Methods of Optimal Transportation in Bayesian Persuasion \& Auctions

Fedor Sandomirskiy
Technion, Haifa \& Higher School of Economics, St.Petersburg
e-mail: fedor.sandomirskiy@gmail.com
homepage: https://www.fedors.info/

What will we see?

Economic applications of non-classic transportation problems
Classic Transportation Problem
Given: the utility function $u:[0,1]^{2} \rightarrow \mathbb{R}$, marginals $\mu_{1}, \mu_{2} \in \Delta([0,1])$
Find:

Non-classic problems:

- free marginais: μ_{i} are not fixed but must satisfy certain constraints
- multi-marginal problems

What will we see?

Economic applications of non-classic transportation problems

Classic Transportation Problem

Given: the utility function $u:[0,1]^{2} \rightarrow \mathbb{R}$, marginals $\mu_{1}, \mu_{2} \in \Delta([0,1])$ Find:

$$
T_{u}\left(\mu_{1}, \mu_{2}\right)=\max _{\substack{\mu \in \Delta\left([0,1]^{2}\right) \\ \text { with marginals } \mu_{i}}} \int u\left(x_{1}, x_{2}\right) d \mu\left(x_{1}, x_{2}\right)
$$

Non-classic problems:

- free marginais: μ_{i} are not fixed but must satisfy certain constraints
- multi-marginal problems

What will we see?

Economic applications of non-classic transportation problems

Classic Transportation Problem

Given: the utility function $u:[0,1]^{2} \rightarrow \mathbb{R}$, marginals $\mu_{1}, \mu_{2} \in \Delta([0,1])$ Find:

$$
T_{u}\left(\mu_{1}, \mu_{2}\right)=\max _{\substack{\mu \in \Delta\left([0,1]^{2}\right) \\ \text { with marginals } \mu_{i}}} \int u\left(x_{1}, x_{2}\right) d \mu\left(x_{1}, x_{2}\right)
$$

Non-classic problems:

- free marginals: μ_{i} are not fixed but must satisfy certain constraints
- multi-marginal problems

What applications will we discuss?

- Bayesian persuasion: the key model of strategic communication
- standard setting has 1 receiver
- ≥ 2 receivers \rightarrow optimal transport ${ }^{1}$
- Optimal multi-good auctions: how to optimally sell m goods to n buyers with i.i.d. values? ${ }^{2}$

[^0]Bayesian persuasion

Bayesian persuasion (aka Information Design)

The question:

How to induce the desired behavior of a decision-maker by changing the information available to him?

- A young field. The origin:

Bayesian persuasion

E Kamenica, M Gentzkow - American Economic Review, 2011 - aeaweb.org
When is it possible for one person to persuade another to change her action? We consider a symmetric information model where a sender chooses a signal to reveal to a receiver, who then takes a noncontractible action that affects the welfare of both players. We derive ...
in 50 Cited by 949 Related articles All 38 versions

- Popularity: often explicit solutions, many applications ${ }^{3}$

[^1]Toy example: a court problem

- 75% of defendants are innocent $(\theta=0), 25 \%$ are guilty $(\theta=1)$
- Prosecutor (P) observes θ, Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

Toy example: a court problem

- 75% of defendants are innocent $(\theta=0), 25 \%$ are guilty $(\theta=1)$
- Prosecutor (P) observes θ, Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

What should P do?

- Reveal no information \Longrightarrow nobody is convicted
- Reveal $\theta \Longrightarrow 25 \%$ are convicted
- Send a signal $s \in S$ with θ-dependent probabilities $\pi_{\theta} \in \triangle(S)$

Toy example: a court problem

- 75% of defendants are innocent $(\theta=0), 25 \%$ are guilty $(\theta=1)$
- Prosecutor (P) observes θ, Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

What should P do?

- Reveal no information \Longrightarrow nobody is convicted
- Reveal $\theta \Longrightarrow 25 \%$ are convicted
- Send a signal $s \in S$ with θ-dependent probabilities $\pi_{\theta} \in \Delta(S)$:

Toy example: a court problem

- 75% of defendants are innocent $(\theta=0), 25 \%$ are guilty $(\theta=1)$
- Prosecutor (P) observes θ, Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

What should P do?

- Reveal no information \Longrightarrow nobody is convicted
- Reveal $\theta \Longrightarrow 25 \%$ are convicted
- Send a signal $s \in S$ with θ-dependent probabilities $\pi_{\theta} \in \triangle(S)$:

Toy example: a court problem

- 75% of defendants are innocent $(\theta=0), 25 \%$ are guilty $(\theta=1)$
- Prosecutor (P) observes θ, Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

What should P do?

- Reveal no information \Longrightarrow nobody is convicted
- Reveal $\theta \Longrightarrow 25 \%$ are convicted
- Send a signal $s \in S$ with θ-dependent probabilities $\pi_{\theta} \in \Delta(S)$:

Toy example: a court problem

- 75% of defendants are innocent $(\theta=0), 25 \%$ are guilty $(\theta=1)$
- Prosecutor (P) observes θ, Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

What should P do?

- Reveal no information \Longrightarrow nobody is convicted
- Reveal $\theta \Longrightarrow 25 \%$ are convicted
- Send a signal $s \in S$ with θ-dependent probabilities $\pi_{\theta} \in \Delta(S)$:
- J's posterior $x=\mathbb{P}(\theta=1 \mid s)$ and $\begin{cases}\text { convicts } & x \geq 0.5 \\ \text { acquits } & x<0.5 .\end{cases}$
- P's problem:
maximize $\mathbb{E}\left[\mathbb{I}_{x \geq 0.5}\right]$ over signlling policies (S, π)
- The optimum:

Toy example: a court problem

- 75% of defendants are innocent $(\theta=0), 25 \%$ are guilty $(\theta=1)$
- Prosecutor (P) observes θ, Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

What should P do?

- Reveal no information \Longrightarrow nobody is convicted
- Reveal $\theta \Longrightarrow 25 \%$ are convicted
- Send a signal $s \in S$ with θ-dependent probabilities $\pi_{\theta} \in \Delta(S)$:
- J's posterior $x=\mathbb{P}(\theta=1 \mid s)$ and $\begin{cases}\text { convicts } & x \geq 0.5 \\ \text { acquits } & x<0.5 .\end{cases}$
- P's problem:
maximize $\mathbb{E}\left[\mathbb{1}_{x \geq 0.5}\right] \quad$ over signlling policies (S, π)
- The optimum:

Toy example: a court problem

- 75% of defendants are innocent $(\theta=0), 25 \%$ are guilty $(\theta=1)$
- Prosecutor (P) observes θ, Judge (J) does not
- J decides: to acquit VS to convict
- J wants to convict guilty and acquit innocent
- P wants to maximize the fraction of convictions

What should P do?

- Reveal no information \Longrightarrow nobody is convicted
- Reveal $\theta \Longrightarrow 25 \%$ are convicted
- Send a signal $s \in S$ with θ-dependent probabilities $\pi_{\theta} \in \Delta(S)$:
- J's posterior $x=\mathbb{P}(\theta=1 \mid s)$ and $\begin{cases}\text { convicts } & x \geq 0.5 \\ \text { acquits } & x<0.5 .\end{cases}$
- P's problem:
maximize $\mathbb{E}\left[\mathbb{1}_{x \geq 0.5}\right]$ over signlling policies (S, π)
- The optimum: | | $S=\{$ "maybe innocent", "guilty" $\}$ | |
| :---: | :---: | :---: |
| $\pi_{\theta=0}$ | 1 | 0 |
| $\pi_{\theta=1}$ | $\frac{1}{3}$ | $\frac{2}{3}$ |

Some other applications:

- Employers and universities: $\theta=$ quality of a student (good/bad), U wants a good placement for any student, E wants good candidates.
- Explains coarse grading in schools, universities, and industries: ${ }^{4}$ "When recruiters call me up and ask me for the three best people, I tell them, "No! I will give you the names of the six best."

Robert J. Gordon, Econ. dept., Northwestern

[^2]
Some other applications:

- Employers and universities: $\theta=$ quality of a student (good/bad), U wants a good placement for any student, E wants good candidates.
- Explains coarse grading in schools, universities, and industries: ${ }^{4}$ "When recruiters call me up and ask me for the three best people, I tell them, "No! I will give you the names of the six best."

Robert J. Gordon, Econ. dept., Northwestern

- Buyers and Sellers : $\theta=$ quality of the product (good/bad), S wants to sell any product, B wants a good product.
- Explains why you cannot order the apts by rating or price on AirBNB ${ }^{5}$

[^3]
Some other applications:

- Employers and universities: $\theta=$ quality of a student (good/bad), U wants a good placement for any student, E wants good candidates.
- Explains coarse grading in schools, universities, and industries: ${ }^{4}$ "When recruiters call me up and ask me for the three best people, I tell them, "No! I will give you the names of the six best."

Robert J. Gordon, Econ. dept., Northwestern

- Buyers and Sellers : $\theta=$ quality of the product (good/bad), S wants to sell any product, B wants a good product.
- Explains why you cannot order the apts by rating or price on AirBNB ${ }^{5}$
- Police \& drivers: $\theta=$ whether the region is patrolled (yes/no). P wants D to obey the speed limit, D wants to obey only if the region is patrolled.
${ }^{4}$ Ostrovsky, Schwarz (2010) Information disclosure and unraveling in matching markets. AER
${ }^{5}$ Romanyuk, Smolin (2019) Cream skimming and information design in matching markets. AEJ

The classic model with 1 receiver

- A random state $\theta \in\{0,1\}$ with prior probability $p=\mathbb{P}(\theta=1)$
- Definition: A distribution $\mu \in \Delta([0,1])$ is a feasible distribution of posteriors if there exists ${ }^{6}$ a sigma-field ${ }^{7} \mathcal{F}$ such that $\mathbb{P}(\theta=1 \mid \mathcal{F})$ has distribution μ.

Persuasion problem

Given: prior p and utility $u=u(x)$
Find:

[^4]
The classic model with 1 receiver

- A random state $\theta \in\{0,1\}$ with prior probability $p=\mathbb{P}(\theta=1)$
- Definition: A distribution $\mu \in \Delta([0,1])$ is a feasible distribution of posteriors if there exists ${ }^{6}$ a sigma-field ${ }^{7} \mathcal{F}$ such that $\mathbb{P}(\theta=1 \mid \mathcal{F})$ has distribution μ.

Persuasion problem
Given: prior p and utility $u=u(x)$
Find:

[^5]
The classic model with 1 receiver

- A random state $\theta \in\{0,1\}$ with prior probability $p=\mathbb{P}(\theta=1)$
- Definition: A distribution $\mu \in \Delta([0,1])$ is a feasible distribution of posteriors if there exists ${ }^{6}$ a sigma-field ${ }^{7} \mathcal{F}$ such that $\mathbb{P}(\theta=1 \mid \mathcal{F})$ has distribution μ.

Persuasion problem

Given: prior p and utility $u=u(x)$

Find:

$$
V(p)=\max _{\text {feasible } \mu \in \Delta([0,1])} \int_{[0,1]} u(x) d \mu(x)
$$

[^6]
The classic model with 1 receiver

Necessary condition for feasibility (the martingale property):

$$
\int_{[0,1]} x d \mu(x)=p
$$

The classic model with 1 receiver

Necessary condition for feasibility (the martingale property):

$$
\int_{[0,1]} x d \mu(x)=p
$$

The splitting lemma (Aumann \& Maschler / Blackwell / folk)
μ is feasible $\Longleftrightarrow \int_{[0,1]} x d \mu(x)=p$.

The classic model with 1 receiver

The splitting lemma (Aumann \& Maschler / Blackwell / folk)

$$
\mu \text { is feasible } \Longleftrightarrow \int_{[0,1]} x d \mu(x)=p .
$$

Persuasion reduces to

$$
V(p)=\max _{\substack{\mu \in \Delta([0,1]): \\ \int x d \mu=p}} \int_{[0,1]} u(x) d \mu(x)
$$

The classic model with 1 receiver

The splitting lemma (Aumann \& Maschler / Blackwell / folk)

$$
\mu \text { is feasible } \Longleftrightarrow \int_{[0,1]} x d \mu(x)=p
$$

Persuasion reduces to

$$
V(p)=\max _{\substack{\mu \in \Delta([0,1]): \\ \int x d \mu=p}} \int_{[0,1]} u(x) d \mu(x)
$$

Cav [u]-theorem (Aumann \& Maschler, 60ies)

$$
V(p)=\operatorname{Cav}[u](p), \quad \text { where } \operatorname{Cav}[u]=\min _{\substack{\text { concave } f: \\ f \geq u}} f
$$

The classic model with 1 receiver

The splitting lemma (Aumann \& Maschler / Blackwell / folk)

$$
\mu \text { is feasible } \Longleftrightarrow \int_{[0,1]} x d \mu(x)=p
$$

Persuasion reduces to

$$
V(p)=\max _{\substack{\mu \in \Delta([0,1]): \\ \int x d \mu=p}} \int_{[0,1]} u(x) d \mu(x)
$$

Cav [u]-theorem (Aumann \& Maschler, 60ies)

$$
V(p)=\operatorname{Cav}[u](p), \quad \text { where } \operatorname{Cav}[u]=\min _{\substack{\text { concave } f: \\ f \geq u}} f
$$

Proof:
" $\leq:$:" $u \leq \operatorname{Cav}[u] \Rightarrow V \leq \operatorname{Cav}[u]$ by Jensen's inequality
" \geq ": $V \geq u, V$ is concave $\Rightarrow V \geq \operatorname{Cav}[u]$.

The classic model with 1 receiver

Example: back to the court

$$
p=0.25 \text { and } u(x)=\mathbb{1}_{x \geq 0.5}
$$

The function u and its concavification:

The optimal $\mu=\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{\frac{1}{2}}$.

$n \geq 2$ receivers 8

- $\theta \in\{0,1\}$ with prior probability $p=\mathbb{P}(\theta=1)$
- Definition: $\mu \in \Delta\left([0,1]^{n}\right)$ is feasible $\Longleftrightarrow \exists$ sigma-fields $\mathcal{F}_{1}, \ldots \mathcal{F}_{n}$ such that the vector of posteriors $x=\left(x_{1}, \ldots x_{n}\right) \sim \mu$, where $x_{i}=\mathbb{P}\left(\theta=1 \mid \mathcal{F}_{i}\right)$.

[^7]
$n \geq 2$ receivers 8

- $\theta \in\{0,1\}$ with prior probability $p=\mathbb{P}(\theta=1)$
- Definition: $\mu \in \Delta\left([0,1]^{n}\right)$ is feasible $\Longleftrightarrow \exists$ sigma-fields $\mathcal{F}_{1}, \ldots \mathcal{F}_{n}$ such that the vector of posteriors $x=\left(x_{1}, \ldots x_{n}\right) \sim \mu$, where $x_{i}=\mathbb{P}\left(\theta=1 \mid \mathcal{F}_{i}\right)$.

[^8]
$n \geq 2$ receivers 8

- $\theta \in\{0,1\}$ with prior probability $p=\mathbb{P}(\theta=1)$
- Definition: $\mu \in \Delta\left([0,1]^{n}\right)$ is feasible $\Longleftrightarrow \exists$ sigma-fields $\mathcal{F}_{1}, \ldots \mathcal{F}_{n}$ such that the vector of posteriors $x=\left(x_{1}, \ldots x_{n}\right) \sim \mu$, where $x_{i}=\mathbb{P}\left(\theta=1 \mid \mathcal{F}_{i}\right)$.

Persuasion problem

Given: prior p and utility $u=u(x)$

Find:

$$
V(p)=\max _{\text {feasible } \mu} \int_{[0,1]^{n}} u(x) d \mu(x)
$$

[^9]
$n \geq 2$ receivers 8

- $\theta \in\{0,1\}$ with prior probability $p=\mathbb{P}(\theta=1)$
- Definition: $\mu \in \Delta\left([0,1]^{n}\right)$ is feasible $\Longleftrightarrow \exists$ sigma-fields $\mathcal{F}_{1}, \ldots \mathcal{F}_{n}$ such that the vector of posteriors $x=\left(x_{1}, \ldots x_{n}\right) \sim \mu$, where $x_{i}=\mathbb{P}\left(\theta=1 \mid \mathcal{F}_{i}\right)$.

Persuasion problem

Given: prior p and utility $u=u(x)$

Find:

$$
V(p)=\max _{\text {feasible } \mu} \int_{[0,1]^{n}} u(x) d \mu(x)
$$

Examples with $n=2$:

- creating discord $u=\left|x_{1}-x_{2}\right|^{\alpha}$
- minimizing covariance $u=-\left(x_{1}-p\right)\left(x_{2}-p\right)$
${ }^{8}$ Arieli, I., Babichenko, Y., Sandomirskiy, F., \& Tamuz, O. (2020) Feasible Joint Posterior Beliefs

$n \geq 2$ receivers: criterion of feasibility

- For $\mu \in[0,1]^{n}$ denote the marginals by μ_{1}, \ldots, μ_{n}
- The martingale property

$$
\int_{[0,1]} x_{i} d \mu_{i}\left(x_{i}\right)=p, \quad \forall i=1, \ldots n
$$

is necessary but not sufficient for feasibility

$n \geq 2$ receivers: criterion of feasibility

- For $\mu \in[0,1]^{n}$ denote the marginals by μ_{1}, \ldots, μ_{n}
- The martingale property

$$
\int_{[0,1]} x_{i} d \mu_{i}\left(x_{i}\right)=p, \quad \forall i=1, \ldots n
$$

is necessary but not sufficient for feasibility

Criterion of feasibility

$$
\begin{gathered}
\mu \in \Delta\left([0,1]^{n}\right) \text { is feasible } \Longleftrightarrow \exists \nu^{0}, \nu^{1} \in \Delta\left([0,1]^{n}\right) \text { s.t. } \\
\mu=(1-p) \cdot \nu^{0}+p \cdot \nu^{1} \quad \text { and } \quad \frac{d \nu_{i}^{1}\left(x_{i}\right)}{d \nu_{i}^{0}\left(x_{i}\right)}=\frac{x_{i}}{1-x_{i}}, \quad \forall i=1, \ldots n
\end{gathered}
$$

$n \geq 2$ receivers: criterion of feasibility

- For $\mu \in[0,1]^{n}$ denote the marginals by μ_{1}, \ldots, μ_{n}
- The martingale property

$$
\int_{[0,1]} x_{i} d \mu_{i}\left(x_{i}\right)=p, \quad \forall i=1, \ldots n
$$

is necessary but not sufficient for feasibility

Criterion of feasibility

$$
\begin{gathered}
\mu \in \Delta\left([0,1]^{n}\right) \text { is feasible } \Longleftrightarrow \exists \nu^{0}, \nu^{1} \in \Delta\left([0,1]^{n}\right) \text { s.t. } \\
\mu=(1-p) \cdot \nu^{0}+p \cdot \nu^{1} \quad \text { and } \quad \frac{d \nu_{i}^{1}\left(x_{i}\right)}{d \nu_{i}^{0}\left(x_{i}\right)}=\frac{x_{i}}{1-x_{i}}, \quad \forall i=1, \ldots n
\end{gathered}
$$

Proof: let ν^{0} and ν^{1} be the conditional distributions of ($x_{1}, \ldots x_{n}$) given $\theta=0$ or $\theta=1$, respectively.

$n \geq 2$ receivers: persuasion as transportation

$$
V(p)=\max _{\text {feasible } \mu} \int_{[0,1]^{n}} u(x) d \mu(x)=
$$

$n \geq 2$ receivers: persuasion as transportation

$$
\begin{gathered}
V(p)=\max _{\text {feasible } \mu} \int_{[0,1]^{n}} u(x) d \mu(x)= \\
{\left[\mu=(1-p) \cdot \nu^{0}+p \cdot \nu^{1} \quad \text { s.t. marginals satisfy } \frac{d \nu_{i}^{1}\left(x_{i}\right)}{d \nu_{i}^{0}\left(x_{i}\right)}=\frac{x_{i}}{1-x_{i}}(\star)\right]}
\end{gathered}
$$

$n \geq 2$ receivers: persuasion as transportation

$$
\begin{gathered}
V(p)=\max _{\text {feasible } \mu} \int_{[0,1]^{n}} u(x) d \mu(x)= \\
{\left[\mu=(1-p) \cdot \nu^{0}+p \cdot \nu^{1} \quad \text { s.t. marginals satisfy } \frac{d \nu_{i}^{1}\left(x_{i}\right)}{d \nu_{i}^{0}\left(x_{i}\right)}=\frac{x_{i}}{1-x_{i}}(\star)\right]} \\
=\max _{\text {marginals } \nu_{i}^{\theta}:(\star) \text { holds }}\left[(1-p) \cdot \max _{\nu^{0}} \int u d \nu^{0}+p \cdot \max _{\nu^{1}} \int u d \nu^{1}\right]
\end{gathered}
$$

$n \geq 2$ receivers: persuasion as transportation

$$
\begin{gathered}
V(p)=\max _{\text {feasible } \mu} \int_{[0,1]^{n}} u(x) d \mu(x)= \\
{\left[\mu=(1-p) \cdot \nu^{0}+p \cdot \nu^{1} \quad \text { s.t. marginals satisfy } \frac{d \nu_{i}^{1}\left(x_{i}\right)}{d \nu_{i}^{0}\left(x_{i}\right)}=\frac{x_{i}}{1-x_{i}}(\star)\right]} \\
=\max _{\text {marginals } \nu_{i}^{\theta}:(\star) \text { holds }}\left[(1-p) \cdot \max _{\nu^{0}} \int u d \nu^{0}+p \cdot \max _{\nu^{1}} \int u d \nu^{1}\right]
\end{gathered}
$$

Conclusion

$$
V(p)=\max _{\text {marginals } \nu_{i}^{\theta}:(\star) \text { holds }}\left[(1-p) T\left(\nu_{1}^{0}, \nu_{2}^{0}\right)+p \cdot T\left(\nu_{1}^{1}, \nu_{2}^{1}\right)\right] .
$$

$n=2$ receivers: some explicit solutions for $p=\frac{1}{2}$

- $u=\left|x_{1}-x_{2}\right|^{\alpha}$ with $\alpha \in(0,2]$.

$n=2$ receivers: some explicit solutions for $p=\frac{1}{2}$

- $u=\left|x_{1}-x_{2}\right|^{\alpha}$ with $\alpha \in(0,2]$. Optimal μ :

$n=2$ receivers: some explicit solutions for $p=\frac{1}{2}$

- $u=\left|x_{1}-x_{2}\right|^{\alpha}$ with $\alpha \in(0,2]$. Optimal μ :

- $\min \operatorname{Cov}\left(x_{1}, x_{2}\right)=? ? ? ?$

$n=2$ receivers: some explicit solutions for $p=\frac{1}{2}$

- $u=\left|x_{1}-x_{2}\right|^{\alpha}$ with $\alpha \in(0,2]$. Optimal μ :

- min $\operatorname{Cov}\left(x_{1}, x_{2}\right)=-\frac{1}{32}$. Optimal μ :

$n \geq 2$ receivers: how to solve?

Each approach works for u from the last slide:

- Direct approach
- Dual approach
- Hilbert-space approach (in the paper)

$n \geq 2$ receivers: how to solve?

Each approach works for u from the last slide:

- Direct approach
- For $n=2$ with quadratic $u\left(x_{1}, x_{2}\right)$, the transportation problem has explicit solutions: anti-monotone coupling
- Maximization over marginals $=$ an exercise in the calculus of variations
- Dual approach
- Hilbert-space approach (in the paper)

$n \geq 2$ receivers: how to solve?

Each approach works for u from the last slide:

- Direct approach
- Dual approach

An analog of Kantorovich-Rubinstein duality:

$$
\begin{aligned}
V(p) & =\min _{\text {functions }\left(f_{i}\right)_{i=1 \ldots n}}\left[(1-p) \cdot \max _{x}\left(u(x)+\sum_{i=1}^{n} x_{i} \cdot f_{i}\left(x_{i}\right)\right)+\right. \\
& \left.+p \cdot \max _{x}\left(u(x)-\sum_{i=1}^{n}\left(1-x_{i}\right) f_{i}\left(x_{i}\right)\right)\right]
\end{aligned}
$$

Guess primal and dual solutions: zero gap ensures optimality.

- Hilbert-space approach (in the paper)

$n \geq 2$ receivers: how to solve?

Each approach works for u from the last slide:

- Direct approach
- Dual approach
- Hilbert-space approach (in the paper)
- $\xi \rightarrow \mathbb{E}[\xi \mid \mathcal{F}]$ is an orthogonal projection in L^{2}
- quadratic objective u can be expressed through scalar products in L^{2} - \Rightarrow a simple optimization problem on the sphere!

$n \geq 2$ receivers: how to solve?

Each approach works for u from the last slide:

- Direct approach
- Dual approach
- Hilbert-space approach (in the paper)
- $\xi \rightarrow \mathbb{E}[\xi \mid \mathcal{F}]$ is an orthogonal projection in L^{2}
- $\{$ all orthogonal projections of $\xi\}=$ the sphere of radius $\frac{\|\xi\|}{2}$ centered at $\frac{\xi}{2}$
- quadratic objective u can be expressed through scalar products in L^{2} - \Rightarrow a simple optimization problem on the sphere!

$n \geq 2$ receivers: how to solve?

Each approach works for u from the last slide:

- Direct approach
- Dual approach
- Hilbert-space approach (in the paper)
- $\xi \rightarrow \mathbb{E}[\xi \mid \mathcal{F}]$ is an orthogonal projection in L^{2}
- $\{$ all orthogonal projections of $\xi\}=$ the sphere of radius $\frac{\|\xi\|}{2}$ centered at $\frac{\xi}{2}$
- quadratic objective u can be expressed through scalar products in L^{2}
- \Rightarrow a simple optimization problem on the sphere!

$n \geq 2$ receivers: how to solve?

Each approach works for u from the last slide:

- Direct approach
- Dual approach
- Hilbert-space approach (in the paper)
- $\xi \rightarrow \mathbb{E}[\xi \mid \mathcal{F}]$ is an orthogonal projection in L^{2}
- \{all orthogonal projections of $\xi\}=$ the sphere of radius $\frac{\|\xi\|}{2}$ centered at $\frac{\xi}{2}$
- quadratic objective u can be expressed through scalar products in L^{2}
- \Rightarrow a simple optimization problem on the sphere!

$n \geq 2$ receivers: how to solve?

Each approach works for u from the last slide:

- Direct approach
- Dual approach
- Hilbert-space approach (in the paper)

Open question: Anything beyond quadratic u ? Other sources of explicit solutions?

$n \geq 2$ receivers: general property of solutions

- Persuasion problem is an infinite-dimensional LP: maximization of a linear functional over a convex set of feasible distributions μ
- Bauer's principle: optimum is at an extreme points

$n \geq 2$ receivers: general property of solutions

- Persuasion problem is an infinite-dimensional LP: maximization of a linear functional over a convex set of feasible distributions μ
- Bauer's principle: optimum is at an extreme points

$n \geq 2$ receivers: general property of solutions

- Persuasion problem is an infinite-dimensional LP:
maximization of a linear functional over a convex set of feasible distributions μ
- Bauer's principle: optimum is at an extreme points

What we know about extreme points?

$n \geq 2$ receivers: general property of solutions

- Persuasion problem is an infinite-dimensional LP: maximization of a linear functional over a convex set of feasible distributions μ
- Bauer's principle: optimum is at an extreme points

What we know about extreme points?

- There are extreme μ with countable support:

- Extreme μ are supported on a subset of $[0,1]^{n}$ of zero Lebesgue measure (a corollary of the theorem by Lindenstrauss (1965))

$n \geq 2$ receivers: general property of solutions

- Persuasion problem is an infinite-dimensional LP: maximization of a linear functional over a convex set of feasible distributions μ
- Bauer's principle: optimum is at an extreme points

What we know about extreme points?

- There are extreme μ with countable support:

- Extreme μ are supported on a subset of $[0,1]^{n}$ of zero Lebesgue measure (a corollary of the theorem by Lindenstrauss (1965))

Question: Non-atomic extreme μ ?

Optimal way to sell multiple goods

The model

- n agents, m goods
- values $v_{i, j}$ are i.i.d. with density f

How to maximize revenue from selling? Assumptions:

- f is known, realizations of $v_{i, j}$ are not
- each agent acts in his best interests

The model

- n agents, m goods
- values $v_{i, j}$ are i.i.d. with density f

How to maximize revenue from selling? Assumptions:

- f is known, realizations of $v_{i, j}$ are not
- each agent acts in his best interests

The model

- n agents, m goods
- values $v_{i, j}$ are i.i.d. with density f

How to maximize revenue from selling? Assumptions:

- f is known, realizations of $v_{i, j}$ are not
- each agent acts in his best interests

What is known?

- $n \geq 2, m=1$ (the classic auction theory): everything
- $n=1, m \geq 2$ (selling many goods to one agent):
- optimal mechanisms in particular cases
- connections to optimal transport
- $n \geq 2, m \geq 2$ (auctions with multiple goods): nothing

Warm-up: $n=m=1$

- How to sell one good to one agent with the value $v \sim f(v) d v$?

Warm-up: $n=m=1$

- How to sell one good to one agent with the value $v \sim f(v) d v$?
- "take it or leave it"-mechanism:
- either pay p and get the good
- or pay 0 and get nothing

Warm-up: $n=m=1$

- How to sell one good to one agent with the value $v \sim f(v) d v$?
- "take it or leave it"-mechanism:
- either pay p and get the good
- or pay 0 and get nothing
the best choice of the price $p^{*}=\arg \max _{p} p \cdot \int_{p}^{\infty} f(v) d v$

Warm-up: $n=m=1$

- How to sell one good to one agent with the value $v \sim f(v) d v$?
- "take it or leave it"-mechanism:
- either pay p and get the good
- or pay 0 and get nothing
the best choice of the price $p^{*}=\arg \max _{p} p \cdot \int_{p}^{\infty} f(v) d v$

Theorem (Myerson (1981))

Take it or leave it with p^{*} is the optimal mechanism

$m \geq 2$ goods, $n=1$ agent: optimal mechanisms

- the agent has i.i.d. values $v=\left(v_{1}, \ldots, v_{m}\right) \sim f(v) d v$
- if the agent gets the bundle of goods $x=\left(x_{1}, \ldots, x_{m}\right) \in[0,1]^{m}$ for price p, his utility is $\langle x, v\rangle-p$
- Is selling each good separately always optimal?
- Is bundling all goods together always optimal?
- Is $x \in\{0,1\}^{m}$ enough?
- menu mechanism: chose the best option from the menu
- pay 0 get 0
- pay p get x
- pay p^{\prime} pay x^{\prime}
- the agent has i.i.d. values $v=\left(v_{1}, \ldots, v_{m}\right) \sim f(v) d v$
- if the agent gets the bundle of goods $x=\left(x_{1}, \ldots, x_{m}\right) \in[0,1]^{m}$ for price p, his utility is $\langle x, v\rangle-p$
- Is selling each good separately always optimal?
- Is bundling all goods together always optimal?
- Is $x \in\{0,1\}^{m}$ enough?
- menu mechanism: chose the best option from the menu
- pay 0 get 0
- pay p get x
- pay P^{\prime} pay x^{\prime}
- the agent has i.i.d. values $v=\left(v_{1}, \ldots, v_{m}\right) \sim f(v) d v$
- if the agent gets the bundle of goods $x=\left(x_{1}, \ldots, x_{m}\right) \in[0,1]^{m}$ for price p, his utility is $\langle x, v\rangle-p$
- Is selling each good separately always optimal?
- Is bundling all goods together always optimal?
- Is $x \in\{0,1\}^{m}$ enough?
- menu mechanism: chose the best option from the menu
- the agent has i.i.d. values $v=\left(v_{1}, \ldots, v_{m}\right) \sim f(v) d v$
- if the agent gets the bundle of goods $x=\left(x_{1}, \ldots, x_{m}\right) \in[0,1]^{m}$ for price p, his utility is $\langle x, v\rangle-p$
- Is selling each good separately always optimal? No
- Is bundling all goods together always optimal?
- Is $x \in\{0,1\}^{m}$ enough?
- menu mechanism: chose the best option from the menu
- the agent has i.i.d. values $v=\left(v_{1}, \ldots, v_{m}\right) \sim f(v) d v$
- if the agent gets the bundle of goods $x=\left(x_{1}, \ldots, x_{m}\right) \in[0,1]^{m}$ for price p, his utility is $\langle x, v\rangle-p$
- Is selling each good separately always optimal? No
- Is bundling all goods together always optimal?
- Is $x \in\{0,1\}^{m}$ enough?
- menu mechanism: chose the best option from the menu
- the agent has i.i.d. values $v=\left(v_{1}, \ldots, v_{m}\right) \sim f(v) d v$
- if the agent gets the bundle of goods $x=\left(x_{1}, \ldots, x_{m}\right) \in[0,1]^{m}$ for price p, his utility is $\langle x, v\rangle-p$
- Is selling each good separately always optimal? No
- Is bundling all goods together always optimal? No
- Is $x \in\{0,1\}^{m}$ enough?
- menu mechanism: chose the best option from the menu
- the agent has i.i.d. values $v=\left(v_{1}, \ldots, v_{m}\right) \sim f(v) d v$
- if the agent gets the bundle of goods $x=\left(x_{1}, \ldots, x_{m}\right) \in[0,1]^{m}$ for price p, his utility is $\langle x, v\rangle-p$
- Is selling each good separately always optimal? No
- Is bundling all goods together always optimal? No
- Is $x \in\{0,1\}^{m}$ enough?
- menu mechanism: chose the best option from the menu
- the agent has i.i.d. values $v=\left(v_{1}, \ldots, v_{m}\right) \sim f(v) d v$
- if the agent gets the bundle of goods $x=\left(x_{1}, \ldots, x_{m}\right) \in[0,1]^{m}$ for price p, his utility is $\langle x, v\rangle-p$
- Is selling each good separately always optimal? No
- Is bundling all goods together always optimal? No
- Is $x \in\{0,1\}^{m}$ enough? No
- menu mechanism: chose the best option from the menu
- the agent has i.i.d. values $v=\left(v_{1}, \ldots, v_{m}\right) \sim f(v) d v$
- if the agent gets the bundle of goods $x=\left(x_{1}, \ldots, x_{m}\right) \in[0,1]^{m}$ for price p, his utility is $\langle x, v\rangle-p$
- Is selling each good separately always optimal? No
- Is bundling all goods together always optimal? No
- Is $x \in\{0,1\}^{m}$ enough? No
- menu mechanism: chose the best option from the menu
- pay 0 get 0
- pay p get x
- pay p^{\prime} pay x^{\prime}
-

$m \geq 2$ goods, $n=1$ agent: optimal mechanisms

- the agent has i.i.d. values $v=\left(v_{1}, \ldots, v_{m}\right) \sim f(v) d v$
- if the agent gets the bundle of goods $x=\left(x_{1}, \ldots, x_{m}\right) \in[0,1]^{m}$ for price p, his utility is $\langle x, v\rangle-p$
- Is selling each good separately always optimal? No
- Is bundling all goods together always optimal? No
- Is $x \in\{0,1\}^{m}$ enough? No
- menu mechanism: chose the best option from the menu
- pay 0 get 0
- pay p get x
- pay p^{\prime} pay x^{\prime}
-

Revelation principle

Any mechanism is equivalent to a menu mechanism.

- the menu $M \subset \mathbb{R}_{+} \times[0,1]^{m}$
- utility obtained by an agent with values $v=\left(v_{1}, \ldots, v_{m}\right)$
u_{M} is convex and
- the menu $M \subset \mathbb{R}_{+} \times[0,1]^{m}$
- utility obtained by an agent with values $v=\left(v_{1}, \ldots, v_{m}\right)$:

$$
u_{M}(v)=\max _{(p, x) \in M}\langle x, v\rangle-p
$$

- u_{M} is convex and
- the menu $M \subset \mathbb{R}_{+} \times[0,1]^{m}$
- utility obtained by an agent with values $v=\left(v_{1}, \ldots, v_{m}\right)$:

$$
u_{M}(v)=\max _{(p, x) \in M}\langle x, v\rangle-p
$$

- u_{M} is convex and

$$
x(v)=\partial u_{M}(v), \quad p(v)=u_{M}(v)-\langle x(v), v\rangle
$$

$m \geq 2$ goods, $n=1$ agent: finding optimal menus

- the menu $M \subset \mathbb{R}_{+} \times[0,1]^{m}$
- utility obtained by an agent with values $v=\left(v_{1}, \ldots, v_{m}\right)$:

$$
u_{M}(v)=\max _{(p, x) \in M}\langle x, v\rangle-p,
$$

- u_{M} is convex and

$$
x(v)=\partial u_{M}(v), \quad p(v)=u_{M}(v)-\langle x(v), v\rangle
$$

Theorem (Rochet and Chone (1998))
$M \leftrightarrow u_{M}$ is a bijection between menus and convex u_{M} with $u_{M}(0)=0$ and $\partial u_{M} \in[0,1]^{m}$.

$m \geq 2$ goods, $n=1$ agent: finding optimal menus

- the menu $M \subset \mathbb{R}_{+} \times[0,1]^{m}$
- utility obtained by an agent with values $v=\left(v_{1}, \ldots, v_{m}\right)$:

$$
u_{M}(v)=\max _{(p, x) \in M}\langle x, v\rangle-p
$$

- u_{M} is convex and

$$
x(v)=\partial u_{M}(v), \quad p(v)=u_{M}(v)-\langle x(v), v\rangle
$$

Theorem (Rochet and Chone (1998))

$M \leftrightarrow u_{M}$ is a bijection between menus and convex u_{M} with $u_{M}(0)=0$ and $\partial u_{M} \in[0,1]^{m}$.

Revenue maximization becomes:

$$
R_{m}(f)=\max _{\substack{\text { convex } u \\ u(0)=0, \partial u \in[0,1]^{m}}}^{\int_{\mathbb{R}_{+}^{m}}(u(v)-\langle\partial u(v), v\rangle) f(v) d v . . .}
$$

$m \geq 2$ goods, $n=1$ agent: finding optimal menus

- the menu $M \subset \mathbb{R}_{+} \times[0,1]^{m}$
- utility obtained by an agent with values $v=\left(v_{1}, \ldots, v_{m}\right)$:

$$
u_{M}(v)=\max _{(p, x) \in M}\langle x, v\rangle-p
$$

- u_{M} is convex and

$$
x(v)=\partial u_{M}(v), \quad p(v)=u_{M}(v)-\langle x(v), v\rangle
$$

Theorem (Rochet and Chone (1998))

$M \leftrightarrow u_{M}$ is a bijection between menus and convex u_{M} with $u_{M}(0)=0$ and $\partial u_{M} \in[0,1]^{m}$.

Revenue maximization becomes:

$$
R_{m}(f)=\max _{\substack{\text { convex } u \\ u(0)=0, \partial u \in[0,1]^{m}}}^{\int_{\mathbb{R}_{+}^{m}}(u(v)-\langle\partial u(v), v\rangle) f(v) d v . . .}
$$

$m \geq 2$ goods, $n=1$ agent: finding optimal menus

- the menu $M \subset \mathbb{R}_{+} \times[0,1]^{m}$
- utility obtained by an agent with values $v=\left(v_{1}, \ldots, v_{m}\right)$:

$$
u_{M}(v)=\max _{(p, x) \in M}\langle x, v\rangle-p
$$

- u_{M} is convex and

$$
x(v)=\partial u_{M}(v), \quad p(v)=u_{M}(v)-\langle x(v), v\rangle
$$

Theorem (Rochet and Chone (1998))

$M \leftrightarrow u_{M}$ is a bijection between menus and convex u_{M} with $u_{M}(0)=0$ and $\partial u_{M} \in[0,1]^{m}$.

Revenue maximization becomes:

$$
R_{m}(f)=\max _{\substack{\text { convex } u \\ u(0)=0, \partial u \in[0,1]^{m}}}^{\int_{\mathbb{R}_{+}^{m}}(u(v)-\langle\partial u(v), v\rangle) f(v) d v . . .}
$$

$$
R_{m}(f)=\max _{\substack{\text { convex } u \\ u(0)=0, \partial u \in[0,1]^{m}}} \int_{\mathbb{R}_{+}^{m}}(u(v)-\langle\partial u(v), v\rangle) f(v) d v
$$

$$
\begin{gathered}
R_{m}(f)=\begin{array}{cc}
\max _{\substack{\text { convex }}} \int_{\mathbb{R}_{+}^{m}}(u(v)-\langle\partial u(v), v\rangle) f(v) d v= \\
u(0)=0, \partial u \in[0,1]^{m}
\end{array} \\
{[\text { integrating by parts }]}
\end{gathered}
$$

$$
\begin{aligned}
& R_{m}(f)= \max _{\substack{\text { convex } \\
u(0)=0, \partial u \in[0,1]^{m}}} \int_{\mathbb{R}_{+}^{m}}(u(v)-\langle\partial u(v), v\rangle) f(v) d v= \\
& \quad[\text { integrating by parts] }] \\
&= \max _{\substack{\text { convex } u \\
u(0)=0, \partial u \in[0,1]^{m}}} \int_{\mathbb{R}_{q}^{m}} u(v) d \psi,
\end{aligned}
$$

where $d \psi=\left((m+1) f(v)+\sum_{j=1}^{m} v_{i} \partial_{v_{i}} f\right) d v$ (not necessary positive!)

$$
R_{m}(f)=\max _{\substack{\text { convex } u \\ u(0)=0, \partial u \in[0,1]^{m}}} \int_{\mathbb{R}_{+}^{m}} u(v) d \psi
$$

What is the dual problem?

$$
R_{m}(f)=\max _{\substack{\text { convex } u \\ u(0)=0, \partial u \in[0,1]^{m}}} \int_{\mathbb{R}_{+}^{m}} u(v) d \psi
$$

What is the dual problem?

Definition: 2nd-order stochastic dominance

$$
\phi \succ_{S D} \nu \Longleftrightarrow \int g d \phi \geq \int g d \nu \text { for any convex monotone } \mathrm{g}
$$

$$
R_{m}(f)=\max _{\substack{\text { convex } u \\ u(0)=0, \partial u \in[0,1]^{m}}} \int_{\mathbb{R}_{+}^{m}} u(v) d \psi
$$

What is the dual problem?

Definition: 2nd-order stochastic dominance

$$
\phi \succ_{S D} \nu \Longleftrightarrow \int g d \phi \geq \int g d \nu \text { for any convex monotone } \mathrm{g}
$$

Theorem (Daskalakis et al (2017))

$$
R_{m}(f)=\min _{\substack{\text { positive measures } \mu}} \int_{\mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{m}}\left\|v-v^{\prime}\right\|_{1} d \mu\left(v, v^{\prime}\right)
$$

$m \geq 2$ goods, $n=1$ agent: optimal menus and transportation

Definition: 2nd-order stochastic dominance

$$
\phi \succ_{S D} \nu \Longleftrightarrow \int g d \phi \geq \int g d \nu \text { for any convex monotone } \mathrm{g}
$$

Theorem (Daskalakis et al (2017))

$$
R_{m}(f)=\min _{\substack{\text { positive measures } \mu \\ \text { on } \mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{m} \\ \mu_{1}-\mu_{2} \succ S D}} \int_{\mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{m}}\left\|v-v^{\prime}\right\|_{1} d \mu\left(v, v^{\prime}\right)
$$

Explicit solutions for $m=2$:

- Uniform on $[0,1]$: each good for $\frac{2}{3}$ or both for $\frac{4-\sqrt{2}}{3}$
- Exponential: sell the goods only together
- Beta distribution $C v^{\alpha-1}(1-v)^{\beta-1} d v$: continual menu!!!

$m \geq 2$ goods, $n=1$ agent: optimal menus and transportation

Definition: 2nd-order stochastic dominance

$$
\phi \succ_{S D} \nu \Longleftrightarrow \int g d \phi \geq \int g d \nu \text { for any convex monotone } \mathrm{g}
$$

Theorem (Daskalakis et al (2017))

$$
R_{m}(f)=\min _{\substack{\text { positive measures } \mu \\ \text { on } \mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{m} \\ \mu_{1}-\mu_{2} \succ S D}} \int_{\mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{m}}\left\|v-v^{\prime}\right\|_{1} d \mu\left(v, v^{\prime}\right)
$$

Explicit solutions for $m=2$:

- Uniform on $[0,1]$: each good for $\frac{2}{3}$ or both for $\frac{4-\sqrt{2}}{3}$
- Exponential: sell the goods only together
- Beta distribution Cv ${ }^{\alpha-1}(1-v)^{\beta-1} d v$: continual menu!!!

$m \geq 2$ goods, $n=1$ agent: optimal menus and transportation

Definition: 2nd-order stochastic dominance

$$
\phi \succ_{S D} \nu \Longleftrightarrow \int g d \phi \geq \int g d \nu \text { for any convex monotone } \mathrm{g}
$$

Theorem (Daskalakis et al (2017))

$$
R_{m}(f)=\min _{\substack{\text { positive measures } \\ \text { on } \mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{m} \\ \mu_{1}-\mu_{2} \succ S D}} \int_{\mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{m}}\left\|v-v^{\prime}\right\|_{1} d \mu\left(v, v^{\prime}\right)
$$

Explicit solutions for $m=2$:

- Uniform on $[0,1]$: each good for $\frac{2}{3}$ or both for $\frac{4-\sqrt{2}}{3}$
- Exponential: sell the goods only together
- Beta distribution $C v^{\alpha-1}(1-v)^{\beta-1} d v$: continual menu!!!

$m \geq 2$ goods, $n \geq 2$ agents?!?

Open problem: Optimal mechanisms for $n, m \geq 2$?

- Even $m=n=2$ with i.i.d. uniform values is open.

Open problem: Optimal mechanisms for $n, m \geq 2$?

- Even $m=n=2$ with i.i.d. uniform values is open.

Can we use the same approach?

$m \geq 2$ goods, $n \geq 2$ agents?!?

Can we use the same approach? To some extent:

- Border's theorem ${ }^{9}$ reduces the question to 1 -agent mechanisms.
- As before: 1-agent mechanisms \leftrightarrow convex u
- Border's theorem \rightarrow new constraint on u subsuming $\partial u \in[0,1]^{m}$ $\partial_{v_{j}} u(v) \prec_{S D} \xi^{n-1} \quad \forall j=1, \ldots m$,
where v is random with density f and ξ is uniform on $[0,1]$

[^10]
$m \geq 2$ goods, $n \geq 2$ agents?!?

Can we use the same approach? To some extent:

- Border's theorem ${ }^{9}$ reduces the question to 1 -agent mechanisms.
- As before: 1-agent mechanisms \leftrightarrow convex u
- Border's theorem \rightarrow new constraint on u subsuming $\partial u \in[0,1]^{m}$

$$
\partial_{v_{j}} u(v) \prec_{S D} \xi^{n-1} \quad \forall j=1, \ldots m,
$$

where v is random with density f and ξ is uniform on $[0,1]$

[^11]Can we use the same approach? To some extent:

- Border's theorem ${ }^{9}$ reduces the question to 1 -agent mechanisms.
- As before: 1-agent mechanisms \leftrightarrow convex u
- Border's theorem \rightarrow new constraint on u subsuming $\partial u \in[0,1]^{m}$:

$$
\partial_{v_{j}} u(v) \prec_{S D} \xi^{n-1} \quad \forall j=1, \ldots m,
$$

where v is random with density f and ξ is uniform on $[0,1]$.

[^12]
$m \geq 2$ goods, $n \geq 2$ agents?!?

Can we use the same approach? To some extent:

- Border's theorem reduces the question to 1 -agent mechanisms.
- As before: 1-agent mechanisms \leftrightarrow convex u
- Border's theorem \rightarrow new constraint on u subsuming $\partial u \in[0,1]^{m}$:

$$
\partial_{v_{j}} u(v) \prec_{S D} \xi^{n-1} \quad \forall j=1, \ldots m,
$$

where v is random with density f and ξ is uniform on $[0,1]$.

Corollary:

$$
R_{n, m}(f)=\underset{\substack{\text { convex monotone } u}}{\max } n \cdot \int_{\mathbb{R}_{+}^{m}}(u(v)-\langle\partial u(v), v\rangle) f(v) d v
$$

$m \geq 2$ goods, $n \geq 2$ agents?!?

Can we use the same approach? To some extent:

- Border's theorem reduces the question to 1 -agent mechanisms.
- As before: 1-agent mechanisms \leftrightarrow convex u
- Border's theorem \rightarrow new constraint on u subsuming $\partial u \in[0,1]^{m}$:

$$
\partial_{v_{j}} u(v) \prec \prec_{S D} \xi^{n-1} \quad \forall j=1, \ldots m,
$$

where v is random with density f and ξ is uniform on $[0,1]$.

Corollary:

$$
R_{n, m}(f)=\max _{\text {convex monotone } u} n \cdot \int_{\mathbb{R}_{+}^{m}}(u(v)-\langle\partial u(v), v\rangle) f(v) d v .
$$

Question: Any explicit solutions? Any handy dual?

The end

Applications we haven't talked about:

- Robustness of probabilistic models w.r.t. prior distribution: Kantorovich metric (aka Wasserstein or earth-mover distance)
- Allocation markets with transferable utility (Shapley-Scarf): maximal-welfare matchings are the solutions to optimal transport
- Repeated games with incomplete information lead to multi-marginal martingale transportation problems ${ }^{9}$
- and many others...

[^13]
The end

Applications we haven't talked about:

- Robustness of probabilistic models w.r.t. prior distribution: Kantorovich metric (aka Wasserstein or earth-mover distance)
- Allocation markets with transferable utility (Shapley-Scarf): maximal-welfare matchings are the solutions to optimal transport
- Repeated games with incomplete information lead to multi-marginal martingale transportation problems ${ }^{9}$
- and many others...

Thank you!

[^14]
[^0]: ${ }^{1}$ Arieli, I., Babichenko, Y., Sandomirskiy, F., \& Tamuz, O. (2020) Feasible Joint Posterior Beliefs
 ${ }^{2}$ C.Daskalakis, A.Deckelbaum, C.Tzamos (2017) Strong Duality for a Multiple-Good Monopolist Econometrica

[^1]: ${ }^{3}$ E. Kamenica (2019) Bayesian persuasion and information design Annual Review of Economics

[^2]: ${ }^{4}$ Ostrovsky, Schwarz (2010) Information disclosure and unraveling in matching markets. AER

[^3]: ${ }^{4}$ Ostrovsky, Schwarz (2010) Information disclosure and unraveling in matching markets. AER
 ${ }^{5}$ Romanyuk, Smolin (2019) Cream skimming and information design in matching markets. AEJ

[^4]: ${ }^{6}$ The probability space must be rich enough, say $[0,1]$ with the Lebesgue measure.
 Interpretation: \mathcal{F} is generated by a signal: $\mathcal{F}=\sigma(s)$

[^5]: ${ }^{6}$ The probability space must be rich enough, say $[0,1]$ with the Lebesgue measure. ${ }^{7}$ Interpretation: \mathcal{F} is generated by a signal: $\mathcal{F}=\sigma(s)$

[^6]: ${ }^{6}$ The probability space must be rich enough, say $[0,1]$ with the Lebesgue measure. ${ }^{7}$ Interpretation: \mathcal{F} is generated by a signal: $\mathcal{F}=\sigma(s)$

[^7]: ${ }^{8}$ Arieli, I., Babichenko, Y., Sandomirskiy, F., \& Tamuz, O. (2020) Feasible Joint Posterior Beliefs

[^8]: ${ }^{8}$ Arieli, I., Babichenko, Y., Sandomirskiy, F., \& Tamuz, O. (2020) Feasible Joint Posterior Beliefs

[^9]: ${ }^{8}$ Arieli, I., Babichenko, Y., Sandomirskiy, F., \& Tamuz, O. (2020) Feasible Joint Posterior Beliefs

[^10]: ${ }^{9}$ S.Hart, P.Reny (2015) Implementation of reduced form mechanisms: a simple approach and a new characterization Economic Theory Bulletin

[^11]: ${ }^{9}$ S.Hart, P.Reny (2015) Implementation of reduced form mechanisms: a simple approach and a new characterization Economic Theory Bulletin

[^12]: ${ }^{9}$ S.Hart, P.Reny (2015) Implementation of reduced form mechanisms: a simple approach and a new characterization Economic Theory Bulletin

[^13]: ${ }^{9}$ F.Gensbittel (2015) Extensions of the $\operatorname{Cav}(u)$ theorem for repeated games with incomplete information on one side. Mathematics of Operations Research

[^14]: ${ }^{9}$ F.Gensbittel (2015) Extensions of the $\operatorname{Cav}(u)$ theorem for repeated games with incomplete information on one side. Mathematics of Operations Research

