Lecture 1: zero-sum games with incomplete information

Fedor Sandomirskiy

April 21, 2020
Technion, Haifa \& Higher School of Economics, St.Petersburg
e-mail: fedor.sandomirskiy@gmail.com
homepage: https://www.fedors.info/

Outline:

- Reminder: martingales and posterior probabilities
- Static zero-sum games with incomplete information on one side
- Repeated zero-sum games with incomplete information on one side:
- Cav [u]-theorem via Blackwell's approachability
- Cav [u]-theorem via martingales of posterior beliefs

Reminder: martingales and posterior probabilities

Martingales

probability $(\Omega, \mathcal{F}, \mathbb{P})$ with filtration $\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \ldots$

Definition

A sequence of random variables $\xi_{0}, \xi_{1}, \xi_{2}, \ldots$ is a martingale if ξ_{t} is \mathcal{F}_{t}-measurable and

$$
\mathbb{E}\left[\xi_{t+1} \mid \mathcal{F}_{t}\right]=\xi_{t}
$$

Interpretation: the best prediction of the future value $=$ current value \Rightarrow wide use in models of learning.

Main example: martingale of posteriors

- Unobservable state $\theta \in\{0,1\}$ with prior probability $\mathbb{P}(\theta=1)=p$.
- An agent sequentially observes signals $s_{1}, s_{2}, s_{3} \ldots$ which have arbitrary joint distribution with θ.
- The agent computes his posterior probability $p_{t}=\mathbb{P}\left[\theta=1 \mid s_{1}, s_{2}, \ldots s_{t}\right]$ using the Bayes rule.

Proposition

The sequence $p_{0}=p, p_{1}, p_{2}, \ldots$ is a martingale with values in $[0,1]$
Interpretation: best prediction of tomorrow's belief is today's belief \Leftrightarrow rationality property: time-consistency of beliefs.

Main example: martingale of posteriors

- Unobservable state $\theta \in\{0,1\}$ with prior probability $\mathbb{P}(\theta=1)=p$.
- An agent sequentially observes signals $s_{1}, s_{2}, s_{3} \ldots$ which have arbitrary joint distribution with θ.
- The agent computes his posterior probability $p_{t}=\mathbb{P}\left[\theta=1 \mid s_{1}, s_{2}, \ldots s_{t}\right]$ using the Bayes rule.

Proposition

The sequence $p_{0}=p, p_{1}, p_{2}, \ldots$ is a martingale with values in $[0,1]$
Interpretation: best prediction of tomorrow's belief is today's belief \Leftrightarrow rationality property: time-consistency of beliefs.
Proof: Denote $\mathcal{F}_{0}=\{\emptyset, \Omega\}, \mathcal{F}_{t}=\Sigma\left(s_{1}, s_{2}, \ldots s_{t}\right)$. Then

$$
p_{t}=\mathbb{P}\left[\theta=1 \mid \mathcal{F}_{t}\right]=\mathbb{E}\left[\mathbb{1}_{\{\theta=1\}} \mid \mathcal{F}_{t}\right] .
$$

By the telescopic property of conditional expectations

$$
\mathbb{E}\left[p_{t+1} \mid \mathcal{F}_{t}\right]=\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{\{\theta=1\}} \mid \mathcal{F}_{t+1}\right] \mid \mathcal{F}_{t}\right]=\mathbb{E}\left[\mathbb{1}_{\{\theta=1\}} \mid \mathcal{F}_{t}\right]=p_{t}
$$

Static zero-sum games with incomplete information on one side

The model

Static zero-sum game $G(p)$ with one-sided incomplete information

1. the "state of nature" $\theta \in\{0,1\}$ with prior $\mathbb{P}(\theta=1)=p$ is realized.

- Player 1 observes θ
- Player 2 observes nothing but knows p

2. Players play a zero-sum game with $n \times m$ payoff matrix $A^{\theta}=\left(A_{i, j}^{\theta}\right)_{i \in[n], j \in[m]}$ which depends on θ.

The model

Static zero-sum game $G(p)$ with one-sided incomplete information

1. the "state of nature" $\theta \in\{0,1\}$ with prior $\mathbb{P}(\theta=1)=p$ is realized.

- Player 1 observes θ
- Player 2 observes nothing but knows p

2. Players play a zero-sum game with $n \times m$ payoff matrix $A^{\theta}=\left(A_{i, j}^{\theta}\right)_{i \in[n], j \in[m]}$ which depends on θ.

Strategies:

- Player 1 specifies $x=\left(x^{0}, x^{1}\right)$, where $x^{\theta} \in \Delta_{n}$
- Player 2 selects $y \in \Delta_{m}$.

The model

Static zero-sum game $G(p)$ with one-sided incomplete information

1. the "state of nature" $\theta \in\{0,1\}$ with prior $\mathbb{P}(\theta=1)=p$ is realized.

- Player 1 observes θ
- Player 2 observes nothing but knows p

2. Players play a zero-sum game with $n \times m$ payoff matrix $A^{\theta}=\left(A_{i, j}^{\theta}\right)_{i \in[n], j \in[m]}$ which depends on θ.

Strategies:

- Player 1 specifies $x=\left(x^{0}, x^{1}\right)$, where $x^{\theta} \in \Delta_{n}$
- Player 2 selects $y \in \Delta_{m}$.

The payoff to Player 1

$$
\mathbb{E}_{\theta, i \sim x^{\theta}, j \sim y}\left[A_{i, j}^{\theta}\right]=(1-p) \cdot \sum_{i, j} x_{i}^{0} A_{i, j}^{0} y_{j}+p \cdot \sum_{i, j} x_{i}^{1} A_{i, j}^{1} y_{j}
$$

$=(-1) \cdot$ payoff to Player 2

The value

P1 can guarantee: $\max _{x} \min _{y}\left[(1-p) \cdot \sum_{i, j} x_{i}^{0} A_{i, j}^{0} y_{j}+p \cdot \sum_{i, j} x_{i}^{1} A_{i, j}^{1} y_{j}\right]$
$\mathbf{P} 2$ can defend: $\min _{y} \max _{x}\left[(1-p) \cdot \sum_{i, j} x_{i}^{0} A_{i, j}^{0} y_{j}+p \cdot \sum_{i, j} x_{i}^{1} A_{i, j}^{1} y_{j}\right]$

The value

P1 can guarantee: $\max _{x} \min _{y}\left[(1-p) \cdot \sum_{i, j} x_{i}^{0} A_{i, j}^{0} y_{j}+p \cdot \sum_{i, j} x_{i}^{1} A_{i, j}^{1} y_{j}\right]$
$\mathbf{P} 2$ can defend: $\min _{y} \max _{x}\left[(1-p) \cdot \sum_{i, j} x_{i}^{0} A_{i, j}^{0} y_{j}+p \cdot \sum_{i, j} x_{i}^{1} A_{i, j}^{1} y_{j}\right]$
The value:
$V(p)=\max _{x} \min _{y}\left[(1-p) \cdot \sum_{i, j} x_{i}^{0} A_{i, j}^{0} y_{j}+p \cdot \sum_{i, j} x_{i}^{1} A_{i, j}^{1} y_{j}\right]=\min _{y} \max _{x}$

Question: $\max \min =\min \max$ for zero-sum games with complete information. Why here?

The value

The value:

$$
V(p)=\max _{x} \min _{y}\left[(1-p) \cdot \sum_{i, j} x_{i}^{0} A_{i, j}^{0} y_{j}+p \cdot \sum_{i, j} x_{i}^{1} A_{i, j}^{1} y_{j}\right]=\min _{y} \max _{x}
$$

Question: $\max \min =\min \max$ for zero-sum games with complete information. Why here?

- Answer 1: Sets of strategies are convex and compact, the payoff is affine in strategies of each player \Rightarrow apply the min-max theorem.
- Answer 2: Reduce $G(p)$ to a matrix game with complete information
- pure strate g of Player 1 is a function $i^{\prime}: \theta \rightarrow i^{0}\left(n^{2}\right.$ pure strategies)
- For a combination of pure strategies: $i^{\prime}=\left(i^{0}, i^{1}\right)$ and j the payoff
- $V(p)=\operatorname{val}\left[A^{\top}\right]$

The value

The value:
$V(p)=\max _{x} \min _{y}\left[(1-p) \cdot \sum_{i, j} x_{i}^{0} A_{i, j}^{0} y_{j}+p \cdot \sum_{i, j} x_{i}^{1} A_{i, j}^{1} y_{j}\right]=\min _{y} \max _{x}$

Question: $\max \min =\min \max$ for zero-sum games with complete information. Why here?

- Answer 1: Sets of strategies are convex and compact, the payoff is affine in strategies of each player \Rightarrow apply the min-max theorem.
- Answer 2: Reduce $G(p)$ to a matrix game with complete information:
- pure strategy of Player 1 is a function $i^{\prime}: \theta \rightarrow i^{\theta}\left(n^{2}\right.$ pure strategies).
- For a combination of pure strategies: $i^{\prime}=\left(i^{0}, i^{1}\right)$ and j the payoff $A_{i^{\prime}, j}^{\prime}=(1-p) \cdot A_{i 0, j}^{0}+p \cdot A_{i^{1}, j}^{1}$.
- $V(p)=\operatorname{val}\left[A^{\prime}\right]$.

The value

The value:

$$
V(p)=\max _{x} \min _{y}\left[(1-p) \cdot \sum_{i, j} x_{i}^{0} A_{i, j}^{0} y_{j}+p \cdot \sum_{i, j} x_{i}^{1} A_{i, j}^{1} y_{j}\right]=\min _{y} \max _{x}
$$

Question: $\max \min =\min \max$ for zero-sum games with complete information. Why here?

- Answer 1: Sets of strategies are convex and compact, the payoff is affine in strategies of each player \Rightarrow apply the min-max theorem.
- Answer 2: Reduce $G(p)$ to a matrix game with complete information:
- pure strategy of Player 1 is a function $i^{\prime}: \theta \rightarrow i^{\theta}\left(n^{2}\right.$ pure strategies).
- For a combination of pure strategies: $i^{\prime}=\left(i^{0}, i^{1}\right)$ and j the payoff $A_{i^{\prime}, j}^{\prime}=(1-p) \cdot A_{i^{0}, j}^{0}+p \cdot A_{i^{1}, j}^{1}$.
- $V(p)=\operatorname{val}\left[A^{\prime}\right]$.

A mystery: The part is bigger than the whole!

Properties of the value

Lemma: concavity and Lipschitz property
$V(p)$ is a concave function of p and $\left|\frac{V(p)-V\left(p^{\prime}\right)}{p-p^{\prime}}\right| \leq 2 \max _{i, j, \theta}\left|A_{i, j}^{\theta}\right|$.

Properties of the value

Lemma: concavity and Lipschitz property

$V(p)$ is a concave function of p and $\left|\frac{V(p)-V\left(p^{\prime}\right)}{p-p^{\prime}}\right| \leq 2 \max _{i, j, \theta}\left|A_{i, j}^{\theta}\right|$.
Proof: $V(p)=\min _{y} \max _{x^{0}, x^{1}}\left[(1-p) \cdot \sum_{i, j} x_{i}^{0} A_{i, j}^{0} y_{j}+p \cdot \sum_{i, j} x_{i}^{1} A_{i, j}^{1} y_{j}\right]=$

$$
=\min _{y}\left[(1-p) \cdot\left(\max _{x^{0}} \sum_{i, j} x_{i}^{0} A_{i, j}^{0} y_{j}\right)+p \cdot\left(\max _{x^{1}} \sum_{i, j} x_{i}^{1} A_{i, j}^{1} y_{j}\right)\right] .
$$

So V is the minimum over y of the family of affine functions.

Properties of the value

Lemma: concavity and Lipschitz property

$V(p)$ is a concave function of p and $\left|\frac{V(p)-V\left(p^{\prime}\right)}{p-p^{\prime}}\right| \leq 2 \max _{i, j, \theta}\left|A_{i, j}^{\theta}\right|$.
Proof: $V(p)=\min _{y} \max _{x^{0}, x^{1}}\left[(1-p) \cdot \sum_{i, j} x_{i}^{0} A_{i, j}^{0} y_{j}+p \cdot \sum_{i, j} x_{i}^{1} A_{i, j}^{1} y_{j}\right]=$

$$
=\min _{y}\left[(1-p) \cdot\left(\max _{x^{0}} \sum_{i, j} x_{i}^{0} A_{i, j}^{0} y_{j}\right)+p \cdot\left(\max _{x^{1}} \sum_{i, j} x_{i}^{1} A_{i, j}^{1} y_{j}\right)\right] .
$$

So V is the minimum over y of the family of affine functions.
Definition: The non-revealing game $A^{\mathrm{NR}}(p)=$ a version of $G(p)$ where nobody knows $\theta=$ the matrix game $\mathbb{E}\left[A^{\theta}\right]=(1-p) A^{0}+p \cdot A^{1}$.
Notation: The value $u(p)=\operatorname{val}\left[A^{\mathrm{NR}}(p)\right]$.

Properties of the value

Lemma: concavity and Lipschitz property

 $V(p)$ is a concave function of p and $\left|\frac{V(p)-V\left(p^{\prime}\right)}{p-p^{\prime}}\right| \leq 2 \max _{i, j, \theta}\left|A_{i, j}^{\theta}\right|$.Proof:

$$
\begin{aligned}
& \mathrm{f}: V(p)=\min _{y} \max _{x^{0}, x^{1}}\left[(1-p) \cdot \sum_{i, j} x_{i}^{0} A_{i, j}^{0} y_{j}+p \cdot \sum_{i, j} x_{i}^{1} A_{i, j}^{1} y_{j}\right]= \\
& =\min _{y}\left[(1-p) \cdot\left(\max _{x^{0}} \sum_{i, j} x_{i}^{0} A_{i, j}^{0} y_{j}\right)+p \cdot\left(\max _{x^{1}} \sum_{i, j} x_{i}^{1} A_{i, j}^{1} y_{j}\right)\right] .
\end{aligned}
$$

So V is the minimum over y of the family of affine functions.
Definition: The non-revealing game $A^{\mathrm{NR}}(p)=$ a version of $G(p)$ where nobody knows $\theta=$ the matrix game $\mathbb{E}\left[A^{\theta}\right]=(1-p) A^{0}+p \cdot A^{1}$.

Notation: The value $u(p)=\operatorname{val}\left[A^{\mathrm{NR}}(p)\right]$.
Lemma: a lower bound

$$
V(p) \geq u(p)
$$

Properties of the value

Lemma: concavity and Lipschitz property

 $V(p)$ is a concave function of p and $\left|\frac{V(p)-V\left(p^{\prime}\right)}{p-p^{\prime}}\right| \leq 2 \max _{i, j, \theta}\left|A_{i, j}^{\theta}\right|$.Proof:

$$
\begin{aligned}
& \mathbf{f :} V(p)=\min _{y} \max _{x^{0}, x^{1}}\left[(1-p) \cdot \sum_{i, j} x_{i}^{0} A_{i, j}^{0} y_{j}+p \cdot \sum_{i, j} x_{i}^{1} A_{i, j}^{1} y_{j}\right]= \\
& =\min _{y}\left[(1-p) \cdot\left(\max _{x^{0}} \sum_{i, j} x_{i}^{0} A_{i, j}^{0} y_{j}\right)+p \cdot\left(\max _{x^{1}} \sum_{i, j} x_{i}^{1} A_{i, j}^{1} y_{j}\right)\right] .
\end{aligned}
$$

So V is the minimum over y of the family of affine functions.
Definition: The non-revealing game $A^{\mathrm{NR}}(p)=$ a version of $G(p)$ where nobody knows $\theta=$ the matrix game $\mathbb{E}\left[A^{\theta}\right]=(1-p) A^{0}+p \cdot A^{1}$.

Notation: The value $u(p)=\operatorname{val}\left[A^{\mathrm{NR}}(p)\right]$.
Lemma: a lower bound

$$
V(p) \geq u(p)
$$

Proof: Player 1 "forgets" θ and plays the opt. strategy from $A^{\mathrm{NR}}(p)$.

The Cav [u]-lower bound on the value

Concavification: For a continuous function f on a compact convex set

$$
\operatorname{Cav}[f](y)=\min \{\varphi(y): \varphi \text { is concave and } \varphi(\cdot) \geq f(\cdot)\} .
$$

So $\operatorname{Cav}[f]$ is the minimal concave function dominating f.

The Cav [u]-lower bound on the value

Concavification: For a continuous function f on a compact convex set

$$
\operatorname{Cav}[f](y)=\min \{\varphi(y): \varphi \text { is concave and } \varphi(\cdot) \geq f(\cdot)\} .
$$

So Cav $[f]$ is the minimal concave function dominating f.
Home exercise: Cav $[f]$ is concave.

The Cav [u]-lower bound on the value

Concavification: For a continuous function f on a compact convex set

$$
\operatorname{Cav}[f](y)=\min \{\varphi(y): \varphi \text { is concave and } \varphi(\cdot) \geq f(\cdot)\} .
$$

So Cav $[f]$ is the minimal concave function dominating f.
Home exercise: Cav $[f]$ is concave.
Theorem (R.Aumann, M.Maschler, 1960ies)

$$
V(p) \geq \operatorname{Cav}[u](p) .
$$

The Cav [u]-lower bound on the value

Concavification: For a continuous function f on a compact convex set

$$
\operatorname{Cav}[f](y)=\min \{\varphi(y): \varphi \text { is concave and } \varphi(\cdot) \geq f(\cdot)\} .
$$

So Cav $[f]$ is the minimal concave function dominating f.
Home exercise: Cav $[f]$ is concave.
Theorem (R.Aumann, M.Maschler, 1960ies)

$$
V(p) \geq \operatorname{Cav}[u](p)
$$

Proof: $V \geq u$ and V is concave.

Example

$$
A^{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad A^{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

1. Find the value and optimal strategies in $G(p)$
2. Find the value of the non-revealing game $A^{\mathrm{NR}}(p)$

Example

$$
A^{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad A^{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

1. Find the value and optimal strategies in $G(p)$

- The dominant strategy of P1: Top if $\theta=0$, and Bottom if $\theta=1$.
- P 2 replies: if P 2 plays Left, the payoff is $1-p$, if Right, $p \Rightarrow$

$$
V(p)=\min \{1-p, p\}
$$

- Optimal reply is unique \Rightarrow opt. strategy of P 2 is playing Right if $p \leq \frac{1}{2}$ and Left for $p \geq \frac{1}{2}$.

2. Find the value of the non-revealing game $A^{\mathrm{NR}}(p)$

Example

$$
A^{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad A^{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

1. Find the value and optimal strategies in $G(p)$

- The dominant strategy of P1: Top if $\theta=0$, and Bottom if $\theta=1$.
- P2 replies: if P2 plays Left, the payoff is $1-p$, if Right, $p \Rightarrow$

$$
V(p)=\min \{1-p, p\}
$$

- Optimal reply is unique \Rightarrow opt. strategy of $P 2$ is playing Right if $p \leq \frac{1}{2}$ and Left for $p \geq \frac{1}{2}$.

2. Find the value of the non-revealing game $A^{\mathrm{NR}}(p)$

- $A^{\mathrm{NR}}(p)=\left(\begin{array}{cc}1-p & 0 \\ 0 & p\end{array}\right)$. No pure-strategy equilibrium for $p \neq 0,1$
\Rightarrow players use both actions.
- Optimal mixed strategy makes another player indifferent between the two actions: $(1-p) \cdot x_{1}=p \cdot x_{2}$ and $(1-p) \cdot y_{1}=p \cdot y_{2}$.
- The optimal strategies $x=y=(p,(1-p))$. The value is

$$
u(p)=(1-p) \cdot p
$$

Example

$$
A^{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad A^{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Repeated zero-sum games with incomplete information on one side

Motivation:

Birth in 1960ies: disarmament negotiations US \leftrightarrow USSR. Complex interaction: multistage \& both have secrets \Rightarrow interpret the past behavior.
R.Aumann and M.Maschler consulted the US: secret reports ${ }^{1}$ ACDA ST/80, ACDA ST/116, ACDA ST/143.

[^0]
Motivation:

Birth in 1960ies: disarmament negotiations US \leftrightarrow USSR. Complex interaction: multistage \& both have secrets \Rightarrow interpret the past behavior.
R.Aumann and M.Maschler consulted the US: secret reports ${ }^{1}$ ACDA ST/80, ACDA ST/116, ACDA ST/143.

Static games \leftrightarrow repeated games:

Static: P1 does not care about revealed information.
Repeated: P2 may guess θ from previous actions of $\mathrm{P} 1 \Longrightarrow \mathrm{P} 1$ balances between using and hiding his information.

[^1]
Motivation:

Birth in 1960ies: disarmament negotiations US \leftrightarrow USSR. Complex interaction: multistage \& both have secrets \Rightarrow interpret the past behavior.
R.Aumann and M.Maschler consulted the US: secret reports ${ }^{1}$ ACDA ST/80, ACDA ST/116, ACDA ST/143.

Static games \leftrightarrow repeated games:

Static: P1 does not care about revealed information.
Repeated: P2 may guess θ from previous actions of $\mathrm{P} 1 \Longrightarrow$ P1 balances between using and hiding his information.

Other examples:

- Nazi's attack to Coventry and broken Enigma cypher (watch "The Imitation Game" about Alan Turing)
- Insider trading on financial markets (Rothschild and Waterloo battle; papers of B. De Meyer)
${ }^{1}$ Aumann, Maschler (1995) "Repeated Games with Incomplete Information"

The model

T-stage zero-sum game $G_{T}(p)$ with one-sided incomplete information (RGII)

1. the "state of nature" $\theta \in\{0,1\}$ with prior $\mathbb{P}(\theta=1)=p$ is realized.

- Player 1 observes θ
- Player 2 observes nothing but knows p

2. A zero-sum game with $n \times m$ payoff matrix $A^{\theta}=\left(A_{i, j}^{\theta}\right)_{i \in[n], j \in[m]}$ is played T times. Both players observe the history of actions.

The model

T-stage zero-sum game $G_{T}(p)$ with one-sided incomplete information (RGII)

1. the "state of nature" $\theta \in\{0,1\}$ with prior $\mathbb{P}(\theta=1)=p$ is realized.

- Player 1 observes θ
- Player 2 observes nothing but knows p

2. A zero-sum game with $n \times m$ payoff matrix $A^{\theta}=\left(A_{i, j}^{\theta}\right)_{i \in[n], j \in[m]}$ is played T times. Both players observe the history of actions.

Behavioral strategies:

- Player 1 , for each state θ, time $t=0,1 \ldots T-1$ and history $h_{t}=\left(i_{\tau}, j_{\tau}\right)_{\tau=1}^{t-1}$, specifies $x_{t}^{\theta}\left(h_{t}\right) \in \Delta_{n}$. His action $i_{t} \sim x_{t}^{\theta}\left(h_{t}\right)$ conditional on θ and h_{t}
- Player 2 selects $y_{t}\left(h_{t}\right) \in \Delta_{m}$. His action $j_{t} \sim y_{t}\left(h_{t}\right)$.

The model

T-stage zero-sum game $G_{T}(p)$ with one-sided incomplete information (RGII)

1. the "state of nature" $\theta \in\{0,1\}$ with prior $\mathbb{P}(\theta=1)=p$ is realized.

- Player 1 observes θ
- Player 2 observes nothing but knows p

2. A zero-sum game with $n \times m$ payoff matrix $A^{\theta}=\left(A_{i, j}^{\theta}\right)_{i \in[n], j \in[m]}$ is played T times. Both players observe the history of actions.

Behavioral strategies:

- Player 1 , for each state θ, time $t=0,1 \ldots T-1$ and history $h_{t}=\left(i_{\tau}, j_{\tau}\right)_{\tau=1}^{t-1}$, specifies $x_{t}^{\theta}\left(h_{t}\right) \in \Delta_{n}$. His action $i_{t} \sim x_{t}^{\theta}\left(h_{t}\right)$ conditional on θ and h_{t}
- Player 2 selects $y_{t}\left(h_{t}\right) \in \Delta_{m}$. His action $j_{t} \sim y_{t}\left(h_{t}\right)$.

The payoff:

$$
\frac{1}{T} \cdot \mathbb{E}_{\theta, h_{T}}\left[\sum_{t=0}^{T-1} A_{i_{t}, j_{t}}^{\theta}\right]
$$

The value

The value:

$$
V_{T}(p)=\max _{x} \min _{y}\left[\frac{1}{T} \cdot \mathbb{E}_{\theta, h_{T}}\left[\sum_{t=0}^{T-1} A_{i_{t}, j_{t}}^{\theta}\right]\right]=\min _{y} \max _{x}
$$

Question: Why min max $=\max \min$?

The value

The value:

$$
V_{T}(p)=\max _{x} \min _{y}\left[\frac{1}{T} \cdot \mathbb{E}_{\theta, h_{T}}\left[\sum_{t=0}^{T-1} A_{i_{t}, j_{t}}^{\theta}\right]\right]=\min _{y} \max _{x}
$$

Question: Why min max $=$ max \min ?
Familiar mystery: $G_{T}(p)$ can be reduced to a one-stage matrix game with complete information:
Pure strategies are deterministic behavioral strategies (for all possible histories and states). For each pair of pure strategies x, y compute the payoff $A_{x, y}^{\prime}$. By the construction $V_{T}(p)=\operatorname{val}\left[A^{\prime}\right]$.

The value

The value:

$$
V_{T}(p)=\max _{x} \min _{y}\left[\frac{1}{T} \cdot \mathbb{E}_{\theta, h_{T}}\left[\sum_{t=0}^{T-1} A_{i_{t}, j_{t}}^{\theta}\right]\right]=\min _{y} \max _{x}
$$

Question: Why min max $=\max \min$?
Familiar mystery: $G_{T}(p)$ can be reduced to a one-stage matrix game with complete information:
Pure strategies are deterministic behavioral strategies (for all possible histories and states). For each pair of pure strategies x, y compute the payoff $A_{x, y}^{\prime}$. By the construction $V_{T}(p)=\operatorname{val}\left[A^{\prime}\right]$.
We used Kuhn's theorem: for any mixed strategy there is a behavioral strategy with the same payoff and vice-versa.

Example

T-stage RGII with payoffs

$$
A^{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad A^{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Question: What should P1 do?

Example

T-stage RGII with payoffs

$$
A^{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad A^{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Question: What should P1 do?

- Bad Idea: play the optimal strategy from the static game $G(p) \equiv G_{1}(p)$: Top if $\theta=0$ and Bottom if $\theta=1$. P 2 guesses the state after the first round \Rightarrow the payoff is $\frac{V(p)}{T} \rightarrow 0$ as $T \rightarrow \infty$.
- Better Idea: play the optimal strategy from Guarantees $u(p)$ at every stage, so $V_{T}(p) \geq u(p)$.

Example

T-stage RGII with payoffs

$$
A^{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad A^{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Question: What should P1 do?

- Bad Idea: play the optimal strategy from the static game $G(p) \equiv G_{1}(p)$: Top if $\theta=0$ and Bottom if $\theta=1$.
P 2 guesses the state after the first round \Rightarrow the payoff is $\frac{V(p)}{T} \rightarrow 0$ as $T \rightarrow \infty$.
- Better Idea: play the optimal strategy from $A^{\mathrm{NR}}(p)=(1-p) \cdot A^{0}+p \cdot A^{1}$.
Guarantees $u(p)$ at every stage, so $V_{T}(p) \geq u(p)$.

Example

T-stage RGII with payoffs

$$
A^{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad A^{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Question: What should P1 do?

- Bad Idea: play the optimal strategy from the static game $G(p) \equiv G_{1}(p)$: Top if $\theta=0$ and Bottom if $\theta=1$. P 2 guesses the state after the first round \Rightarrow the payoff is $\frac{V(p)}{T} \rightarrow 0$ as $T \rightarrow \infty$.
- Better Idea: play the optimal strategy from

$$
A^{\mathrm{NR}}(p)=(1-p) \cdot A^{0}+p \cdot A^{1}
$$

Guarantees $u(p)$ at every stage, so $V_{T}(p) \geq u(p)$.
Question: Can P1 do better?

Example

T-stage RGII with payoffs

$$
A^{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad A^{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Question: What should P1 do?

- Bad Idea: play the optimal strategy from the static game $G(p) \equiv G_{1}(p)$: Top if $\theta=0$ and Bottom if $\theta=1$. P 2 guesses the state after the first round \Rightarrow the payoff is $\frac{V(p)}{T} \rightarrow 0$ as $T \rightarrow \infty$.
- Better Idea: play the optimal strategy from

$$
A^{\mathrm{NR}}(p)=(1-p) \cdot A^{0}+p \cdot A^{1} .
$$

Guarantees $u(p)$ at every stage, so $V_{T}(p) \geq u(p)$.
Question: Can P1 do better?
Answer: Not much.

The Cav [u]-theorem

Theorem (R.Aumann, M.Maschler, 1960ies)

$$
\operatorname{Cav}[u](p) \leq V_{T}(p) \leq \operatorname{Cav}[u](p)+\frac{2\|A\|}{\sqrt{T}},
$$

where $\|A\|=\max _{i, j, \theta}\left|A_{i, j}^{\theta}\right|$.

The Cav [u]-theorem

Theorem (R.Aumann, M.Maschler, 1960ies)

$$
\operatorname{Cav}[u](p) \leq V_{T}(p) \leq \operatorname{Cav}[u](p)+\frac{2\|A\|}{\sqrt{T}},
$$

where $\|A\|=\max _{i, j, \theta}\left|A_{i, j}^{\theta}\right|$.
Corollary: the limit value $V_{\infty}(p)=\lim _{T \rightarrow \infty} V_{T}=\operatorname{Cav}[u](p)$.

The Cav [u]-theorem

Theorem (R.Aumann, M.Maschler, 1960ies)

$$
\operatorname{Cav}[u](p) \leq V_{T}(p) \leq \operatorname{Cav}[u](p)+\frac{2\|A\|}{\sqrt{T}}
$$

where $\|A\|=\max _{i, j, \theta}\left|A_{i, j}^{\theta}\right|$.
Corollary: the limit value $V_{\infty}(p)=\lim _{T \rightarrow \infty} V_{T}=\operatorname{Cav}[u](p)$.
Proof:

- Lower bound: $G_{T}(p) \leftrightarrow$ a static game with incomplete information $\Rightarrow V_{T}(p)$ is concave. $V_{T}(p) \geq u(p) \Rightarrow V_{T}(p) \geq \operatorname{Cav}[u](p)$.
- Upper bound:

The Cav [u]-theorem

Theorem (R.Aumann, M.Maschler, 1960ies)

$$
\operatorname{Cav}[u](p) \leq V_{T}(p) \leq \operatorname{Cav}[u](p)+\frac{2\|A\|}{\sqrt{T}}
$$

where $\|A\|=\max _{i, j, \theta}\left|A_{i, j}^{\theta}\right|$.
Corollary: the limit value $V_{\infty}(p)=\lim _{T \rightarrow \infty} V_{T}=\operatorname{Cav}[u](p)$.
Proof:

- Lower bound: $G_{T}(p) \leftrightarrow$ a static game with incomplete information $\Rightarrow V_{T}(p)$ is concave. $V_{T}(p) \geq u(p) \Rightarrow V_{T}(p) \geq \operatorname{Cav}[u](p)$.
- Upper bound:

Method 1: the upper bound via Blackwell's approachability

Remark: this method gives a weaker result:

$$
\limsup _{T \rightarrow \infty} V_{T}(p) \leq \operatorname{Cav}[u](p)
$$

No control on the speed of convergence.

Reminder: Blackwell's approachability

Consider a game \vec{G}_{T} with vector payoff $\vec{A}=\binom{A^{0}}{A^{1}}$.
Definition: A set $C \subset \mathbb{R}^{2}$ is approachable by $\mathrm{P} 2 \Leftrightarrow \mathrm{P} 2$ has a behavioral strategy such that the average payoff approaches C in the limit, no matter what P1 is doing:

$$
\mathbb{E}\left(\operatorname{dist}\left(\frac{1}{T} \sum_{t=0}^{T-1} \vec{A}_{i_{t}, j_{t}}, \quad C\right)\right) \rightarrow 0 \quad \text { as } T \rightarrow \infty
$$

Theorem (Blackwell)

$$
\begin{aligned}
& L(\alpha)=\left(-\infty, \alpha_{0}\right] \times\left(-\infty, \alpha_{1}\right] \text { is approachable by P2 if } \\
& \quad \operatorname{val}\left[(1-q) A^{0}+q A^{1}\right] \leq(1-q) \alpha_{0}+q \cdot \alpha_{1} \quad \text { for any } q \in[0,1] .
\end{aligned}
$$

Reminder: Blackwell's approachability

Consider a game \vec{G}_{T} with vector payoff $\vec{A}=\binom{A^{0}}{A^{1}}$.
Definition: A set $C \subset \mathbb{R}^{2}$ is approachable by $\mathrm{P} 2 \Leftrightarrow \mathrm{P} 2$ has a behavioral strategy such that the average payoff approaches C in the limit, no matter what P1 is doing:

$$
\mathbb{E}\left(\operatorname{dist}\left(\frac{1}{T} \sum_{t=0}^{T-1} \vec{A}_{i_{t}, j_{t}}, \quad C\right)\right) \rightarrow 0 \quad \text { as } T \rightarrow \infty
$$

Theorem (Blackwell)

$$
\begin{aligned}
& L(\alpha)=\left(-\infty, \alpha_{0}\right] \times\left(-\infty, \alpha_{1}\right] \text { is approachable by P2 if } \\
& \quad \operatorname{val}\left[(1-q) A^{0}+q A^{1}\right] \leq(1-q) \alpha_{0}+q \cdot \alpha_{1} \quad \text { for any } q \in[0,1] .
\end{aligned}
$$

Remark: $\operatorname{val}\left[(1-q) A^{0}+q A^{1}\right]=u(q)$

Application to RGII: the upper bound on $V_{T}(p)$

Picking alphas: $I(q)=(1-q) \cdot \alpha_{0}+q \cdot \alpha_{1}$ is the tangent line to the graph of Cav [u] at p :

$$
\operatorname{Cav}[u](p)=I(p) \quad \text { and } \quad \operatorname{Cav}[u](q) \leq I(q) \text { for } q \in[0,1] .
$$

Application to RGII: the upper bound on $V_{T}(p)$

Picking alphas: $I(q)=(1-q) \cdot \alpha_{0}+q \cdot \alpha_{1}$ is the tangent line to the graph of Cav [u] at p :

$$
\operatorname{Cav}[u](p)=I(p) \quad \text { and } \quad \operatorname{Cav}[u](q) \leq I(q) \text { for } q \in[0,1] .
$$

Corollary: the set $L(\alpha)$ is approachable for vector-payoff game \vec{G}_{T}.

Application to RGII: the upper bound on $V_{T}(p)$

Picking alphas: $I(q)=(1-q) \cdot \alpha_{0}+q \cdot \alpha_{1}$ is the tangent line to the graph of $\operatorname{Cav}[u]$ at p :

$$
\operatorname{Cav}[u](p)=I(p) \quad \text { and } \quad \operatorname{Cav}[u](q) \leq I(q) \text { for } q \in[0,1] .
$$

Corollary: the set $L(\alpha)$ is approachable for vector-payoff game \vec{G}_{T}.

Proposition

$$
\limsup _{T \rightarrow \infty} V_{T}(p) \leq \operatorname{Cav}[u](p) .
$$

Application to RGII: the upper bound on $V_{T}(p)$

Picking alphas: $I(q)=(1-q) \cdot \alpha_{0}+q \cdot \alpha_{1}$ is the tangent line to the graph of Cav $[u]$ at p :

$$
\operatorname{Cav}[u](p)=I(p) \quad \text { and } \quad \operatorname{Cav}[u](q) \leq I(q) \text { for } q \in[0,1] .
$$

Corollary: the set $L(\alpha)$ is approachable for vector-payoff game \vec{G}_{T}.

Proposition

$$
\limsup _{T \rightarrow \infty} V_{T}(p) \leq \operatorname{Cav}[u](p)
$$

Proof:

- P2 plays his approachability strategy

$$
\frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i_{t}, j_{t}}^{\theta}\right]=(1-p) \frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i_{t}, j_{t}}^{0} \mid \theta=0\right]+p \cdot \frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i_{t}, j_{t}}^{1} \mid \theta=1\right] .
$$

Application to RGII: the upper bound on $V_{T}(p)$

Picking alphas: $I(q)=(1-q) \cdot \alpha_{0}+q \cdot \alpha_{1}$ is the tangent line to the graph of Cav [u] at p :

$$
\operatorname{Cav}[u](p)=I(p) \quad \text { and } \quad \operatorname{Cav}[u](q) \leq I(q) \text { for } q \in[0,1] .
$$

Corollary: the set $L(\alpha)$ is approachable for vector-payoff game \vec{G}_{T}.

Proposition

$$
\limsup _{T \rightarrow \infty} V_{T}(p) \leq \operatorname{Cav}[u](p)
$$

Proof:

- P2 plays his approachability strategy

$$
\frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i, t}^{\theta}\right]=(1-p) \frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i_{t}, j_{t}}^{0} \mid \theta=0\right]+p \cdot \frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i, j t}^{1} \mid \theta=1\right] .
$$

- $L(\alpha)$ is approachable $\Rightarrow \frac{1}{T} \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i_{t}, j_{t}}^{0} \mid \theta\right]$ approaches $\left(-\infty, \alpha_{\theta}\right]$.

$$
\limsup _{T \rightarrow \infty} \frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i_{t}, j_{t}}^{\theta}\right] \leq(1-p) \alpha_{0}+p \cdot \alpha_{1}=\operatorname{Cav}[u](p)
$$

Method 2: the upper bound via martingales of posterior beliefs

Remark: this method allows to control the error term

$$
V_{T}(p) \leq \operatorname{Cav}[u](p)+\frac{2\|A\|}{\sqrt{T}}
$$

Variation of posterior beliefs

Fix some strategy x of Player 1 .
Martingale of beliefs of Player 2: $p_{t}=\mathbb{P}\left(\theta=1 \mid h_{t}\right), \quad p_{0}=p$.

Variation of posterior beliefs

Fix some strategy x of Player 1 .
Martingale of beliefs of Player 2: $p_{t}=\mathbb{P}\left(\theta=1 \mid h_{t}\right), \quad p_{0}=p$.
A reasonable reply y to x : At stage t compute p_{t} and play optimal strategy from the non-revealing game $A^{\mathrm{NR}}\left(p_{t}\right)$.

Variation of posterior beliefs

Fix some strategy x of Player 1 .
Martingale of beliefs of Player 2: $p_{t}=\mathbb{P}\left(\theta=1 \mid h_{t}\right), \quad p_{0}=p$.
A reasonable reply y to x : At stage t compute p_{t} and play optimal strategy from the non-revealing game $A^{\mathrm{NR}}\left(p_{t}\right)$.

Lemma

The payoff for a pair (x, y) satisfies

$$
\frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i_{t}, j_{t}}^{\theta}\right] \leq \operatorname{Cav}[u]+2\|A\| \cdot \frac{\mathbb{E}\left[\sum_{t=0}^{T-1}\left|p_{t+1}-p_{t}\right|\right]}{T}
$$

Variation of posterior beliefs

Lemma

The payoff for a pair (x, y) satisfies

$$
\frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i_{t}, j_{t}}^{\theta}\right] \leq \operatorname{Cav}[u]+2\|A\| \cdot \frac{\mathbb{E}\left[\sum_{t=0}^{T-1}\left|p_{t+1}-p_{t}\right|\right]}{T}
$$

Proof:

- The contribution of stage t :

$$
\begin{gathered}
\mathbb{E}\left[A_{i_{t}, j_{t}}^{\theta}\right]=\mathbb{E}\left[\mathbb{1}_{\{\theta=0\}} \cdot A_{i_{t}, j_{t}}^{0}+\mathbb{1}_{\{\theta=1\}} \cdot A_{i_{t}, j_{t}}^{1}\right]=\mathbb{E}\left[\mathbb{E}\left[\ldots \mid h_{t+1}\right]\right]= \\
=\mathbb{E}\left[\left(1-p_{t+1}\right) A_{i_{t}, j_{t}}^{0}+p_{t+1} \cdot A_{i_{t}, j_{t}}^{1}\right]=\star
\end{gathered}
$$

- This is a payoff in a game $A^{\mathrm{NR}}\left(p_{t+1}\right)$ if P 2 plays his optimal strategy from $A^{\mathrm{NR}}\left(p_{t}\right)$. Since $\left|A_{i, j}^{\mathrm{NR}}\left(p_{t+1}\right)-A_{i, j}^{\mathrm{NR}}\left(p_{t}\right)\right| \leq 2\|A\| \cdot\left|p_{t+1}-p_{t}\right|$ $\star<\mathbb{E}\left[u\left(p_{+}\right)\right]+2\|A\| \cdot \mathbb{E}\left|p_{t+1}-p_{+}\right|$
- By Jensen's inequality and the martingale property

Variation of posterior beliefs

Lemma

The payoff for a pair (x, y) satisfies

$$
\frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i t, j t}^{\theta}\right] \leq \operatorname{Cav}[u]+2\|A\| \cdot \frac{\mathbb{E}\left[\sum_{t=0}^{T-1}\left|p_{t+1}-p_{t}\right|\right]}{T}
$$

Proof:

- The contribution of stage t :

$$
\begin{gathered}
\mathbb{E}\left[A_{\left.i_{t}, j_{t}\right]}^{\theta}\right]=\mathbb{E}\left[\mathbb{1}_{\{\theta=0\}} \cdot A_{i_{t}, j_{t}}^{0}+\mathbb{1}_{\{\theta=1\}} \cdot A_{i_{t}, j_{t}}^{1}\right]=\mathbb{E}\left[\mathbb{E}\left[\ldots \mid h_{t+1}\right]\right]= \\
=\mathbb{E}\left[\left(1-p_{t+1}\right) A_{i_{i}, j_{t}}^{0}+p_{t+1} \cdot A_{i_{t}, j_{t}}^{1}\right]=\star
\end{gathered}
$$

- This is a payoff in a game $A^{\mathrm{NR}}\left(p_{t+1}\right)$ if P 2 plays his optimal strategy from $A^{\mathrm{NR}}\left(p_{t}\right)$. Since $\left|A_{i, j}^{\mathrm{NR}}\left(p_{t+1}\right)-A_{i, j}^{\mathrm{NR}}\left(p_{t}\right)\right| \leq 2\|A\| \cdot\left|p_{t+1}-p_{t}\right|$

$$
\star \leq \mathbb{E}\left[u\left(p_{t}\right)\right]+2\|A\| \cdot \mathbb{E}\left|p_{t+1}-p_{t}\right| .
$$

- By Jensen's inequality and the martingale property

Variation of posterior beliefs

Lemma

The payoff for a pair (x, y) satisfies

$$
\frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i_{t}, j_{t}}^{\theta}\right] \leq \operatorname{Cav}[u]+2\|A\| \cdot \frac{\mathbb{E}\left[\sum_{t=0}^{T-1}\left|p_{t+1}-p_{t}\right|\right]}{T}
$$

Proof:

- The contribution of stage t :

$$
\begin{gathered}
\mathbb{E}\left[A_{i_{t}, j_{t}}^{\theta}\right]=\mathbb{E}\left[\mathbb{1}_{\{\theta=0\}} \cdot A_{i_{t}, j_{t}}^{0}+\mathbb{1}_{\{\theta=1\}} \cdot A_{i_{t}, j_{t}}^{1}\right]=\mathbb{E}\left[\mathbb{E}\left[\ldots \mid h_{t+1}\right]\right]= \\
=\mathbb{E}\left[\left(1-p_{t+1}\right) A_{i_{t}, j_{t}}^{0}+p_{t+1} \cdot A_{i_{t}, j_{t}}^{1}\right]=\star
\end{gathered}
$$

- This is a payoff in a game $A^{\mathrm{NR}}\left(p_{t+1}\right)$ if P2 plays his optimal strategy from $A^{\mathrm{NR}}\left(p_{t}\right)$. Since $\left|A_{i, j}^{\mathrm{NR}}\left(p_{t+1}\right)-A_{i, j}^{\mathrm{NR}}\left(p_{t}\right)\right| \leq 2\|A\| \cdot\left|p_{t+1}-p_{t}\right|$

$$
\star \leq \mathbb{E}\left[u\left(p_{t}\right)\right]+2\|A\| \cdot \mathbb{E}\left|p_{t+1}-p_{t}\right|
$$

- By Jensen's inequality and the martingale property

$$
\mathbb{E}\left[u\left(p_{t}\right)\right] \leq \mathbb{E}\left[\operatorname{Cav}[u]\left(p_{t}\right)\right] \leq \operatorname{Cav}[u]\left(\mathbb{E} p_{t}\right)=\operatorname{Cav}[u](p)
$$

Upper bound on the variation

It remains to bound the L_{1}-variation:

$$
\mathbb{E}\left[\sum_{t=0}^{T-1}\left|p_{t+1}-p_{t}\right|\right] \leq \sqrt{T} .
$$

Upper bound on the variation

It remains to bound the L_{1}-variation:

$$
\mathbb{E}\left[\sum_{t=0}^{T-1}\left|p_{t+1}-p_{t}\right|\right] \leq \sqrt{T}
$$

Telescopic property of L_{2} (aka quadratic) variation
For any martingale ξ_{0}, ξ_{1}, \ldots on filtration $\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \ldots$

$$
\mathbb{E}\left[\sum_{t=0}^{T-1}\left(\xi_{t+1}-\xi_{t}\right)^{2}\right]=\mathbb{E}\left[\xi_{T}^{2}\right]-\mathbb{E}\left[\xi_{0}^{2}\right]
$$

Upper bound on the variation

It remains to bound the L_{1}-variation:

$$
\mathbb{E}\left[\sum_{t=0}^{T-1}\left|p_{t+1}-p_{t}\right|\right] \leq \sqrt{T}
$$

Telescopic property of L_{2} (aka quadratic) variation

For any martingale ξ_{0}, ξ_{1}, \ldots on filtration $\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \ldots$

$$
\mathbb{E}\left[\sum_{t=0}^{T-1}\left(\xi_{t+1}-\xi_{t}\right)^{2}\right]=\mathbb{E}\left[\xi_{T}^{2}\right]-\mathbb{E}\left[\xi_{0}^{2}\right]
$$

Proof:

$$
\mathbb{E}\left[\sum_{t=0}^{T-1}\left(\xi_{t+1}-\xi_{t}\right)^{2}\right]=\sum_{t=0}^{T-1}\left[\mathbb{E}\left[\xi_{t+1}^{2}\right]+\mathbb{E}\left[\xi_{t}^{2}\right]-2 \mathbb{E}\left[\xi_{t+1} \cdot \xi_{t}\right]\right]=\star
$$

Note that $\mathbb{E}\left[\xi_{t+1} \cdot \xi_{t}\right]=\mathbb{E}\left[\mathbb{E}\left[\xi_{t+1} \cdot \xi_{t} \mid \mathcal{F}_{t}\right]\right]=\mathbb{E}\left[\xi_{t}^{2}\right]$.

$$
\star=\sum_{t=0}^{T-1}\left[\mathbb{E}\left[\xi_{t+1}^{2}\right]-\mathbb{E}\left[\xi_{t}^{2}\right]\right]=\mathbb{E}\left[\xi_{T}^{2}\right]-\mathbb{E}\left[\xi_{0}^{2}\right]
$$

Upper bound on the variation

It remains to bound the L_{1}-variation:

$$
\mathbb{E}\left[\sum_{t=0}^{T-1}\left|p_{t+1}-p_{t}\right|\right] \leq \sqrt{T}
$$

Telescopic property of L_{2} (aka quadratic) variation
For any martingale ξ_{0}, ξ_{1}, \ldots on filtration $\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \ldots$

$$
\mathbb{E}\left[\sum_{t=0}^{T-1}\left(\xi_{t+1}-\xi_{t}\right)^{2}\right]=\mathbb{E}\left[\xi_{T}^{2}\right]-\mathbb{E}\left[\xi_{0}^{2}\right] .
$$

Bound on L_{1}-variation

$$
\mathbb{E}\left[\sum_{t=0}^{T-1}\left|\xi_{t+1}-\xi_{t}\right|\right] \leq \sqrt{T} \cdot \sqrt{\mathbb{E}\left[\xi_{T}^{2}\right]-\mathbb{E}\left[\xi_{0}^{2}\right]}
$$

Upper bound on the variation

It remains to bound the L_{1}-variation:

$$
\mathbb{E}\left[\sum_{t=0}^{T-1}\left|p_{t+1}-p_{t}\right|\right] \leq \sqrt{T}
$$

Telescopic property of L_{2} (aka quadratic) variation

For any martingale ξ_{0}, ξ_{1}, \ldots on filtration $\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \ldots$

$$
\mathbb{E}\left[\sum_{t=0}^{T-1}\left(\xi_{t+1}-\xi_{t}\right)^{2}\right]=\mathbb{E}\left[\xi_{T}^{2}\right]-\mathbb{E}\left[\xi_{0}^{2}\right]
$$

Bound on L_{1}-variation

$$
\mathbb{E}\left[\sum_{t=0}^{T-1}\left|\xi_{t+1}-\xi_{t}\right|\right] \leq \sqrt{T} \cdot \sqrt{\mathbb{E}\left[\xi_{T}^{2}\right]-\mathbb{E}\left[\xi_{0}^{2}\right]}
$$

Proof: Cauchy-Shwartz inequality
$\mathbb{E}\left[\sum^{T-1}\left|\xi_{t+1}-\xi_{t}\right|\right]=\mathbb{E}\left[\sum^{T-1} 1 \cdot\left|\xi_{t+1}-\xi_{t}\right|\right] \leq \sqrt{\mathbb{E}\left[\sum^{T-1} 1\right]} \sqrt{\mathbb{E}\left[\sum^{T-1}\left(\xi_{t+1}-\xi_{t}\right)^{2}\right]}$.

Extensions \& references

Extensions:

- Non-binary set of states $\Theta \Rightarrow$ no complications: $\Delta(\Theta)$ replaces $[0,1]$. Continuous Θ and sets of actions are doable (Gensbittel 2015)
- Partial information on the side of P1 reduces to $\Theta^{\prime}=\Delta(\Theta)$ as the new state space (Gensbittel 2015)
- Incomplete information on two sides (Mertens, Zamir 1971, Laraki 2001)
- Non-zero-sum: limit value and bi-martingales (S.Hart 1985)
- More than 2 players: nothing is known.

Extensions:

- Non-binary set of states $\Theta \Rightarrow$ no complications: $\Delta(\Theta)$ replaces $[0,1]$. Continuous Θ and sets of actions are doable (Gensbittel 2015)
- Partial information on the side of P1 reduces to $\Theta^{\prime}=\Delta(\Theta)$ as the new state space (Gensbittel 2015)
- Incomplete information on two sides (Mertens, Zamir 1971, Laraki 2001)
- Non-zero-sum: limit value and bi-martingales (S.Hart 1985)
- More than 2 players: nothing is known.

Extensions:

- Non-binary set of states $\Theta \Rightarrow$ no complications: $\Delta(\Theta)$ replaces $[0,1]$. Continuous Θ and sets of actions are doable (Gensbittel 2015)
- Partial information on the side of P1 reduces to $\Theta^{\prime}=\Delta(\Theta)$ as the new state space (Gensbittel 2015)
- Incomplete information on two sides (Mertens, Zamir 1971, Laraki 2001)
- Non-zero-sum: limit value and bi-martingales (S.Hart 1985)
- More than 2 players: nothing is known.

Extensions:

- Non-binary set of states $\Theta \Rightarrow$ no complications: $\Delta(\Theta)$ replaces $[0,1]$. Continuous Θ and sets of actions are doable (Gensbittel 2015)
- Partial information on the side of P1 reduces to $\Theta^{\prime}=\Delta(\Theta)$ as the new state space (Gensbittel 2015)
- Incomplete information on two sides (Mertens, Zamir 1971, Laraki 2001)
- Non-zero-sum: limit value and bi-martingales (S.Hart 1985)
- More than 2 players: nothing is known.

Extensions:

- Non-binary set of states $\Theta \Rightarrow$ no complications: $\Delta(\Theta)$ replaces $[0,1]$. Continuous Θ and sets of actions are doable (Gensbittel 2015)
- Partial information on the side of P1 reduces to $\Theta^{\prime}=\Delta(\Theta)$ as the new state space (Gensbittel 2015)
- Incomplete information on two sides (Mertens, Zamir 1971, Laraki 2001)
- Non-zero-sum: limit value and bi-martingales (S.Hart 1985)
- More than 2 players: nothing is known.

Extensions:

- Non-binary set of states $\Theta \Rightarrow$ no complications: $\Delta(\Theta)$ replaces $[0,1]$. Continuous Θ and sets of actions are doable (Gensbittel 2015)
- Partial information on the side of P1 reduces to $\Theta^{\prime}=\Delta(\Theta)$ as the new state space (Gensbittel 2015)
- Incomplete information on two sides (Mertens, Zamir 1971, Laraki 2001)
- Non-zero-sum: limit value and bi-martingales (S.Hart 1985)
- More than 2 players: nothing is known.

Useful methods:

- Bellman equation $V_{T+1}=F\left[V_{T}\right]$ (Zamir 1971, Gensbittel 2015)
- Dual game (P1 select the state), PDE, and CLT (De Meyer 1996)
- Continuous-time approximation and PDE (Gensbittel 2015)
- The value $=$ a solution of a martingale-optimization problem (De Meyer 2010, Gensbittel 2015)

Extensions:

- Non-binary set of states $\Theta \Rightarrow$ no complications: $\Delta(\Theta)$ replaces $[0,1]$. Continuous Θ and sets of actions are doable (Gensbittel 2015)
- Partial information on the side of P1 reduces to $\Theta^{\prime}=\Delta(\Theta)$ as the new state space (Gensbittel 2015)
- Incomplete information on two sides (Mertens, Zamir 1971, Laraki 2001)
- Non-zero-sum: limit value and bi-martingales (S.Hart 1985)
- More than 2 players: nothing is known.

Useful methods:

- Bellman equation $V_{T+1}=F\left[V_{T}\right]$ (Zamir 1971, Gensbittel 2015)
- Dual game (P1 select the state), PDE, and CLT (De Meyer 1996)
- The value $=$ a solution of a martingale-optimization problem (De Mever 2010. Gensbittel 2015)

Extensions:

- Non-binary set of states $\Theta \Rightarrow$ no complications: $\Delta(\Theta)$ replaces $[0,1]$. Continuous Θ and sets of actions are doable (Gensbittel 2015)
- Partial information on the side of P1 reduces to $\Theta^{\prime}=\Delta(\Theta)$ as the new state space (Gensbittel 2015)
- Incomplete information on two sides (Mertens, Zamir 1971, Laraki 2001)
- Non-zero-sum: limit value and bi-martingales (S.Hart 1985)
- More than 2 players: nothing is known.

Useful methods:

- Bellman equation $V_{T+1}=F\left[V_{T}\right]$ (Zamir 1971, Gensbittel 2015)
- Dual game (P1 select the state), PDE, and CLT (De Meyer 1996)
- Continuous-time approximation and PDE (Gensbittel 2015)
- The value $=$ a solution of a m
Meyer 2010, Gensbittel 2015)

Extensions:

- Non-binary set of states $\Theta \Rightarrow$ no complications: $\Delta(\Theta)$ replaces $[0,1]$. Continuous Θ and sets of actions are doable (Gensbittel 2015)
- Partial information on the side of P1 reduces to $\Theta^{\prime}=\Delta(\Theta)$ as the new state space (Gensbittel 2015)
- Incomplete information on two sides (Mertens, Zamir 1971, Laraki 2001)
- Non-zero-sum: limit value and bi-martingales (S.Hart 1985)
- More than 2 players: nothing is known.

Useful methods:

- Bellman equation $V_{T+1}=F\left[V_{T}\right]$ (Zamir 1971, Gensbittel 2015)
- Dual game (P1 select the state), PDE, and CLT (De Meyer 1996)
- Continuous-time approximation and PDE (Gensbittel 2015)
- The value $=$ a solution of a martingale-optimization problem (De Meyer 2010, Gensbittel 2015)

Main references:

- S.Zamir Repeated games of incomplete information: Zero-sum Handbook of Game Theory, 1992
A good survey of classic results with proofs.
- M.Maschler, E.Solan, S.Zamir "Game Theory" 2013

Static games \& Cav [u] by approachability for RGII

- J.-F. Mertens. S.Sorin. S.Zamir "Repeated games" 2014 Read from Chapter V.
Static games \& classic martingale-based proof of Cav [u] and much more
- Fabien Gensbittel "Extensions of the Cav(u) theorem for repeated games with one-sided information.", Math. Oper. Res,40(1), 80-104, 2015
Modern approach to Cav [u]-theorem.

Main references:

- S.Zamir Repeated games of incomplete information: Zero-sum Handbook of Game Theory, 1992
A good survey of classic results with proofs.
- M.Maschler, E.Solan, S.Zamir "Game Theory" 2013

Static games \& Cav [u] by approachability for RGII

- J.-F. Mertens, S.Sorin, S.Zamir "Repeated games" 2014

Read from Chapter V.
Static games \& classic martingale-based proof of Cav $[u]$ and much more

- Fabien Gensbittel "Extensions of the Cav(u) theorem for repeated
games with one-sided information." Math. Oper. Res,40(1),
80-104, 2015
Modern approach to Cav [u]-theorem.

Main references:

- S.Zamir Repeated games of incomplete information: Zero-sum Handbook of Game Theory, 1992
A good survey of classic results with proofs.
- M.Maschler, E.Solan, S.Zamir "Game Theory" 2013

Static games \& Cav [u] by approachability for RGII

- J.-F. Mertens, S.Sorin, S.Zamir "Repeated games" 2014

Read from Chapter V.
Static games \& classic martingale-based proof of Cav [u] and much more

- Fabien Gensbittel "Extensions of the Cav(u) theorem for repeated games with one-sided information." Math. Oper. Res,40(1), 80-104, 2015.
Modern approach to Cav [u]-theorem.

Main references:

- S.Zamir Repeated games of incomplete information: Zero-sum Handbook of Game Theory, 1992
A good survey of classic results with proofs.
- M.Maschler, E.Solan, S.Zamir "Game Theory" 2013

Static games \& Cav [u] by approachability for RGII

- J.-F. Mertens, S.Sorin, S.Zamir "Repeated games" 2014

Read from Chapter V.
Static games \& classic martingale-based proof of Cav [u] and much more

- Fabien Gensbittel "Extensions of the Cav(u) theorem for repeated games with one-sided information.", Math. Oper. Res,40(1), 80-104, 2015.
Modern approach to Cav [u]-theorem.

[^0]: ${ }^{1}$ Aumann, Maschler (1995) "Repeated Games with Incomplete Information"

[^1]: ${ }^{1}$ Aumann, Maschler (1995) "Repeated Games with Incomplete Information"

