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e Reminder: martingales and posterior probabilities
e Static zero-sum games with incomplete information on one side

e Repeated zero-sum games with incomplete information on one side:

e Cav [u]-theorem via Blackwell's approachability
e Cav [u]-theorem via martingales of posterior beliefs



Reminder: martingales and posterior
probabilities



Martingales

probability (Q, F,P) with filtration Fo C F1 C F2 C ...
Definition
A sequence of random variables &g, &1, &o, . .. is a martingale if & is

Fi-measurable and
E[ftﬂ | ]:t] =&

Interpretation: the best prediction of the future value = current value
= wide use in models of learning.



Main example: martingale of posteriors

e Unobservable state 6 € {0, 1} with prior probability P(§ = 1) = p.
e An agent sequentially observes signals s;, s5, s3 ... which have
arbitrary joint distribution with 6.

e The agent computes his posterior probability
pt =P[0 =1|s,5,,...s:] using the Bayes rule.

Proposition

The sequence py = p, p1, P2, - - - is @ martingale with values in [0, 1]

Interpretation: best prediction of tomorrow'’s belief is today’s belief <
rationality property: time-consistency of beliefs.



Main example: martingale of posteriors

e Unobservable state 6 € {0, 1} with prior probability P(0 = 1) = p.
e An agent sequentially observes signals s1, s, s3... which have
arbitrary joint distribution with 6.
e The agent computes his posterior probability
pt =P[0 =1|s,5,,...5:] using the Bayes rule.
Proposition

The sequence py = p, p1, P2, - - - is @ martingale with values in [0, 1]

Interpretation: best prediction of tomorrow'’s belief is today’s belief <
rationality property: time-consistency of beliefs.
Proof: Denote 7o = {0, Q}, F: = X(s1,5,...5). Then

Pt = IP’[H =il ‘ ]:t] = E[]l{gzl} | ]:t]
By the telescopic property of conditional expectations

Elper1 | Fe] = E|E[L{p=1} | Fr4a] | ]:t} =E[ljp=y [ Fe] = pr. O



Static zero-sum games with
incomplete information on one side



The model

Static zero-sum game G(p) with one-sided incomplete information

1. the “state of nature” 0 € {0, 1} with prior P(6 = 1) = p is realized.

e Player 1 observes
e Player 2 observes nothing but knows p

2. Players play a zero-sum game with n x m payoff matrix
A? = (A?,)ietn.jeim Which depends on 6.
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2. Players play a zero-sum game with n x m payoff matrix
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Strategies:

e Player 1 specifies x = (x%, x1), where x? € A,

e Player 2 selects y € A,



The model

Static zero-sum game G(p) with one-sided incomplete information

1. the “state of nature” 0 € {0, 1} with prior P(6 = 1) = p is realized.

e Player 1 observes 6
e Player 2 observes nothing but knows p

2. Players play a zero-sum game with n x m payoff matrix
A? = (A?})ieln.jeim Which depends on 0.

Strategies:

e Player 1 specifies x = (x°, x*), where x? € A,
e Player 2 selects y € Ap,.

The payoff to Player 1

Bg,imx? jroy [Ag = Z XOAOJyJ +p- Z XlAlJyJ

= (—1)-payoff to Player 2



P1 can guarantee: max, min, {(1 —p) i XA Y X ,Jyj}
P2 can defend: min, max, [(1 —p) - i XAy P X ,jyj}

ij i



P1 can guarantee: max, min, {(l —p)- i XA Y X ,Jyj}
P2 can defend: min, max, [(1 —p) - 2 XA P x ,1A11yj}

ij i

The value:
\/(p) = maxs miny |:(1 —P) 'ZIJ X AOJyJ t+p ZIJ i tJyJ} = miny maxx

Question: max min = min max for zero-sum games with complete
information. Why here?



The value:

V(p) = maxmin, [(1=p)- 32, xPA% 3+ p- X2y ALy | = min, max,

Question: max min = min max for zero-sum games with complete
information. Why here?
e Answer 1: Sets of strategies are convex and compact, the payoff is
affine in strategies of each player = apply the min-max theorem.



The value:
V(p) = maxmin, [(1=p)- 32, xPA% 3+ p- X2y ALy | = min, max,

Question: max min = min max for zero-sum games with complete
information. Why here?

e Answer 1: Sets of strategies are convex and compact, the payoff is
affine in strategies of each player = apply the min-max theorem.
e Answer 2: Reduce G(p) to a matrix game with complete

information:

? (n? pure

e pure strategy of Player 1 is a function i’ : 0 — i
strategies).

e For a combination of pure strategies: i’ = (i°, i') and j the payoff
A;’,j =(1-p)- A?O,j tp: A}l,j-

o V(p) =vallA].



The value:
V(p) = max, min, [(1 *P)'Z;,j X:'OA?,J‘YJ+P’Z,',J' XilA},ij} = miny max,

Question: max min = min max for zero-sum games with complete
information. Why here?

e Answer 1: Sets of strategies are convex and compact, the payoff is
affine in strategies of each player = apply the min-max theorem.

e Answer 2: Reduce G(p) to a matrix game with complete
information:

e pure strategy of Player 1 is a function i’ : 0 — i°

(n* pure
strategies).

e For a combination of pure strategies: i’ = (i°, i*) and j the payoff
Arj=Q1-p): A?O,j +p: A}l,j'

e V(p) =vallA'].

A mystery: The part is bigger than the whole!



Properties of the value

Lemma: concavity and Lipschitz property

V(p) is a concave function of p and ‘%‘ < 2max; g ’A?’j




Properties of the value

Lemma: concavity and Lipschitz property

V(p) is a concave function of p and ‘ﬁ‘ < 2max; ;e ’Ae

Proof: .
V(p) = minmax [(1 = p) - S xPADy; +p- > <ALy =

Yy x9,xt

= myin [( maxeOAOJyJ (rrlzl]xzxilA}Jyj)]
iJ

So V is the minimum over y of the family of affine functions. O



Properties of the value

Lemma: concavity and Lipschitz property

- - V(p)—V(p'
V(p) is a concave function of p and ‘%‘ < 2max; g ‘Af’j

Proof:
roo v

Y x9,xt

(p) = minmax (1= p)- > xPA%y; +p- > K ALy] =
iJ iJ

= min {(1 -p)- (rr:(%lex?A?J)/j) +p- (nlellex}A}Jyj)}.
IN]

y —
i
So V is the minimum over y of the family of affine functions. O

Definition: The non-revealing game ANE(p) = a version of G(p) where
nobody knows @ = the matrix game E[A’] = (1 — p)A® + p - AL.

Notation: The value u(p) = val[ANE(p)].



Properties of the value

Lemma: concavity and Lipschitz property

- - V(p)—V(p
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Proofiv(p) = min max [ ZX A,JyJ +p- ZX A,JVJ] =
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Notation: The value u(p) = val[ANE(p)].

Lemma: a lower bound

V(p) = u(p).



Properties of the value

Lemma: concavity and Lipschitz property

- - V(p)—V(p
V(p) is a concave function of p and ‘%‘ < 2max; g ’Af{j :

Proofiv(p) = min max [ ZX A,JyJ +p- ZX A,JVJ] =

y x0xt
. 0 20 141
= min max X; A + max X; A; ]
in (1~ 2 X M) e Z 1,
So V is the minimum over y of the family of affine functlons. O

Definition: The non-revealing game ANE(p) = a version of G(p) where
nobody knows @ = the matrix game E[A’] = (1 — p)A° + p - AL.

Notation: The value u(p) = val[ANE(p)].

Lemma: a lower bound

V(p) = u(p).

Proof: Player 1 “forgets” # and plays the opt. strategy from ANE(p).



The Cav [u]-lower bound on the value

Concavification: For a continuous function  on a compact convex set

Cav [f](y) = min{¢(y) : ¢ is concave and ¢(-) > f(-)}.

So Cav [f] is the minimal concave function dominating f.

10



The Cav [u]-lower bound on the value

Concavification: For a continuous function  on a compact convex set

Cav [f](y) = min{¢(y) : ¢ is concave and ¢(-) > f(-)}.

So Cav [f] is the minimal concave function dominating f.

Home exercise: Cav [f] is concave.
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u]-lower bound on the value

Concavification: For a continuous function f on a compact convex set

Cav [f](y) = min{¢(y) : ¢ is concave and ¢(-) > f(-)}.

So Cav [f] is the minimal concave function dominating f.
Home exercise: Cav [f] is concave.

Theorem (R.Aumann, M.Maschler, 1960ies)

V(p) = Cav [u](p)-
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u]-lower bound on the value

Concavification: For a continuous function f on a compact convex set

Cav [f](y) = min {¢(y) : ¢ is concave and ¢(-) > f(-)}.

So Cav [f] is the minimal concave function dominating f.
Home exercise: Cav [f] is concave.

Theorem (R.Aumann, M.Maschler, 1960ies)

V(p) = Cav [u](p)-

Proof: V > u and V is concave. ]

10
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1. Find the value and optimal strategies in G(p)

2. Find the value of the non-revealing game ANE(p)

11
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1. Find the value and optimal strategies in G(p)

e The dominant strategy of P1: Top if # = 0, and Bottom if = 1.
e P2 replies: if P2 plays Left, the payoff is 1 — p, if Right, p =

V(p) = min{l —p,p}.

e Optimal reply is unique = opt. strategy of P2 is playing Right if
p < % and Left for p > 1.

2. Find the value of the non-revealing game ANE(p)

11



po_ (10 (00
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1. Find the value and optimal strategies in G(p)
e The dominant strategy of P1: Top if @ = 0, and Bottom if § = 1.
e P2 replies: if P2 plays Left, the payoff is 1 — p, if Right, p =

V(p) =min{l—p,p}.
e Optimal reply is unique = opt. strategy of P2 is playing Right if

p < % and Left for p > 1.
2. Find the value of the non-revealing game ANY(p)

0
= players use both actions.

1-— 0
o AN (p) = < 2 p>' No pure-strategy equilibrium for p £ 0, 1

e Optimal mixed strategy makes another player indifferent between the
two actions: (1—p)-x1=p-x2and (1 —p)-y1 =p- .
e The optimal strategies x = y = (p, 1- p)) The value is

u(p)=(1—-p)-p. 1



e

£
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Repeated zero-sum games with
incomplete information on one side

12



Birth in 1960ies: disarmament negotiations US +» USSR. Complex
interaction: multistage & both have secrets = interpret the past

behavior.

R.Aumann and M.Maschler consulted the US: secret reports’ ACDA
ST/80, ACDA ST/116, ACDA ST/143.

LAumann, Maschler (1995) " Repeated Games with Incomplete Information”

13


https://books.google.co.il/books/about/Repeated_Games_with_Incomplete_Informati.html?id=xaa7xZ-WGBsC&source=kp_book_description&redir_esc=y

Birth in 1960ies: disarmament negotiations US «» USSR. Complex
interaction: multistage & both have secrets = interpret the past
behavior.

R.Aumann and M.Maschler consulted the US: secret reports’ ACDA
ST/80, ACDA ST/116, ACDA ST/143.

Static games <> repeated games:
Static: P1 does not care about revealed information.

Repeated: P2 may guess 6 from previous actions of P1 = P1 balances
between using and hiding his information.

LAumann, Maschler (1995) " Repeated Games with Incomplete Information”
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https://books.google.co.il/books/about/Repeated_Games_with_Incomplete_Informati.html?id=xaa7xZ-WGBsC&source=kp_book_description&redir_esc=y

Birth in 1960ies: disarmament negotiations US «» USSR. Complex
interaction: multistage & both have secrets = interpret the past
behavior.

R.Aumann and M.Maschler consulted the US: secret reports’ ACDA
ST/80, ACDA ST/116, ACDA ST/143.

Static games <> repeated games:
Static: P1 does not care about revealed information.

Repeated: P2 may guess 6 from previous actions of P1 = P1 balances
between using and hiding his information.

Other examples:

e Nazi's attack to Coventry and broken Enigma cypher (watch “The
Imitation Game” about Alan Turing)
e Insider trading on financial markets (Rothschild and Waterloo battle;

1Aumann, Maschler (1995) " Repeated Games with Incomplete Information” 13


https://www.imdb.com/title/tt2084970/
https://www.imdb.com/title/tt2084970/
https://en.wikipedia.org/wiki/Nathan_Mayer_Rothschild
https://www.sciencedirect.com/science/article/abs/pii/S0899825610000278
https://books.google.co.il/books/about/Repeated_Games_with_Incomplete_Informati.html?id=xaa7xZ-WGBsC&source=kp_book_description&redir_esc=y

The model

T-stage zero-sum game Gr(p) with one-sided incomplete
information (RGII)
1. the “state of nature” 0 € {0, 1} with prior P(6 = 1) = p is realized.

e Player 1 observes 0
e Player 2 observes nothing but knows p

2. A zero-sum game with n x m payoff matrix A? = (Aﬁj)ie[n],je[m] is
played T times. Both players observe the history of actions.

14



The model

T-stage zero-sum game Gr(p) with one-sided incomplete
information (RGII)
1. the “state of nature” 0 € {0, 1} with prior P(6 = 1) = p is realized.

e Player 1 observes 0
e Player 2 observes nothing but knows p

2. A zero-sum game with n x m payoff matrix A? = (A,Q,j)ie[n],je[m] is
played T times. Both players observe the history of actions.

Behavioral strategies:

e Player 1, for each state #, time t =0,1... T — 1 and history
he = (ir,jr)iZ}, specifies x?(h;) € A,. His action ir ~ x?(h;)
conditional on # and h;

e Player 2 selects y:(h;) € Ap,. His action ji ~ y:(hy).

14



The model

T-stage zero-sum game Gr(p) with one-sided incomplete
information (RGII)

1. the “state of nature” 0 € {0, 1} with prior P(¢ = 1) = p is realized.

e Player 1 observes 0
e Player 2 observes nothing but knows p

2. A zero-sum game with n x m payoff matrix A? = (A?,j)iG[n],jG[m] is
played T times. Both players observe the history of actions.

Behavioral strategies:

e Player 1, for each state #, time t =0,1... T — 1 and history
he = (ir, jr)iZ}, specifies x?(h;) € A,. His action iz ~ x?(h;)
conditional on 6 and h;

e Player 2 selects y:(h;) € Ap,. His action jy ~ y:(hy).

The payoff:

“Eg nr

T_
Z it Jt

=0



The value:

= mln max
X

V1 (p) = max m|n [ -Eg py [Z Al e

X

Question: Why min max = maxmin?

15



The value:

= m|n max

X X

Vr(p) = max m|n l “Eg n, [Z Al e

Question: Why min max = maxmin?

Familiar mystery: Gr(p) can be reduced to a one-stage matrix game
with complete information:

Pure strategies are deterministic behavioral strategies (for all possible
histories and states). For each pair of pure strategies x, y compute the
payoff A} . By the construction V7 (p) = val[A'].

15



The value:

= m|n max

X X

Vr(p) = max m|n l -Eg n, [Z Al N

Question: Why min max = maxmin?

Familiar mystery: Gr(p) can be reduced to a one-stage matrix game
with complete information:

Pure strategies are deterministic behavioral strategies (for all possible
histories and states). For each pair of pure strategies x, y compute the
payoff A, . By the construction Vr(p) = val[A'].

We used Kuhn’s theorem: for any mixed strategy there is a behavioral
strategy with the same payoff and vice-versa.

15



T-stage RGIIl with payoffs

wo_ (10 (00
0 0)’ 0 1

Question: What should P1 do?

16



T-stage RGII with payoffs

o (10 (00
0 0)’ 0 1

Question: What should P1 do?

e Bad ldea: play the optimal strategy from the static game
G(p) = Gi(p): Top if @ =0 and Bottom if § = 1.
P2 guesses the state after the first round = the payoff is @ —0
as T — oo.

16



T-stage RGII with payoffs

AO:10 A1:OO
0 0/’ 0 1

Question: What should P1 do?

e Bad ldea: play the optimal strategy from the static game
G(p) = Gi(p): Top if @ =0 and Bottom if § = 1.
P2 guesses the state after the first round = the payoff is @ —0
as T — oo.

e Better Idea: play the optimal strategy from
ANR(p) = (1—p)- A%+ p- AL
Guarantees u(p) at every stage, so V1 (p) > u(p).

16
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Question: What should P1 do?

e Bad Idea: play the optimal strategy from the static game
G(p) = Gi(p): Top if @ =0 and Bottom if § = 1.
P2 guesses the state after the first round = the payoff is @ —0
as T — oo.
e Better Idea: play the optimal strategy from
ANR(p) = (1—p)- A% +p- A"
Guarantees u(p) at every stage, so V1 (p) > u(p).

Question: Can P1 do better?
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T-stage RGII with payoffs

po_ (10 (00
0 0)’ 0 1

Question: What should P1 do?

e Bad Idea: play the optimal strategy from the static game
G(p) = Gi(p): Top if @ =0 and Bottom if § = 1.
P2 guesses the state after the first round = the payoff is (p) —0
as T — oo.
e Better Idea: play the optimal strategy from
ANR(p) = (1 —p)-A® + p- AL
Guarantees u(p) at every stage, so Vr(p) > u(p).

Question: Can P1 do better?

Answer: Not much.
16



The Cav [u]-theorem

Theorem (R.Aumann, M.Maschler, 1960ies)
2||All
C <V <C 4 ;

avi[ul{p)i= Wir(p)i= Cav[ul(p)or=rrr

where [|A]| = max; ’A?’j"

17



The Cav [u]-theorem

Theorem (R.Aumann, M.Maschler, 1960ies)
2||All

Cav [u](p) < V7(p) < Cav[u](p) + i

where ||Al| = max; g |A?

fal

Corollary: the limit value Vo (p) = lim7_,o V1 = Cav[u](p).

17



The Cav [u]-theorem

Theorem (R.Aumann, M.Maschler, 1960ies)
2||All

Cav [u](p) < V7 (p) < Cav[u](p) + ek

4

where [|A|| = max; g ’Af,j"

Corollary: the limit value Vo (p) = limr_ V7 = Cav [u](p).

Proof:

e Lower bound: Gt(p) <> a static game with incomplete information
= V7(p) is concave. V7 (p) > u(p) = Vr(p) > Cav [u](p).

17



The Cav [u]-theorem

Theorem (R.Aumann, M.Maschler, 1960ies)
2||All
C <V <C I ==

av [u](p) < Vr(p) < Cav [u](p) T

where [|A|| = max; g |A?;].
Corollary: the limit value Vo (p) = limr_ V7 = Cav [u](p).

Proof:

e Lower bound: Gt(p) <> a static game with incomplete information
= V7(p) is concave. V7 (p) > u(p) = Vr(p) > Cav [u](p).

e Upperbound: ...... .. .. ... . ..

17



Method 1: the upper bound via Blackwell's approachability

Remark: this method gives a weaker result:

limsup V7 (p) < Cav [u](p).

T—o0

No control on the speed of convergence.

18



Reminder: Blackwell’s approachability

. . [A0
Consider a game Gt with vector payoff A = <A1>'

Definition: A set C C R? is approachable by P2 < P2 has a behavioral
strategy such that the average payoff approaches C in the limit, no
matter what P1 is doing:

1 =1
E (dist <T it e s C)) —0 as T — oc.
t=0

Theorem (Blackwell)
L(a)) = (—00, ag] X (—00, 1] is approachable by P2 if

val[(1 — q)A° + gA'] < (1 - q)ao + g-au for any g € [0,1].

19



Reminder: Blackwell’s approachability

- - AO
Consider a game Gt with vector payoff A = <A1>'

Definition: A set C C R? is approachable by P2 < P2 has a behavioral
strategy such that the average payoff approaches C in the limit, no
matter what P1 is doing:

1 T-1
E (dist <T it e s C)) —0 as T — oc.
t=0

Theorem (Blackwell)
L(a) = (=00, o] X (—00, aq] is approachable by P2 if

val[(1 - q)A° + gA'l < (1 - q)ag + q- a1 for any g € [0,1].

Remark: val[(1 — q)A° + gA'] = u(q)

19



Application to RGII: the upper bound on V(p)

Picking alphas: /(g) = (1 — q) - ag + g - a1 is the tangent line to the
graph of Cav [u] at p:

Cav [u](p) = I(p) and Cav[u](q) </(q) for g€ [0,1].

20



Application to RGII: the upper bound on V(p)

Picking alphas: /(q) = (1 — q) - ap + g - a3 is the tangent line to the
graph of Cav [u] at p:

Cav [u](p) = /(p) and Cav[u](q) </(q) for g€ [0,1].

Corollary: the set L(«) is approachable for vector-payoff game Gr.
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Application to RGII: the upper bound on V(p)

Picking alphas: /(q) = (1 — q) - ap + g - a3 is the tangent line to the
graph of Cav [u] at p:

Cav [u](p) = /(p) and Cav[u](q) </(q) for g€ [0,1].

Corollary: the set L(«) is approachable for vector-payoff game Gr.

Proposition

limsup V7 (p) < Cav [u](p).

T—o0
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Application to RGII: the upper bound on V(p)

Picking alphas: /(q) = (1 — q) - ag + g - a1 is the tangent line to the
graph of Cav [u] at p:

Cav [u](p) = I(p) and Cav[u](q) </(q) for g€ [0,1].
Corollary: the set L(«) is approachable for vector-payoff game Gr.

Proposition

limsup Vr(p) < Cav [u](p).

T—o0

Proof:
e P2 plays his approachability strategy

T E |:z A/r /t:| = (1—P)* Z A’t Je

pE[ZAM 9—1].

20



Application to RGII: the upper bound on V(p)

Picking alphas: /(q) = (1 — q) - ag + g - a1 is the tangent line to the
graph of Cav [u] at p:

Cav [u](p) = I(p) and Cav[u](q) </(q) for g€ [0,1].
Corollary: the set L(«) is approachable for vector-payoff game .

Proposition

limsup Vr(p) < Cav [u](p).

T—o0

Proof:
e P2 plays his approachability strategy

E|:ZA/tjt:|_(1_p) ZA’tJt 9:0 pE[ZA’rJr 9_1:|'

e L(a) is approachable = +E { s o AL 9} approaches (—oo, o).

lim sup —-E

T—oo

Z A,Utl <(1-plag+p-ar=Cavu](p). O -



Method 2: the upper bound via martingales of posterior beliefs

Remark: this method allows to control the error term
2| A

Vr(p) = Cav [ul(p) + T

21



Variation of posterior beliefs

Fix some strategy x of Player 1.

Martingale of beliefs of Player 2: p, =P(0 =11 h), po = p.

22



Variation of posterior beliefs

Fix some strategy x of Player 1.
Martingale of beliefs of Player 2: p, =P(0 =1| h;), po = p.

A reasonable reply y to x: At stage t compute p; and play optimal
strategy from the non-revealing game ANR(p,).

22



Variation of posterior beliefs

Fix some strategy x of Player 1.

Martingale of beliefs of Player 2: p, =P(0 =1| h:), po = p.

A reasonable reply y to x: At stage t compute p; and play optimal
strategy from the non-revealing game ANR(p,).

Lemma

The payoff for a pair (x, y) satisfies

E 205 lpess — o]
i .

1
7~]E < Cav [u] + 2||A]| -

T—-1

0
> AL
t=0

22



Variation of posterior beliefs

Lemma

The payoff for a pair (x, y) satisfies

E (S5 pesa — il
= .

Z A’r Jt

< Cav [u] + 2||A] -

Proof:
e The contribution of stage t:

E[A] il = E{ﬂ{a —op - A} g T Lge=1y - A} Jt} E[E[ . ht+1]} =

= E{(l — Pt+1)A2,jt + Pry1- A}t’jt:| =%

22



Variation of posterior beliefs

Lemma

The payoff for a pair (x, y) satisfies
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from ANE(p,). Since |A%R(pt+1) = A%R(pt)’ <2||A|l - |pe+1 — Pl

* < E[u(p)] + 2l|Al| - Elpess — pel-

e By Jensen's inequality and the martingale property

E[u(p:)] < E[Cav [u](p)] < Cav [u](Ep;) = Cav [u](p). o *



Upper bound on the variation

It remains to bound the Li-variation:

T-1
E |:Z ‘PHI - Pt:| < ﬁ
t=0
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[0,1]. Continuous © and sets of actions are doable (Gensbittel 2015)
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Extensions:

Non-binary set of states © = no complications: A(©) replaces
[0, 1]. Continuous © and sets of actions are doable (Gensbittel 2015)

Partial information on the side of P1 reduces to © = A(©) as the
new state space (Gensbittel 2015)

Incomplete information on two sides (Mertens, Zamir 1971, Laraki
2001)

Non-zero-sum: limit value and bi-martingales (S.Hart 1985)

More than 2 players: nothing is known.

Useful methods:

Bellman equation V7.3 = F[V7] (Zamir 1971, Gensbittel 2015)
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Extensions:

e Non-binary set of states © = no complications: A(©) replaces
[0, 1]. Continuous © and sets of actions are doable (Gensbittel 2015)
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new state space (Gensbittel 2015)

e Incomplete information on two sides (Mertens, Zamir 1971, Laraki
2001)

e Non-zero-sum: limit value and bi-martingales (S.Hart 1985)

e More than 2 players: nothing is known.
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e Bellman equation V71 = F[V7] (Zamir 1971, Gensbittel 2015)
e Dual game (P1 select the state), PDE, and CLT (De Meyer 1996)
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new state space (Gensbittel 2015)

e Incomplete information on two sides (Mertens, Zamir 1971, Laraki
2001)

e Non-zero-sum: limit value and bi-martingales (S.Hart 1985)

e More than 2 players: nothing is known.
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Extensions:

e Non-binary set of states © = no complications: A(©) replaces

[0, 1]. Continuous © and sets of actions are doable (Gensbittel 2015)
Partial information on the side of P1 reduces to © = A(©) as the
new state space (Gensbittel 2015)

Incomplete information on two sides (Mertens, Zamir 1971, Laraki
2001)
e Non-zero-sum: limit value and bi-martingales (S.Hart 1985)

e More than 2 players: nothing is known.
Useful methods:

e Bellman equation V71 = F[V7] (Zamir 1971, Gensbittel 2015)
e Dual game (P1 select the state), PDE, and CLT (De Meyer 1996)
e Continuous-time approximation and PDE (Gensbittel 2015)

e The value = a solution of a martingale-optimization problem (De
Meyer 2010, Gensbittel 2015)
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A good survey of classic results with proofs.

e M.Maschler, E.Solan, S.Zamir “Game Theory” 2013
Static games & Cav [u] by approachability for RGII

e J.-F. Mertens, S.Sorin, S.Zamir “Repeated games” 2014
Read from Chapter V.

Static games & classic martingale-based proof of Cav [u] and much more

26


http://www.ma.huji.ac.il/~zamir/papers/34Chapter5.PDF
https://hal.archives-ouvertes.fr/hal-00745575/document
https://hal.archives-ouvertes.fr/hal-00745575/document

Main references:

e S.Zamir Repeated games of incomplete information: Zero-sum
Handbook of Game Theory, 1992
A good survey of classic results with proofs.
e M.Maschler, E.Solan, S.Zamir “Game Theory” 2013
Static games & Cav [u] by approachability for RGII
e J.-F. Mertens, S.Sorin, S.Zamir “Repeated games” 2014
Read from Chapter V.
Static games & classic martingale-based proof of Cav [u] and much more
e Fabien Gensbittel " Extensions of the Cav(u) theorem for repeated
games with one-sided information.”, Math. Oper. Res,40(1),
80-104, 2015.

Modern approach to Cav [u]-theorem.

26


http://www.ma.huji.ac.il/~zamir/papers/34Chapter5.PDF
https://hal.archives-ouvertes.fr/hal-00745575/document
https://hal.archives-ouvertes.fr/hal-00745575/document

