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What will we see?

Economic applications of non-classic transportation problems

Classic Transportation Problem

Given: the utility function u : [0, 1]2 → R, marginals µ1, µ2 ∈ ∆([0, 1])

Find:

Tu(µ1, µ2) = max
µ ∈ ∆([0, 1]2)

with marginals µi

∫
u(x1, x2)dµ(x1, x2).

Non-classic problems:

• free marginals: µi are not fixed but must satisfy certain constraints

• multi-marginal problems

2
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What applications will we discuss?

• Bayesian persuasion: the key model of strategic communication

• standard setting has 1 receiver

• ≥ 2 receivers → optimal transport1

• Optimal multi-good auctions: how to optimally sell m goods to n

buyers with i.i.d. values?2

1Arieli, I., Babichenko, Y., Sandomirskiy, F., & Tamuz, O. (2020) Feasible Joint

Posterior Beliefs
2C.Daskalakis, A.Deckelbaum, C.Tzamos (2017) Strong Duality for a Multiple-Good

Monopolist Econometrica
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Bayesian persuasion
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Bayesian persuasion (aka Information Design)

The question:

How to induce the desired behavior of a decision-maker by changing the

information available to him?

• A young field. The origin:

• Popularity: often explicit solutions, many applications3

3E. Kamenica (2019) Bayesian persuasion and information design Annual Review of

Economics
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Toy example: a court problem

• 75% of defendants are innocent (θ = 0), 25% are guilty (θ = 1)

• Prosecutor (P) observes θ, Judge (J) does not

• J decides: to acquit VS to convict

• J wants to convict guilty and acquit innocent

• P wants to maximize the fraction of convictions

6
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What should P do?
• Reveal no information =⇒ nobody is convicted

• Reveal θ =⇒ 25% are convicted

• Send a signal s ∈ S with θ-dependent probabilities πθ ∈ ∆(S):

• J’s posterior x = P(θ = 1 | s) and

{
convicts x ≥ 0.5

acquits x < 0.5.

• P’s problem:

maximize E
[
1x≥0.5

]
over signlling policies (S , π)

• The optimum:

S =
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“maybe innocent”, “guilty”

}
πθ=0 1 0

πθ=1
1
3
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Some other applications:

• Employers and universities: θ =quality of a student (good/bad),

U wants a good placement for any student, E wants good

candidates.

• Explains coarse grading in schools, universities, and industries:4

“When recruiters call me up and ask me for the three best people, I tell

them, “No! I will give you the names of the six best.”

Robert J. Gordon, Econ. dept., Northwestern

4Ostrovsky, Schwarz (2010) Information disclosure and unraveling in matching

markets. AER

7
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• Buyers and Sellers : θ = quality of the product (good/bad), S wants

to sell any product, B wants a good product.

• Explains why you cannot order the apts by rating or price on

AirBNB5
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• Buyers and Sellers : θ = quality of the product (good/bad), S wants

to sell any product, B wants a good product.

• Explains why you cannot order the apts by rating or price on

AirBNB5

• Police & drivers: θ = whether the region is patrolled (yes/no).

P wants D to obey the speed limit, D wants to obey only if the

region is patrolled.
4Ostrovsky, Schwarz (2010) Information disclosure and unraveling in matching

markets. AER
5Romanyuk, Smolin (2019) Cream skimming and information design in matching

markets. AEJ 7
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The classic model with 1 receiver

• A random state θ ∈ {0, 1} with prior probability p = P(θ = 1)

• Definition: A distribution µ ∈ ∆([0, 1]) is a feasible distribution of

posteriors if there exists6 a sigma-field7 F such that P(θ = 1 | F)

has distribution µ.

Persuasion problem

Given: prior p and utility u = u(x)

Find:

V (p) = max
feasible µ ∈ ∆([0, 1])

∫
[0,1]

u(x)dµ(x)

6The probability space must be rich enough, say [0, 1] with the Lebesgue measure.
7Interpretation: F is generated by a signal: F = σ(s)

8
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The classic model with 1 receiver

Necessary condition for feasibility (the martingale property):∫
[0,1]

xdµ(x) = p
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µ is feasible ⇐⇒
∫

[0,1]
xdµ(x) = p.

Persuasion reduces to

V (p) = max
µ ∈ ∆([0, 1]) :∫

xdµ = p

∫
[0,1]

u(x)dµ(x)

Cav [u]-theorem (Aumann & Maschler, 60ies)

V (p) = Cav [u](p), where Cav [u] = min
concave f :

f ≥ u

f

Proof:

“≤:” u ≤ Cav [u] ⇒ V ≤ Cav [u] by Jensen’s inequality

“≥”: V ≥ u, V is concave ⇒ V ≥ Cav [u].
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The classic model with 1 receiver

Example: back to the court

p = 0.25 and u(x) = 1x≥0.5

The function u and its concavification:

The optimal µ = 1
2δ0 + 1

2δ 1
2
.
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n ≥ 2 receivers8

• θ ∈ {0, 1} with prior probability p = P(θ = 1)

• Definition: µ ∈ ∆([0, 1]n) is feasible ⇐⇒ ∃ sigma-fields F1, . . .Fn

such that the vector of posteriors x = (x1, . . . xn) ∼ µ, where

xi = P(θ = 1 | Fi ).

8Arieli, I., Babichenko, Y., Sandomirskiy, F., & Tamuz, O. (2020) Feasible Joint

Posterior Beliefs

11
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such that the vector of posteriors x = (x1, . . . xn) ∼ µ, where

xi = P(θ = 1 | Fi ).

Persuasion problem

Given: prior p and utility u = u(x)

Find:

V (p) = max
feasible µ

∫
[0,1]n

u(x)dµ(x)

Examples with n = 2:

• creating discord u = |x1 − x2|α

• minimizing covariance u = − (x1 − p) (x2 − p)
8Arieli, I., Babichenko, Y., Sandomirskiy, F., & Tamuz, O. (2020) Feasible Joint

Posterior Beliefs
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n ≥ 2 receivers: criterion of feasibility

• For µ ∈ [0, 1]n denote the marginals by µ1, . . . , µn

• The martingale property∫
[0,1]

xidµi (xi ) = p, ∀i = 1, . . . n

is necessary but not sufficient for feasibility

12
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µ ∈ ∆([0, 1]n) is feasible ⇐⇒ ∃ν0, ν1 ∈ ∆([0, 1]n) s.t.

µ = (1− p) · ν0 + p · ν1 and
dν1

i (xi )

dν0
i (xi )

=
xi

1− xi
, ∀i = 1, . . . n

Proof: let ν0 and ν1 be the conditional distributions of (x1, . . . xn) given

θ = 0 or θ = 1, respectively.
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n ≥ 2 receivers: persuasion as transportation

V (p) = max
feasible µ

∫
[0,1]n

u(x)dµ(x) =

[
µ = (1−p) ·ν0 +p ·ν1 s.t. marginals satisfy

dν1
i (xi )

dν0
i (xi )

=
xi

1− xi
(F)

]
= max

marginals νθi : (F) holds

[
(1− p) ·max

ν0

∫
udν0 + p ·max

ν1

∫
udν1

]

13
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(F)

]
= max

marginals νθi : (F) holds

[
(1− p) ·max

ν0

∫
udν0 + p ·max

ν1

∫
udν1

]

Conclusion

V (p) = max
marginals νθi : (F) holds

[
(1− p)T (ν0

1 , ν
0
2 ) + p · T (ν1

1 , ν
1
2 )
]
.

13



n = 2 receivers: some explicit solutions for p = 1
2

• u = |x1 − x2|α with α ∈ (0, 2].
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n = 2 receivers: some explicit solutions for p = 1
2

• u = |x1 − x2|α with α ∈ (0, 2]. Optimal µ:

1
2

x1

x2

• minCov(x1, x2) = − 1
32 . Optimal µ:

1
4

3
4

1
2

1
8

3
8

1
8

3
8

x1

x2

14



n ≥ 2 receivers: how to solve?

Each approach works for u from the last slide:

• Direct approach

• Dual approach

• Hilbert-space approach (in the paper)
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Each approach works for u from the last slide:

• Direct approach

• For n = 2 with quadratic u(x1, x2), the transportation problem has

explicit solutions: anti-monotone coupling

• Maximization over marginals = an exercise in the calculus of

variations

• Dual approach

• Hilbert-space approach (in the paper)
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n ≥ 2 receivers: how to solve?

Each approach works for u from the last slide:

• Direct approach

• Dual approach

An analog of Kantorovich-Rubinstein duality:

V (p) = min
functions (fi )i=1...n

[
(1− p) ·max

x

(
u(x) +

n∑
i=1

xi · fi (xi )
)

+

+ p ·max
x

(
u(x)−

n∑
i=1

(1− xi )fi (xi )
)]

Guess primal and dual solutions: zero gap ensures optimality.

• Hilbert-space approach (in the paper)

15



n ≥ 2 receivers: how to solve?

Each approach works for u from the last slide:
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• Hilbert-space approach (in the paper)

• ξ → E[ξ | F ] is an orthogonal projection in L2

• {all orthogonal projections of ξ} = the sphere of radius ‖ξ‖
2

centered

at ξ
2

• quadratic objective u can be expressed through scalar products in L2

• ⇒ a simple optimization problem on the sphere!
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n ≥ 2 receivers: how to solve?

Each approach works for u from the last slide:

• Direct approach

• Dual approach

• Hilbert-space approach (in the paper)

Open question: Anything beyond quadratic u? Other sources of explicit

solutions?
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n ≥ 2 receivers: general property of solutions

• Persuasion problem is an infinite-dimensional LP:

maximization of a linear functional over a convex set of feasible

distributions µ

• Bauer’s principle: optimum is at an extreme points
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• Persuasion problem is an infinite-dimensional LP:

maximization of a linear functional over a convex set of feasible

distributions µ

• Bauer’s principle: optimum is at an extreme points

What we know about extreme points?

• There are extreme µ with countable support:
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• Extreme µ are supported on a subset of [0, 1]n of zero Lebesgue

measure (a corollary of the theorem by Lindenstrauss (1965))

Question: Non-atomic extreme µ?
16



Optimal way to sell multiple goods

17



The model

• n agents, m goods

• values vi,j are i.i.d. with density f

How to maximize revenue from selling? Assumptions:

• f is known, realizations of vi,j are not

• each agent acts in his best interests
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The model

• n agents, m goods

• values vi,j are i.i.d. with density f

How to maximize revenue from selling? Assumptions:

• f is known, realizations of vi,j are not

• each agent acts in his best interests

What is known?

• n ≥ 2,m = 1 (the classic auction theory): everything

• n = 1,m ≥ 2 (selling many goods to one agent):

• optimal mechanisms in particular cases

• connections to optimal transport

• n ≥ 2,m ≥ 2 (auctions with multiple goods): nothing

18



Warm-up: n = m = 1

• How to sell one good to one agent with the value v ∼ f (v)dv?
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Warm-up: n = m = 1

• How to sell one good to one agent with the value v ∼ f (v)dv?

• “take it or leave it”-mechanism:

• either pay p and get the good

• or pay 0 and get nothing

the best choice of the price p∗ = arg maxp p ·
∫∞
p

f (v)dv

Theorem (Myerson (1981))

Take it or leave it with p∗ is the optimal mechanism

19



m ≥ 2 goods, n = 1 agent: optimal mechanisms

• the agent has i.i.d. values v = (v1, . . . , vm) ∼ f (v)dv

• if the agent gets the bundle of goods x = (x1, . . . , xm) ∈ [0, 1]m for

price p, his utility is 〈x , v〉 − p

• Is selling each good separately always optimal?

• Is bundling all goods together always optimal?

• Is x ∈ {0, 1}m enough?

• menu mechanism: chose the best option from the menu

• pay 0 get 0

• pay p get x

• pay p′ pay x ′

• ....
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m ≥ 2 goods, n = 1 agent: optimal mechanisms

• the agent has i.i.d. values v = (v1, . . . , vm) ∼ f (v)dv

• if the agent gets the bundle of goods x = (x1, . . . , xm) ∈ [0, 1]m for

price p, his utility is 〈x , v〉 − p

• Is selling each good separately always optimal? No

• Is bundling all goods together always optimal? No

• Is x ∈ {0, 1}m enough? No

• menu mechanism: chose the best option from the menu

• pay 0 get 0

• pay p get x

• pay p′ pay x ′

• ....

Revelation principle

Any mechanism is equivalent to a menu mechanism.
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m ≥ 2 goods, n = 1 agent: finding optimal menus

• the menu M ⊂ R+ × [0, 1]m

• utility obtained by an agent with values v = (v1, . . . , vm):

uM(v) = max
(p,x)∈M

〈x , v〉 − p,

• uM is convex and

x(v) = ∂uM(v), p(v) = uM(v)−
〈
x(v), v

〉
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m ≥ 2 goods, n = 1 agent: optimal menus and transportation

Rm(f ) = max
convex u

u(0) = 0, ∂u ∈ [0, 1]m

∫
Rm
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u(v)−

〈
∂u(v), v

〉)
f (v)dv
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Rm(f ) = max
convex u

u(0) = 0, ∂u ∈ [0, 1]m

∫
Rm

+

(
u(v)−

〈
∂u(v), v

〉)
f (v)dv =

[
integrating by parts

]
= max

convex u

u(0) = 0, ∂u ∈ [0, 1]m

∫
Rm

+

u(v)dψ,

where dψ =
(
(m + 1)f (v) +

∑m
j=1 vi∂vi f

)
dv (not necessary positive!)
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2
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• Exponential: sell the goods only together

• Beta distribution Cvα−1(1− v)β−1dv : continual menu!!!
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m ≥ 2 goods, n ≥ 2 agents?!?

Open problem: Optimal mechanisms for n,m ≥ 2?

• Even m = n = 2 with i.i.d. uniform values is open.
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m ≥ 2 goods, n ≥ 2 agents?!?

Can we use the same approach? To some extent:

• Border’s theorem9 reduces the question to 1-agent mechanisms.

• As before: 1-agent mechanisms ↔ convex u

• Border’s theorem → new constraint on u subsuming ∂u ∈ [0, 1]m:

∂vju(v) ≺SD ξn−1 ∀j = 1, . . .m,

where v is random with density f and ξ is uniform on [0, 1].

9S.Hart, P.Reny (2015) Implementation of reduced form mechanisms: a simple

approach and a new characterization Economic Theory Bulletin
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∂vju(v) ≺SD ξn−1 ∀j = 1, . . .m,

where v is random with density f and ξ is uniform on [0, 1].

Corollary:

Rn,m(f ) = max
convex monotone u

u(0) = 0, ∂vj u(v) ≺SD ξn−1 ∀j

n ·
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• As before: 1-agent mechanisms ↔ convex u

• Border’s theorem → new constraint on u subsuming ∂u ∈ [0, 1]m:

∂vju(v) ≺SD ξn−1 ∀j = 1, . . .m,

where v is random with density f and ξ is uniform on [0, 1].

Corollary:

Rn,m(f ) = max
convex monotone u

u(0) = 0, ∂vj u(v) ≺SD ξn−1 ∀j

n ·
∫
Rm

+

(
u(v)−

〈
∂u(v), v

〉)
f (v)dv .

Question: Any explicit solutions? Any handy dual?
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The end

Applications we haven’t talked about:

• Robustness of probabilistic models w.r.t. prior distribution:

Kantorovich metric (aka Wasserstein or earth-mover distance)

• Allocation markets with transferable utility (Shapley-Scarf):

maximal-welfare matchings are the solutions to optimal transport

• Repeated games with incomplete information lead to

multi-marginal martingale transportation problems9

• and many others...

9F.Gensbittel (2015) Extensions of the Cav(u) theorem for repeated games with

incomplete information on one side. Mathematics of Operations Research
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The end

Applications we haven’t talked about:

• Robustness of probabilistic models w.r.t. prior distribution:

Kantorovich metric (aka Wasserstein or earth-mover distance)

• Allocation markets with transferable utility (Shapley-Scarf):

maximal-welfare matchings are the solutions to optimal transport

• Repeated games with incomplete information lead to

multi-marginal martingale transportation problems9

• and many others...

Thank you!
9F.Gensbittel (2015) Extensions of the Cav(u) theorem for repeated games with

incomplete information on one side. Mathematics of Operations Research
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