightarrow \int g d\phi \geq \int g d\nu \;\; {\rm for \; any \; convex \; monotone \; g}$$

Explicit solutions for m = 2:

- Uniform on [0, 1]: each good for $\frac{2}{3}$ or both for $\frac{4-\sqrt{2}}{3}$
- Exponential: sell the goods only together
- Beta distribution $Cv^{\alpha-1}(1-v)^{\beta-1}dv$: continual menu!!!

Definition: 2nd-order stochastic dominance

$$\phi \succ_{\mathit{SD}} \nu \Longleftrightarrow \int g d\phi \geq \int g d\nu \;\; {\rm for \; any \; convex \; monotone \; g}$$

Explicit solutions for m = 2:

- Uniform on [0,1]: each good for $\frac{2}{3}$ or both for $\frac{4-\sqrt{2}}{3}$
- Exponential: sell the goods only together
- Beta distribution $Cv^{\alpha-1}(1-v)^{\beta-1}dv$: continual menu!!!

Open problem: Optimal mechanisms for $n, m \ge 2$?

• Even m = n = 2 with i.i.d. uniform values is open.

Open problem: Optimal mechanisms for $n, m \ge 2$?

• Even m = n = 2 with i.i.d. uniform values is open.

Can we use the same approach?

- Border's theorem⁹ reduces the question to 1-agent mechanisms.
- As before: 1-agent mechanisms \leftrightarrow convex u
- Border's theorem \rightarrow new constraint on *u* subsuming $\partial u \in [0,1]^m$:

$$\partial_{v_j} u(v) \prec_{SD} \xi^{n-1} \quad \forall j = 1, \dots m,$$

where v is random with density f and ξ is uniform on [0, 1].

⁹S.Hart, P.Reny (2015) Implementation of reduced form mechanisms: a simple approach and a new characterization Economic Theory Bulletin

- Border's theorem⁹ reduces the question to 1-agent mechanisms.
- As before: 1-agent mechanisms \leftrightarrow convex u
- Border's theorem \rightarrow new constraint on *u* subsuming $\partial u \in [0,1]^m$:

 $\partial_{v_j} u(v) \prec_{SD} \xi^{n-1} \quad \forall j = 1, \dots m,$

where v is random with density f and ξ is uniform on [0, 1].

⁹S.Hart, P.Reny (2015) Implementation of reduced form mechanisms: a simple approach and a new characterization Economic Theory Bulletin

- $\bullet\,$ Border's theorem 9 reduces the question to 1-agent mechanisms.
- As before: 1-agent mechanisms \leftrightarrow convex u
- Border's theorem \rightarrow new constraint on u subsuming $\partial u \in [0,1]^m$:

$$\partial_{v_j} u(v) \prec_{SD} \xi^{n-1} \quad \forall j = 1, \dots m,$$

where v is random with density f and ξ is uniform on [0, 1].

⁹S.Hart, P.Reny (2015) Implementation of reduced form mechanisms: a simple approach and a new characterization Economic Theory Bulletin

- Border's theorem reduces the question to 1-agent mechanisms.
- As before: 1-agent mechanisms \leftrightarrow convex u
- Border's theorem \rightarrow new constraint on *u* subsuming $\partial u \in [0,1]^m$:

$$\partial_{v_j} u(v) \prec_{SD} \xi^{n-1} \quad \forall j = 1, \dots m,$$

where v is random with density f and ξ is uniform on [0, 1].

Corollary:

 $R_{n,m}(f) = \max_{\substack{\text{convex monotone } u\\ u(0) = 0, \ \partial_{v_j} u(v) \prec_{SD} \xi^{n-1} \forall j}$

$$n \cdot \int_{\mathbb{R}^m_+} \left(u(v) - \langle \partial u(v), v \rangle \right) f(v) dv.$$

$m \ge 2$ goods, $n \ge 2$ agents?!?

Can we use the same approach? To some extent:

- Border's theorem reduces the question to 1-agent mechanisms.
- As before: 1-agent mechanisms \leftrightarrow convex u
- Border's theorem \rightarrow new constraint on *u* subsuming $\partial u \in [0,1]^m$:

$$\partial_{v_j} u(v) \prec_{SD} \xi^{n-1} \quad \forall j = 1, \dots m,$$

where v is random with density f and ξ is uniform on [0, 1].

Corollary:

$$R_{n,m}(f) = \max_{\substack{\text{convex monotone } u\\ u(0) = 0, \ \partial_{v_j} u(v) \prec_{SD} \xi^{n-1} \forall j}} n \cdot \int_{\mathbb{R}^m_+} \left(u(v) - \langle \partial u(v), v \rangle \right) f(v) dv.$$

Question: Any explicit solutions? Any handy dual?

Applications we haven't talked about:

- Robustness of probabilistic models w.r.t. prior distribution: Kantorovich metric (aka Wasserstein or earth-mover distance)
- Allocation markets with transferable utility (Shapley-Scarf): maximal-welfare matchings are the solutions to optimal transport
- Repeated games with incomplete information lead to multi-marginal martingale transportation problems⁹
- and many others...

 $^{{}^9}$ F.Gensbittel (2015) Extensions of the Cav(u) theorem for repeated games with incomplete information on one side. Mathematics of Operations Research

The end

Applications we haven't talked about:

- Robustness of probabilistic models w.r.t. prior distribution: Kantorovich metric (aka Wasserstein or earth-mover distance)
- Allocation markets with transferable utility (Shapley-Scarf): maximal-welfare matchings are the solutions to optimal transport
- Repeated games with incomplete information lead to multi-marginal martingale transportation problems⁹
- and many others...

Thank you!

⁹F.Gensbittel (2015) Extensions of the Cav(u) theorem for repeated games with incomplete information on one side. Mathematics of Operations Research