Lecture 1: zero-sum games with incomplete information

Fedor Sandomirskiy April 21, 2020

Technion, Haifa & Higher School of Economics, St.Petersburg e-mail: fedor.sandomirskiy@gmail.com homepage: https://www.fedors.info/

- Reminder: martingales and posterior probabilities
- Static zero-sum games with incomplete information on one side
- Repeated zero-sum games with incomplete information on one side:
 - Cav [u]-theorem via Blackwell's approachability
 - Cav [u]-theorem via martingales of posterior beliefs

Reminder: martingales and posterior probabilities

probability $(\Omega, \mathcal{F}, \mathbb{P})$ with filtration $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \mathcal{F}_2 \subset \dots$

Definition

A sequence of random variables $\xi_0, \xi_1, \xi_2, \ldots$ is a martingale if ξ_t is \mathcal{F}_t -measurable and

$$\mathbb{E}[\xi_{t+1} \mid \mathcal{F}_t] = \xi_t$$

Interpretation: the best prediction of the future value = current value \Rightarrow wide use in models of learning.

- Unobservable state $\theta \in \{0, 1\}$ with prior probability $\mathbb{P}(\theta = 1) = p$.
- An agent sequentially observes signals s₁, s₂, s₃... which have arbitrary joint distribution with θ.
- The agent computes his posterior probability $p_t = \mathbb{P}[\theta = 1 \mid s_1, s_2, \dots s_t]$ using the Bayes rule.

Proposition

The sequence $p_0 = p, p_1, p_2, ...$ is a martingale with values in [0, 1]

Interpretation: best prediction of tomorrow's belief is today's belief \Leftrightarrow rationality property: time-consistency of beliefs.

Main example: martingale of posteriors

- Unobservable state $\theta \in \{0, 1\}$ with prior probability $\mathbb{P}(\theta = 1) = p$.
- An agent sequentially observes signals s₁, s₂, s₃... which have arbitrary joint distribution with θ.
- The agent computes his posterior probability
 - $p_t = \mathbb{P}[\theta = 1 \mid s_1, s_2, \dots s_t]$ using the Bayes rule.

Proposition

The sequence $p_0 = p, p_1, p_2, ...$ is a martingale with values in [0, 1]

Interpretation: best prediction of tomorrow's belief is today's belief \Leftrightarrow rationality property: time-consistency of beliefs.

Proof: Denote $\mathcal{F}_0 = \{\emptyset, \Omega\}$, $\mathcal{F}_t = \Sigma(s_1, s_2, \dots s_t)$. Then

$$p_t = \mathbb{P}[\theta = 1 \mid \mathcal{F}_t] = \mathbb{E}[\mathbb{1}_{\{\theta = 1\}} \mid \mathcal{F}_t].$$

By the telescopic property of conditional expectations

$$\mathbb{E}[\rho_{t+1} \mid \mathcal{F}_t] = \mathbb{E}\Big[\mathbb{E}[\mathbb{1}_{\{\theta=1\}} \mid \mathcal{F}_{t+1}] \mid \mathcal{F}_t\Big] = \mathbb{E}[\mathbb{1}_{\{\theta=1\}} \mid \mathcal{F}_t] = \rho_t. \quad \Box$$

Static zero-sum games with incomplete information on one side

Static zero-sum game G(p) with one-sided incomplete information

- 1. the "state of nature" $\theta \in \{0, 1\}$ with prior $\mathbb{P}(\theta = 1) = p$ is realized.
 - Player 1 observes θ
 - Player 2 observes nothing but knows p
- 2. Players play a zero-sum game with $n \times m$ payoff matrix $A^{\theta} = (A^{\theta}_{i,j})_{i \in [n], j \in [m]}$ which depends on θ .

Static zero-sum game G(p) with one-sided incomplete information

- 1. the "state of nature" $\theta \in \{0, 1\}$ with prior $\mathbb{P}(\theta = 1) = p$ is realized.
 - Player 1 observes θ
 - Player 2 observes nothing but knows p
- 2. Players play a zero-sum game with $n \times m$ payoff matrix $A^{\theta} = (A^{\theta}_{i,j})_{i \in [n], j \in [m]}$ which depends on θ .

Strategies:

- Player 1 specifies $x = (x^0, x^1)$, where $x^{ heta} \in \Delta_n$
- Player 2 selects $y \in \Delta_m$.

The model

Static zero-sum game G(p) with one-sided incomplete information

1. the "state of nature" $\theta \in \{0, 1\}$ with prior $\mathbb{P}(\theta = 1) = p$ is realized.

- Player 1 observes θ
- Player 2 observes nothing but knows p
- 2. Players play a zero-sum game with $n \times m$ payoff matrix $A^{\theta} = (A^{\theta}_{i,j})_{i \in [n], j \in [m]}$ which depends on θ .

Strategies:

- Player 1 specifies $x = (x^0, x^1)$, where $x^{ heta} \in \Delta_n$
- Player 2 selects $y \in \Delta_m$.

The payoff to Player 1

$$\mathbb{E}_{\theta,i\sim x^{\theta},j\sim y}\left[A_{i,j}^{\theta}\right] = (1-p)\cdot\sum_{i,j}x_{i}^{0}A_{i,j}^{0}y_{j} + p\cdot\sum_{i,j}x_{i}^{1}A_{i,j}^{1}y_{j}$$

= (-1)·payoff to Player 2

P1 can guarantee:
$$\max_{x} \min_{y} \left[(1-p) \cdot \sum_{i,j} x_{i}^{0} A_{i,j}^{0} y_{j} + p \cdot \sum_{i,j} x_{i}^{1} A_{i,j}^{1} y_{j} \right]$$

P2 can defend: $\min_{y} \max_{x} \left[(1-p) \cdot \sum_{i,j} x_{i}^{0} A_{i,j}^{0} y_{j} + p \cdot \sum_{i,j} x_{i}^{1} A_{i,j}^{1} y_{j} \right]$

P1 can guarantee:
$$\max_{x} \min_{y} \left[(1-p) \cdot \sum_{i,j} x_{i}^{0} A_{i,j}^{0} y_{j} + p \cdot \sum_{i,j} x_{i}^{1} A_{i,j}^{1} y_{j} \right]$$

P2 can defend: $\min_{y} \max_{x} \left[(1-p) \cdot \sum_{i,j} x_{i}^{0} A_{i,j}^{0} y_{j} + p \cdot \sum_{i,j} x_{i}^{1} A_{i,j}^{1} y_{j} \right]$
The value:

$$V(p) = \max_{x} \min_{y} \left[(1-p) \cdot \sum_{i,j} x_{i}^{0} A_{i,j}^{0} y_{j} + p \cdot \sum_{i,j} x_{i}^{1} A_{i,j}^{1} y_{j} \right] = \min_{y} \max_{x} \left[(1-p) \cdot \sum_{i,j} x_{i}^{0} A_{i,j}^{0} y_{j} + p \cdot \sum_{i,j} x_{i}^{1} A_{i,j}^{0} y_{j} \right]$$

Question: $\max \min = \min \max$ for zero-sum games with complete information. Why here?

The value

The value:

$$V(p) = \max_{x} \min_{y} \left[(1-p) \cdot \sum_{i,j} x_i^0 A_{i,j}^0 y_j + p \cdot \sum_{i,j} x_i^1 A_{i,j}^1 y_j \right] = \min_{y} \max_{x} \left[(1-p) \cdot \sum_{i,j} x_i^0 A_{i,j}^0 y_j + p \cdot \sum_{i,j} x_i^0 A_{i,j}^0 y_j \right]$$

Question: $\max \min = \min \max$ for zero-sum games with complete information. Why here?

- Answer 1: Sets of strategies are convex and compact, the payoff is affine in strategies of each player ⇒ apply the min-max theorem.
- Answer 2: Reduce *G*(*p*) to a matrix game with complete information:
 - pure strategy of Player 1 is a function i' : θ → i^θ (n² pure strategies).
 - For a combination of pure strategies: $i' = (i^0, i^1)$ and j the payoff $A'_{i',j} = (1-p) \cdot A^0_{i^0,j} + p \cdot A^1_{i^1,j}$.
 - $V(p) = \operatorname{val}[A'].$

The value

The value:

$$V(p) = \max_{x} \min_{y} \left[(1-p) \cdot \sum_{i,j} x_i^0 A_{i,j}^0 y_j + p \cdot \sum_{i,j} x_i^1 A_{i,j}^1 y_j \right] = \min_{y} \max_{x} \left[(1-p) \cdot \sum_{i,j} x_i^0 A_{i,j}^0 y_j + p \cdot \sum_{i,j} x_i^0 A_{i,j}^0 y_j \right]$$

Question: $\max \min = \min \max$ for zero-sum games with complete information. Why here?

- Answer 1: Sets of strategies are convex and compact, the payoff is affine in strategies of each player ⇒ apply the min-max theorem.
- Answer 2: Reduce *G*(*p*) to a matrix game with complete information:
 - pure strategy of Player 1 is a function $i': \theta \to i^{\theta}$ (n^2 pure strategies).
 - For a combination of pure strategies: $i' = (i^0, i^1)$ and j the payoff $A'_{i',j} = (1-p) \cdot A^0_{i^0,j} + p \cdot A^1_{i^1,j}$.
 - $V(p) = \operatorname{val}[A'].$

The value

The value:

$$V(p) = \max_{x} \min_{y} \left[(1-p) \cdot \sum_{i,j} x_{i}^{0} A_{i,j}^{0} y_{j} + p \cdot \sum_{i,j} x_{i}^{1} A_{i,j}^{1} y_{j} \right] = \min_{y} \max_{x} \left[\sum_{i,j} x_{i}^{0} A_{i,j}^{0} y_{j} + p \cdot \sum_{i,j} x_{i}^{0} A_{i,j}^{0} y_{j} \right]$$

Question: $\max \min = \min \max$ for zero-sum games with complete information. Why here?

- Answer 1: Sets of strategies are convex and compact, the payoff is affine in strategies of each player ⇒ apply the min-max theorem.
- Answer 2: Reduce G(p) to a matrix game with complete information:
 - pure strategy of Player 1 is a function i' : θ → i^θ (n² pure strategies).
 - For a combination of pure strategies: $i' = (i^0, i^1)$ and j the payoff $A'_{i',j} = (1-p) \cdot A^0_{i^0,j} + p \cdot A^1_{i^1,j}$.
 - $V(p) = \operatorname{val}[A'].$

A mystery: The part is bigger than the whole!

Lemma: concavity and Lipschitz property

V(p) is a concave function of p and $\left|\frac{V(p)-V(p')}{p-p'}\right| \leq 2 \max_{i,j,\theta} \left|A_{i,j}^{\theta}\right|.$

Lemma: concavity and Lipschitz property

V(p) is a concave function of p and $\left|\frac{V(p)-V(p')}{p-p'}\right| \leq 2\max_{i,j,\theta} \left|A_{i,j}^{\theta}\right|.$

Proof:

$$V(p) = \min_{y} \max_{x^{0}, x^{1}} \left[(1-p) \cdot \sum_{i,j} x_{i}^{0} A_{i,j}^{0} y_{j} + p \cdot \sum_{i,j} x_{i}^{1} A_{i,j}^{1} y_{j} \right] = \min_{y} \left[(1-p) \cdot \left(\max_{x^{0}} \sum_{i,j} x_{i}^{0} A_{i,j}^{0} y_{j} \right) + p \cdot \left(\max_{x^{1}} \sum_{i,j} x_{i}^{1} A_{i,j}^{1} y_{j} \right) \right].$$

So V is the minimum over y of the family of affine functions.

Lemma: concavity and Lipschitz property

V(p) is a concave function of p and $\left|\frac{V(p)-V(p')}{p-p'}\right| \leq 2 \max_{i,j,\theta} \left|A_{i,j}^{\theta}\right|.$

Proof:

$$V(p) = \min_{y} \max_{x^{0}, x^{1}} \left[(1-p) \cdot \sum_{i,j} x_{i}^{0} A_{i,j}^{0} y_{j} + p \cdot \sum_{i,j} x_{i}^{1} A_{i,j}^{1} y_{j} \right] =$$

$$= \min_{y} \left[(1-p) \cdot \left(\max_{x^{0}} \sum_{i,j} x_{i}^{0} A_{i,j}^{0} y_{j} \right) + p \cdot \left(\max_{x^{1}} \sum_{i,j} x_{i}^{1} A_{i,j}^{1} y_{j} \right) \right].$$

So V is the minimum over y of the family of affine functions.

Definition: The non-revealing game $A^{NR}(p) = a$ version of G(p) where nobody knows θ = the matrix game $\mathbb{E}[A^{\theta}] = (1-p)A^{0} + p \cdot A^{1}$.

Notation: The value $u(p) = val[A^{NR}(p)]$.

Properties of the value

Lemma: concavity and Lipschitz property

V(p) is a concave function of p and $\left|\frac{V(p)-V(p')}{p-p'}\right| \leq 2 \max_{i,j,\theta} \left|A_{i,j}^{\theta}\right|$.

Proof:

$$V(p) = \min_{y} \max_{x^{0}, x^{1}} \left[(1-p) \cdot \sum_{i,j} x_{i}^{0} A_{i,j}^{0} y_{j} + p \cdot \sum_{i,j} x_{i}^{1} A_{i,j}^{1} y_{j} \right] = \min_{y} \left[(1-p) \cdot \left(\max_{x^{0}} \sum_{i,j} x_{i}^{0} A_{i,j}^{0} y_{j} \right) + p \cdot \left(\max_{x^{1}} \sum_{i,j} x_{i}^{1} A_{i,j}^{1} y_{j} \right) \right].$$

So V is the minimum over y of the family of affine functions.

Definition: The non-revealing game $A^{NR}(p) = a$ version of G(p) where nobody knows θ = the matrix game $\mathbb{E}[A^{\theta}] = (1-p)A^{0} + p \cdot A^{1}$.

Notation: The value $u(p) = \operatorname{val}[A^{\operatorname{NR}}(p)]$.

Lemma: a lower bound

 $V(p) \geq u(p).$

Properties of the value

Lemma: concavity and Lipschitz property

V(p) is a concave function of p and $\left|\frac{V(p)-V(p')}{p-p'}\right| \leq 2 \max_{i,j,\theta} \left|A_{i,j}^{\theta}\right|$.

Proof:

$$V(p) = \min_{y} \max_{x^{0}, x^{1}} \left[(1-p) \cdot \sum_{i,j} x_{i}^{0} A_{i,j}^{0} y_{j} + p \cdot \sum_{i,j} x_{i}^{1} A_{i,j}^{1} y_{j} \right] = \min_{y} \left[(1-p) \cdot \left(\max_{x^{0}} \sum_{i,j} x_{i}^{0} A_{i,j}^{0} y_{j} \right) + p \cdot \left(\max_{x^{1}} \sum_{i,j} x_{i}^{1} A_{i,j}^{1} y_{j} \right) \right].$$

So V is the minimum over y of the family of affine functions.

Definition: The non-revealing game $A^{NR}(p) = a$ version of G(p) where nobody knows θ = the matrix game $\mathbb{E}[A^{\theta}] = (1-p)A^{0} + p \cdot A^{1}$.

Notation: The value $u(p) = \operatorname{val}[A^{\operatorname{NR}}(p)]$.

Lemma: a lower bound

$$V(p) \geq u(p).$$

Proof: Player 1 "forgets" θ and plays the opt. strategy from $A^{NR}(p)$.

 $\operatorname{Cav} [f](y) = \min \left\{ \varphi(y) : \varphi \text{ is concave and } \varphi(\cdot) \ge f(\cdot) \right\}.$

So Cav[f] is the minimal concave function dominating f.

 $\operatorname{Cav}[f](y) = \min \{\varphi(y) : \varphi \text{ is concave and } \varphi(\cdot) \ge f(\cdot)\}.$

So Cav[f] is the minimal concave function dominating f. Home exercise: Cav[f] is concave.

 $\operatorname{Cav} [f](y) = \min \left\{ \varphi(y) : \varphi \text{ is concave and } \varphi(\cdot) \geq f(\cdot) \right\}.$

So Cav[f] is the minimal concave function dominating f.

Home exercise: Cav[f] is concave.

Theorem (R.Aumann, M.Maschler, 1960ies)

 $V(p) \geq \operatorname{Cav}[u](p).$

Cav $[f](y) = \min \{\varphi(y) : \varphi \text{ is concave and } \varphi(\cdot) \ge f(\cdot)\}.$

So Cav[f] is the minimal concave function dominating f.

Home exercise: Cav[f] is concave.

Theorem (R.Aumann, M.Maschler, 1960ies)

 $V(p) \geq \operatorname{Cav}[u](p).$

Proof: $V \ge u$ and V is concave.

$$A^0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad A^1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

- 1. Find the value and optimal strategies in G(p)
- 2. Find the value of the non-revealing game $A^{NR}(p)$

Example

$$A^0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad A^1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

1. Find the value and optimal strategies in G(p)

- The dominant strategy of P1: Top if $\theta = 0$, and Bottom if $\theta = 1$.
- P2 replies: if P2 plays Left, the payoff is 1 p, if Right, $p \Rightarrow$

$$V(p) = \min \{1 - p, p\}.$$

- Optimal reply is unique ⇒ opt. strategy of P2 is playing Right if *p* ≤ ¹/₂ and Left for *p* ≥ ¹/₂.
- 2. Find the value of the non-revealing game $A^{NR}(p)$

Example

$$A^0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad A^1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

- 1. Find the value and optimal strategies in G(p)
 - The dominant strategy of P1: Top if $\theta = 0$, and Bottom if $\theta = 1$.
 - P2 replies: if P2 plays Left, the payoff is 1 p, if Right, $p \Rightarrow$

$$V(p) = \min\left\{1-p,p\right\}.$$

- Optimal reply is unique ⇒ opt. strategy of P2 is playing Right if *p* ≤ ¹/₂ and Left for *p* ≥ ¹/₂.
- 2. Find the value of the non-revealing game $A^{\rm NR}(p)$
 - $A^{\text{NR}}(p) = \begin{pmatrix} 1-p & 0\\ 0 & p \end{pmatrix}$. No pure-strategy equilibrium for $p \neq 0, 1$ \Rightarrow players use both actions.
 - Optimal mixed strategy makes another player indifferent between the two actions: (1 − p) · x₁ = p · x₂ and (1 − p) · y₁ = p · y₂.
 - The optimal strategies x = y = (p, (1 p)). The value is

$$u(p) = (1-p) \cdot p.$$
¹¹

Example

$$A^0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad A^1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Repeated zero-sum games with incomplete information on one side

Birth in 1960ies: disarmament negotiations US \leftrightarrow USSR. Complex interaction: multistage & both have secrets \Rightarrow interpret the past behavior.

R.Aumann and M.Maschler consulted the US: secret reports¹ ACDA ST/80, ACDA ST/116, ACDA ST/143.

¹Aumann, Maschler (1995) "Repeated Games with Incomplete Information"

Birth in 1960ies: disarmament negotiations US \leftrightarrow USSR. Complex interaction: multistage & both have secrets \Rightarrow interpret the past behavior.

R.Aumann and M.Maschler consulted the US: secret reports 1 ACDA ST/80, ACDA ST/116, ACDA ST/143.

Static games \leftrightarrow repeated games:

Static: P1 does not care about revealed information.

Repeated: P2 may guess θ from previous actions of P1 \implies P1 balances between using and hiding his information.

¹Aumann, Maschler (1995) "Repeated Games with Incomplete Information"

Motivation:

Birth in 1960ies: disarmament negotiations US \leftrightarrow USSR. Complex interaction: multistage & both have secrets \Rightarrow interpret the past behavior.

R.Aumann and M.Maschler consulted the US: secret reports 1 ACDA ST/80, ACDA ST/116, ACDA ST/143.

Static games \leftrightarrow repeated games:

Static: P1 does not care about revealed information.

Repeated: P2 may guess θ from previous actions of P1 \implies P1 balances between using and hiding his information.

Other examples:

- Nazi's attack to Coventry and broken Enigma cypher (watch "The Imitation Game" about Alan Turing)
- Insider trading on financial markets (Rothschild and Waterloo battle; papers of B. De Meyer)

¹Aumann, Maschler (1995) "Repeated Games with Incomplete Information"

T-stage zero-sum game $G_T(p)$ with one-sided incomplete information (RGII)

- 1. the "state of nature" $\theta \in \{0, 1\}$ with prior $\mathbb{P}(\theta = 1) = p$ is realized.
 - Player 1 observes θ
 - Player 2 observes nothing but knows p
- 2. A zero-sum game with $n \times m$ payoff matrix $A^{\theta} = (A_{i,j}^{\theta})_{i \in [n], j \in [m]}$ is played T times. Both players observe the history of actions.

The model

T-stage zero-sum game $G_T(p)$ with one-sided incomplete information (RGII)

- 1. the "state of nature" $\theta \in \{0, 1\}$ with prior $\mathbb{P}(\theta = 1) = p$ is realized.
 - Player 1 observes θ
 - Player 2 observes nothing but knows p
- A zero-sum game with n × m payoff matrix A^θ = (A^θ_{i,j})_{i∈[n],j∈[m]} is played T times. Both players observe the history of actions.

Behavioral strategies:

- Player 1, for each state θ, time t = 0, 1... T − 1 and history h_t = (i_τ, j_τ)^{t−1}_{τ=1}, specifies x^θ_t(h_t) ∈ Δ_n. His action i_t ~ x^θ_t(h_t) conditional on θ and h_t
- Player 2 selects $y_t(h_t) \in \Delta_m$. His action $j_t \sim y_t(h_t)$.

The model

T-stage zero-sum game $G_T(p)$ with one-sided incomplete information (RGII)

- 1. the "state of nature" $\theta \in \{0, 1\}$ with prior $\mathbb{P}(\theta = 1) = p$ is realized.
 - Player 1 observes θ
 - Player 2 observes nothing but knows p
- 2. A zero-sum game with $n \times m$ payoff matrix $A^{\theta} = (A^{\theta}_{i,j})_{i \in [n], j \in [m]}$ is played T times. Both players observe the history of actions.

Behavioral strategies:

 Player 1, for each state θ, time t = 0, 1... T − 1 and history h_t = (i_τ, j_τ)^{t−1}_{τ=1}, specifies x^θ_t(h_t) ∈ Δ_n. His action i_t ~ x^θ_t(h_t) conditional on θ and h_t

• Player 2 selects $y_t(h_t) \in \Delta_m$. His action $j_t \sim y_t(h_t)$.

The payoff:

$$\frac{1}{T} \cdot \mathbb{E}_{\theta, h_{T}} \left[\sum_{t=0}^{T-1} A_{i_{t}, j_{t}}^{\theta} \right]$$
14

The value:

$$V_{T}(p) = \max_{x} \min_{y} \left[\frac{1}{T} \cdot \mathbb{E}_{\theta, h_{T}} \left[\sum_{t=0}^{T-1} A_{i_{t}, j_{t}}^{\theta} \right] \right] = \min_{y} \max_{x}$$

Question: Why min max = max min?
The value:

$$V_{T}(p) = \max_{x} \min_{y} \left[\frac{1}{T} \cdot \mathbb{E}_{\theta, h_{T}} \left[\sum_{t=0}^{T-1} A_{i_{t}, j_{t}}^{\theta} \right] \right] = \min_{y} \max_{x}$$

Question: Why min max = max min?

Familiar mystery: $G_T(p)$ can be reduced to a one-stage matrix game with complete information:

Pure strategies are deterministic behavioral strategies (for all possible histories and states). For each pair of pure strategies x, y compute the payoff $A'_{x,y}$. By the construction $V_T(p) = \operatorname{val}[A']$.

The value:

$$V_{T}(p) = \max_{x} \min_{y} \left[\frac{1}{T} \cdot \mathbb{E}_{\theta, h_{T}} \left[\sum_{t=0}^{T-1} A_{i_{t}, j_{t}}^{\theta} \right] \right] = \min_{y} \max_{x}$$

Question: Why min max = max min?

Familiar mystery: $G_T(p)$ can be reduced to a one-stage matrix game with complete information:

Pure strategies are deterministic behavioral strategies (for all possible histories and states). For each pair of pure strategies x, y compute the payoff $A'_{x,y}$. By the construction $V_T(p) = \operatorname{val}[A']$.

We used **Kuhn's theorem:** for any mixed strategy there is a behavioral strategy with the same payoff and vice-versa.

T-stage RGII with payoffs

$$A^0 = egin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix}, \qquad A^1 = egin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix}$$

Question: What should P1 do?

T-stage RGII with payoffs

$$A^0 = egin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix}, \qquad A^1 = egin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix}$$

Question: What should P1 do?

• **Bad Idea:** play the optimal strategy from the static game $G(p) \equiv G_1(p)$: Top if $\theta = 0$ and Bottom if $\theta = 1$. P2 guesses the state after the first round \Rightarrow the payoff is $\frac{V(p)}{T} \rightarrow 0$ as $T \rightarrow \infty$.

 Better Idea: play the optimal strategy from
 A^{NR}(p) = (1 − p) · A⁰ + p · A¹.
 Guarantees u(p) at every stage, so V_T(p) ≥ u(p)

T-stage RGII with payoffs

$$A^0 = egin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix}, \qquad A^1 = egin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix}$$

Question: What should P1 do?

- **Bad Idea:** play the optimal strategy from the static game $G(p) \equiv G_1(p)$: Top if $\theta = 0$ and Bottom if $\theta = 1$. P2 guesses the state after the first round \Rightarrow the payoff is $\frac{V(p)}{T} \rightarrow 0$ as $T \rightarrow \infty$.
- Better Idea: play the optimal strategy from $A^{NR}(p) = (1 - p) \cdot A^0 + p \cdot A^1.$ Guarantees u(p) at every stage, so $V_T(p) \ge u(p).$

T-stage RGII with payoffs

$$A^0=egin{pmatrix} 1&0\0&0\end{pmatrix},\qquad A^1=egin{pmatrix} 0&0\0&1\end{pmatrix}$$

Question: What should P1 do?

- **Bad Idea:** play the optimal strategy from the static game $G(p) \equiv G_1(p)$: Top if $\theta = 0$ and Bottom if $\theta = 1$. P2 guesses the state after the first round \Rightarrow the payoff is $\frac{V(p)}{T} \rightarrow 0$ as $T \rightarrow \infty$.
- Better Idea: play the optimal strategy from $A^{NR}(p) = (1 - p) \cdot A^0 + p \cdot A^1.$ Guarantees u(p) at every stage, so $V_T(p) \ge u(p).$

Question: Can P1 do better?

T-stage RGII with payoffs

$$A^0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad A^1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Question: What should P1 do?

- **Bad Idea:** play the optimal strategy from the static game $G(p) \equiv G_1(p)$: Top if $\theta = 0$ and Bottom if $\theta = 1$. P2 guesses the state after the first round \Rightarrow the payoff is $\frac{V(p)}{T} \rightarrow 0$ as $T \rightarrow \infty$.
- Better Idea: play the optimal strategy from $A^{NR}(p) = (1 - p) \cdot A^0 + p \cdot A^1.$ Guarantees u(p) at every stage, so $V_T(p) \ge u(p).$

Question: Can P1 do better?

Answer: Not much.

$$\operatorname{Cav}\left[u
ight](p) \leq V_{\mathcal{T}}(p) \leq \operatorname{Cav}\left[u
ight](p) + rac{2\|A\|}{\sqrt{T}},$$

where $||A|| = \max_{i,j,\theta} |A_{i,j}^{\theta}|$.

$$\operatorname{Cav} \left[u
ight] (p) \leq V_{\mathcal{T}}(p) \leq \operatorname{Cav} \left[u
ight] (p) + rac{2 \|A\|}{\sqrt{\mathcal{T}}},$$

where $||A|| = \max_{i,j,\theta} |A_{i,j}^{\theta}|$.

Corollary: the limit value $V_{\infty}(p) = \lim_{T \to \infty} V_T = \operatorname{Cav}[u](p)$.

$$\operatorname{Cav}[u](p) \leq V_T(p) \leq \operatorname{Cav}[u](p) + \frac{2\|A\|}{\sqrt{T}},$$

where $||A|| = \max_{i,j,\theta} |A_{i,j}^{\theta}|$.

Corollary: the limit value $V_{\infty}(p) = \lim_{T \to \infty} V_T = \operatorname{Cav}[u](p)$. **Proof:**

- Lower bound: G_T(p) ↔ a static game with incomplete information
 ⇒ V_T(p) is concave. V_T(p) ≥ u(p) ⇒ V_T(p) ≥ Cav [u](p).
- Upper bound:

$$\operatorname{Cav}[u](p) \leq V_T(p) \leq \operatorname{Cav}[u](p) + \frac{2\|A\|}{\sqrt{T}},$$

where $||A|| = \max_{i,j,\theta} |A_{i,j}^{\theta}|$.

Corollary: the limit value $V_{\infty}(p) = \lim_{T \to \infty} V_T = \operatorname{Cav}[u](p)$. **Proof:**

- Lower bound: G_T(p) ↔ a static game with incomplete information
 ⇒ V_T(p) is concave. V_T(p) ≥ u(p) ⇒ V_T(p) ≥ Cav [u](p).
- Upper bound:

Method 1: the upper bound via Blackwell's approachability

Remark: this method gives a weaker result:

 $\limsup_{T\to\infty} V_T(p) \leq \operatorname{Cav} [u](p).$

No control on the speed of convergence.

Consider a game \vec{G}_T with vector payoff $\vec{A} = \begin{pmatrix} A^0 \\ A^1 \end{pmatrix}$.

Definition: A set $C \subset \mathbb{R}^2$ is approachable by P2 \Leftrightarrow P2 has a behavioral strategy such that the average payoff approaches *C* in the limit, no matter what P1 is doing:

$$\mathbb{E}\left(\operatorname{dist}\left(\frac{1}{T}\sum_{t=0}^{T-1}\vec{A_{i_t,j_t}}, \ C\right)\right) \to 0 \quad \text{as } T \to \infty.$$

Theorem (Blackwell) $L(\alpha) = (-\infty, \alpha_0] \times (-\infty, \alpha_1] \text{ is approachable by P2 if}$ $val[(1-q)A^0 + qA^1] \le (1-q)\alpha_0 + q \cdot \alpha_1 \text{ for any } q \in [0, 1].$

Reminder: Blackwell's approachability

Consider a game
$$\vec{G}_T$$
 with vector payoff $\vec{A} = \begin{pmatrix} A^0 \\ A^1 \end{pmatrix}$.

Definition: A set $C \subset \mathbb{R}^2$ is approachable by P2 \Leftrightarrow P2 has a behavioral strategy such that the average payoff approaches *C* in the limit, no matter what P1 is doing:

$$\mathbb{E}\left(\operatorname{dist}\left(\frac{1}{T}\sum_{t=0}^{T-1}\vec{A_{i_t,j_t}}, \ C\right)\right) \to 0 \quad \text{as } T \to \infty.$$

Theorem (Blackwell)

 $L(\alpha) = (-\infty, \alpha_0] \times (-\infty, \alpha_1]$ is approachable by P2 if

$$\mathrm{val}[(1-q)\mathsf{A}^0+q\mathsf{A}^1]\leq (1-q)lpha_0+q\cdot lpha_1$$
 for any $q\in [0,1].$

Remark: $val[(1 - q)A^0 + qA^1] = u(q)$

Picking alphas: $l(q) = (1 - q) \cdot \alpha_0 + q \cdot \alpha_1$ is the tangent line to the graph of Cav[u] at *p*:

 $\operatorname{Cav}[u](p) = l(p)$ and $\operatorname{Cav}[u](q) \le l(q)$ for $q \in [0,1]$.

Picking alphas: $l(q) = (1 - q) \cdot \alpha_0 + q \cdot \alpha_1$ is the tangent line to the graph of Cav[u] at *p*:

 $\operatorname{Cav}[u](p) = l(p)$ and $\operatorname{Cav}[u](q) \le l(q)$ for $q \in [0,1]$.

Corollary: the set $L(\alpha)$ is approachable for vector-payoff game \vec{G}_T .

Picking alphas: $l(q) = (1 - q) \cdot \alpha_0 + q \cdot \alpha_1$ is the tangent line to the graph of Cav[u] at p:

 $\operatorname{Cav}[u](p) = l(p)$ and $\operatorname{Cav}[u](q) \le l(q)$ for $q \in [0,1]$.

Corollary: the set $L(\alpha)$ is approachable for vector-payoff game \vec{G}_T .

Proposition

 $\limsup_{T\to\infty} V_T(p) \leq \operatorname{Cav} [u](p).$

Application to RGII: the upper bound on $V_T(p)$

Picking alphas: $l(q) = (1 - q) \cdot \alpha_0 + q \cdot \alpha_1$ is the tangent line to the graph of Cav[u] at p:

 $\operatorname{Cav}[u](p) = l(p)$ and $\operatorname{Cav}[u](q) \le l(q)$ for $q \in [0,1]$.

Corollary: the set $L(\alpha)$ is approachable for vector-payoff game \vec{G}_T .

Proposition

 $\limsup_{T\to\infty} V_T(p) \leq \operatorname{Cav} [u](p).$

Proof:

• P2 plays his approachability strategy

$$\frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i_t, j_t}^{\theta}\right] = (1-p) \frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i_t, j_t}^0 \mid \theta = 0\right] + p \cdot \frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i_t, j_t}^1 \mid \theta = 1\right].$$

• $L(\alpha)$ is approachable $\Rightarrow \frac{1}{T}\mathbb{E}\left[\sum_{t=0}^{T-1}A_{i_t,j_t}^0 \mid \theta\right]$ approaches $(-\infty, \alpha_{\theta}]$.

$$\limsup_{T \to \infty} \frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i_t, j_t}^{\theta}\right] \le (1-p)\alpha_0 + p \cdot \alpha_1 = \operatorname{Cav}\left[u\right](p). \quad \Box$$

Application to RGII: the upper bound on $V_T(p)$

Picking alphas: $l(q) = (1 - q) \cdot \alpha_0 + q \cdot \alpha_1$ is the tangent line to the graph of Cav[u] at p:

 $\operatorname{Cav}[u](p) = l(p)$ and $\operatorname{Cav}[u](q) \le l(q)$ for $q \in [0,1]$.

Corollary: the set $L(\alpha)$ is approachable for vector-payoff game \vec{G}_T .

Proposition

 $\limsup_{T\to\infty} V_T(p) \leq \operatorname{Cav} [u](p).$

Proof:

• P2 plays his approachability strategy

$$\frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i_t, j_t}^{\theta}\right] = (1-p) \frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i_t, j_t}^{0} \mid \theta = 0\right] + p \cdot \frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i_t, j_t}^{1} \mid \theta = 1\right].$$

• $L(\alpha)$ is approachable $\Rightarrow \frac{1}{T}\mathbb{E}\left[\sum_{t=0}^{T-1}A_{i_t,j_t}^0 \mid \theta\right]$ approaches $(-\infty, \alpha_{\theta}]$.

$$\limsup_{T \to \infty} \frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i_t, j_t}^{\theta}\right] \le (1-p)\alpha_0 + p \cdot \alpha_1 = \operatorname{Cav}\left[u\right](p). \quad \Box \qquad 2$$

Method 2: the upper bound via martingales of posterior beliefs

Remark: this method allows to control the error term

$$V_T(p) \leq \operatorname{Cav}[u](p) + \frac{2\|A\|}{\sqrt{T}}$$

Fix some strategy x of Player 1.

Martingale of beliefs of Player 2: $p_t = \mathbb{P}(\theta = 1 \mid h_t), \quad p_0 = p.$

Fix some strategy x of Player 1.

Martingale of beliefs of Player 2: $p_t = \mathbb{P}(\theta = 1 \mid h_t), \quad p_0 = p.$

A reasonable reply *y* **to** *x*: At stage *t* compute p_t and play optimal strategy from the non-revealing game $A^{NR}(p_t)$.

Fix some strategy x of Player 1.

Martingale of beliefs of Player 2: $p_t = \mathbb{P}(\theta = 1 \mid h_t), \quad p_0 = p.$

A reasonable reply *y* **to** *x*: At stage *t* compute p_t and play optimal strategy from the non-revealing game $A^{NR}(p_t)$.

Lemma

The payoff for a pair (x, y) satisfies

$$\frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i_t, j_t}^{\theta}\right] \leq \operatorname{Cav}\left[u\right] + 2\|A\| \cdot \frac{\mathbb{E}\left[\sum_{t=0}^{T-1} |p_{t+1} - p_t|\right]}{T}.$$

Variation of posterior beliefs

Lemma

The payoff for a pair (x, y) satisfies

$$\frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i_t, j_t}^{\theta}\right] \leq \operatorname{Cav}\left[u\right] + 2\|A\| \cdot \frac{\mathbb{E}\left[\sum_{t=0}^{T-1} |p_{t+1} - p_t|\right]}{T}.$$

Proof:

• The contribution of stage *t*:

$$\mathbb{E}\left[A_{i_t,j_t}^{\theta}\right] = \mathbb{E}\left[\mathbb{1}_{\left\{\theta=0\right\}} \cdot A_{i_t,j_t}^{0} + \mathbb{1}_{\left\{\theta=1\right\}} \cdot A_{i_t,j_t}^{1}\right] = \mathbb{E}\left[\mathbb{E}[\dots \mid h_{t+1}]\right] = \\ = \mathbb{E}\left[(1 - p_{t+1})A_{i_t,j_t}^{0} + p_{t+1} \cdot A_{i_t,j_t}^{1}\right] = \bigstar$$

• This is a payoff in a game $A^{NR}(p_{t+1})$ if P2 plays his optimal strategy from $A^{NR}(p_t)$. Since $\left|A_{i,j}^{NR}(p_{t+1}) - A_{i,j}^{NR}(p_t)\right| \le 2\|A\| \cdot |p_{t+1} - p_t|$

 $\bigstar \leq \mathbb{E}[u(p_t)] + 2\|A\| \cdot \mathbb{E}|p_{t+1} - p_t|.$

• By Jensen's inequality and the martingale property $\mathbb{E}[u(p_t)] \leq \mathbb{E}[\operatorname{Cav}[u](p_t)] \leq \operatorname{Cav}[u](\mathbb{E}p_t) = \operatorname{Cav}[u](p).$

Variation of posterior beliefs

Lemma

The payoff for a pair (x, y) satisfies

$$\frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i_t, j_t}^{\theta}\right] \leq \operatorname{Cav}\left[u\right] + 2\|A\| \cdot \frac{\mathbb{E}\left[\sum_{t=0}^{T-1} |p_{t+1} - p_t|\right]}{T}.$$

Proof:

• The contribution of stage *t*:

$$\mathbb{E}\left[A_{i_t,j_t}^{\theta}\right] = \mathbb{E}\left[\mathbb{1}_{\left\{\theta=0\right\}} \cdot A_{i_t,j_t}^{0} + \mathbb{1}_{\left\{\theta=1\right\}} \cdot A_{i_t,j_t}^{1}\right] = \mathbb{E}\left[\mathbb{E}[\dots \mid h_{t+1}]\right] = \\ = \mathbb{E}\left[(1 - \rho_{t+1})A_{i_t,j_t}^{0} + \rho_{t+1} \cdot A_{i_t,j_t}^{1}\right] = \bigstar$$

• This is a payoff in a game $A^{\text{NR}}(p_{t+1})$ if P2 plays his optimal strategy from $A^{\text{NR}}(p_t)$. Since $\left|A_{i,j}^{\text{NR}}(p_{t+1}) - A_{i,j}^{\text{NR}}(p_t)\right| \le 2\|A\| \cdot |p_{t+1} - p_t|$

$$\bigstar \leq \mathbb{E}[u(p_t)] + 2\|A\| \cdot \mathbb{E}|p_{t+1} - p_t|.$$

By Jensen's inequality and the martingale property

 \[
 \begin{aligned}
 with the martingale property is a straight by the marting by

Variation of posterior beliefs

Lemma

The payoff for a pair (x, y) satisfies

$$\frac{1}{T} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} A_{i_t, j_t}^{\theta}\right] \leq \operatorname{Cav}\left[u\right] + 2\|A\| \cdot \frac{\mathbb{E}\left[\sum_{t=0}^{T-1} |p_{t+1} - p_t|\right]}{T}.$$

Proof:

• The contribution of stage *t*:

$$\mathbb{E}\left[A_{i_t,j_t}^{\theta}\right] = \mathbb{E}\left[\mathbb{1}_{\left\{\theta=0\right\}} \cdot A_{i_t,j_t}^{0} + \mathbb{1}_{\left\{\theta=1\right\}} \cdot A_{i_t,j_t}^{1}\right] = \mathbb{E}\left[\mathbb{E}[\dots \mid h_{t+1}]\right] = \\ = \mathbb{E}\left[(1 - p_{t+1})A_{i_t,j_t}^{0} + p_{t+1} \cdot A_{i_t,j_t}^{1}\right] = \bigstar$$

• This is a payoff in a game $A^{NR}(p_{t+1})$ if P2 plays his optimal strategy from $A^{NR}(p_t)$. Since $\left|A_{i,j}^{NR}(p_{t+1}) - A_{i,j}^{NR}(p_t)\right| \le 2\|A\| \cdot |p_{t+1} - p_t|$

$$\bigstar \leq \mathbb{E}[u(p_t)] + 2\|A\| \cdot \mathbb{E}|p_{t+1} - p_t|.$$

• By Jensen's inequality and the martingale property $\mathbb{E}[u(p_t)] \leq \mathbb{E}[\operatorname{Cav}[u](p_t)] \leq \operatorname{Cav}[u](\mathbb{E}p_t) = \operatorname{Cav}[u](p).$

22

It remains to bound the L_1 -variation:

$$\mathbb{E}\left[\sum_{t=0}^{T-1} |p_{t+1} - p_t|\right] \leq \sqrt{T}.$$

It remains to bound the L_1 -variation:

$$\mathbb{E}\left[\sum_{t=0}^{T-1} |p_{t+1} - p_t|\right] \leq \sqrt{T}.$$

Telescopic property of L_2 (aka quadratic) variation For any martingale ξ_0, ξ_1, \ldots on filtration $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots$

$$\mathbb{E}\Big[\sum_{t=0}^{T-1} (\xi_{t+1} - \xi_t)^2\Big] = \mathbb{E}[\xi_T^2] - \mathbb{E}[\xi_0^2]$$

Upper bound on the variation

It remains to bound the L_1 -variation:

$$\mathbb{E}\left[\sum_{t=0}^{T-1} |p_{t+1} - p_t|\right] \leq \sqrt{T}.$$

Telescopic property of L_2 (aka quadratic) variation

For any martingale ξ_0, ξ_1, \ldots on filtration $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots$

$$\mathbb{E}\Big[\sum_{t=0}^{T-1} (\xi_{t+1} - \xi_t)^2\Big] = \mathbb{E}[\xi_T^2] - \mathbb{E}[\xi_0^2].$$

Proof:

$$\mathbb{E}\Big[\sum_{t=0}^{T-1} (\xi_{t+1} - \xi_t)^2\Big] = \sum_{t=0}^{T-1} \Big[\mathbb{E}[\xi_{t+1}^2] + \mathbb{E}[\xi_t^2] - 2\mathbb{E}[\xi_{t+1} \cdot \xi_t]\Big] = \bigstar$$

Note that $\mathbb{E}[\xi_{t+1} \cdot \xi_t] = \mathbb{E}[\mathbb{E}[\xi_{t+1} \cdot \xi_t \mid \mathcal{F}_t]] = \mathbb{E}[\xi_t^2].$

$$\bigstar = \sum_{t=0}^{\tau-1} \left[\mathbb{E}[\xi_{t+1}^2] - \mathbb{E}[\xi_t^2] \right] = \mathbb{E}[\xi_\tau^2] - \mathbb{E}[\xi_0^2]. \quad \Box$$

It remains to bound the L_1 -variation:

$$\mathbb{E}\left[\sum_{t=0}^{T-1} |p_{t+1} - p_t|\right] \leq \sqrt{T}.$$

Telescopic property of L₂ (aka quadratic) variation

For any martingale ξ_0, ξ_1, \ldots on filtration $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots$

$$\mathbb{E}\Big[\sum_{t=0}^{T-1} (\xi_{t+1} - \xi_t)^2\Big] = \mathbb{E}[\xi_T^2] - \mathbb{E}[\xi_0^2].$$

Bound on *L*₁-variation

$$\mathbb{E}\Big[\sum_{t=0}^{T-1} |\xi_{t+1} - \xi_t|\Big] \le \sqrt{T} \cdot \sqrt{\mathbb{E}[\xi_T^2] - \mathbb{E}[\xi_0^2]}.$$

Upper bound on the variation

It remains to bound the L_1 -variation:

$$\mathbb{E}\left[\sum_{t=0}^{T-1} |p_{t+1} - p_t|\right] \leq \sqrt{T}.$$

Telescopic property of L_2 (aka quadratic) variation

For any martingale ξ_0, ξ_1, \ldots on filtration $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots$

$$\mathbb{E}\Big[\sum_{t=0}^{T-1} (\xi_{t+1} - \xi_t)^2\Big] = \mathbb{E}[\xi_T^2] - \mathbb{E}[\xi_0^2].$$

Bound on *L*₁-variation

$$\mathbb{E}\Big[\sum_{t=0}^{T-1} |\xi_{t+1} - \xi_t|\Big] \le \sqrt{T} \cdot \sqrt{\mathbb{E}[\xi_T^2] - \mathbb{E}[\xi_0^2]}.$$

Proof: Cauchy-Shwartz inequality

$$\mathbb{E}\Big[\sum_{t=1}^{T-1} |\xi_{t+1} - \xi_t|\Big] = \mathbb{E}\Big[\sum_{t=1}^{T-1} 1 \cdot |\xi_{t+1} - \xi_t|\Big] \le \sqrt{\mathbb{E}\Big[\sum_{t=1}^{T-1} 1\Big]} \sqrt{\mathbb{E}\Big[\sum_{t=1}^{T-1} (\xi_{t+1} - \xi_t)^2\Big]}. \quad \Box^{-23}$$

Extensions & references

- Non-binary set of states Θ ⇒ no complications: Δ(Θ) replaces
 [0,1]. Continuous Θ and sets of actions are doable (Gensbittel 2015)
- Partial information on the side of P1 reduces to Θ' = Δ(Θ) as the new state space (Gensbittel 2015)
- Incomplete information on two sides (Mertens, Zamir 1971, Laraki 2001)
- Non-zero-sum: limit value and bi-martingales (S.Hart 1985)
- More than 2 players: nothing is known.

- Non-binary set of states $\Theta \Rightarrow$ no complications: $\Delta(\Theta)$ replaces [0,1]. Continuous Θ and sets of actions are doable (Gensbittel 2015)
- Partial information on the side of P1 reduces to Θ' = Δ(Θ) as the new state space (Gensbittel 2015)
- Incomplete information on two sides (Mertens, Zamir 1971, Laraki 2001)
- Non-zero-sum: limit value and bi-martingales (S.Hart 1985)
- More than 2 players: nothing is known.

- Non-binary set of states $\Theta \Rightarrow$ no complications: $\Delta(\Theta)$ replaces [0,1]. Continuous Θ and sets of actions are doable (Gensbittel 2015)
- Partial information on the side of P1 reduces to Θ' = Δ(Θ) as the new state space (Gensbittel 2015)
- Incomplete information on two sides (Mertens, Zamir 1971, Laraki 2001)
- Non-zero-sum: limit value and bi-martingales (S.Hart 1985)
- More than 2 players: nothing is known.

- Non-binary set of states $\Theta \Rightarrow$ no complications: $\Delta(\Theta)$ replaces [0,1]. Continuous Θ and sets of actions are doable (Gensbittel 2015)
- Partial information on the side of P1 reduces to Θ' = Δ(Θ) as the new state space (Gensbittel 2015)
- Incomplete information on two sides (Mertens, Zamir 1971, Laraki 2001)
- Non-zero-sum: limit value and bi-martingales (S.Hart 1985)
- More than 2 players: nothing is known.
- Non-binary set of states $\Theta \Rightarrow$ no complications: $\Delta(\Theta)$ replaces [0,1]. Continuous Θ and sets of actions are doable (Gensbittel 2015)
- Partial information on the side of P1 reduces to Θ' = Δ(Θ) as the new state space (Gensbittel 2015)
- Incomplete information on two sides (Mertens, Zamir 1971, Laraki 2001)
- Non-zero-sum: limit value and bi-martingales (S.Hart 1985)
- More than 2 players: nothing is known.

- Non-binary set of states Θ ⇒ no complications: Δ(Θ) replaces
 [0,1]. Continuous Θ and sets of actions are doable (Gensbittel 2015)
- Partial information on the side of P1 reduces to Θ' = Δ(Θ) as the new state space (Gensbittel 2015)
- Incomplete information on two sides (Mertens, Zamir 1971, Laraki 2001)
- Non-zero-sum: limit value and bi-martingales (S.Hart 1985)
- More than 2 players: nothing is known.

- Bellman equation $V_{T+1} = F[V_T]$ (Zamir 1971, Gensbittel 2015)
- Dual game (P1 select the state), PDE, and CLT (De Meyer 1996)
- Continuous-time approximation and PDE (Gensbittel 2015)
- The value = a solution of a martingale-optimization problem (De Meyer 2010, Gensbittel 2015)

- Non-binary set of states Θ ⇒ no complications: Δ(Θ) replaces
 [0,1]. Continuous Θ and sets of actions are doable (Gensbittel 2015)
- Partial information on the side of P1 reduces to Θ' = Δ(Θ) as the new state space (Gensbittel 2015)
- Incomplete information on two sides (Mertens, Zamir 1971, Laraki 2001)
- Non-zero-sum: limit value and bi-martingales (S.Hart 1985)
- More than 2 players: nothing is known.

- Bellman equation $V_{T+1} = F[V_T]$ (Zamir 1971, Gensbittel 2015)
- Dual game (P1 select the state), PDE, and CLT (De Meyer 1996)
- Continuous-time approximation and PDE (Gensbittel 2015)
- The value = a solution of a martingale-optimization problem (De Meyer 2010, Gensbittel 2015)

- Non-binary set of states Θ ⇒ no complications: Δ(Θ) replaces
 [0,1]. Continuous Θ and sets of actions are doable (Gensbittel 2015)
- Partial information on the side of P1 reduces to Θ' = Δ(Θ) as the new state space (Gensbittel 2015)
- Incomplete information on two sides (Mertens, Zamir 1971, Laraki 2001)
- Non-zero-sum: limit value and bi-martingales (S.Hart 1985)
- More than 2 players: nothing is known.

- Bellman equation $V_{T+1} = F[V_T]$ (Zamir 1971, Gensbittel 2015)
- Dual game (P1 select the state), PDE, and CLT (De Meyer 1996)
- Continuous-time approximation and PDE (Gensbittel 2015)
- The value = a solution of a martingale-optimization problem (De Meyer 2010, Gensbittel 2015)

- Non-binary set of states $\Theta \Rightarrow$ no complications: $\Delta(\Theta)$ replaces [0,1]. Continuous Θ and sets of actions are doable (Gensbittel 2015)
- Partial information on the side of P1 reduces to Θ' = Δ(Θ) as the new state space (Gensbittel 2015)
- Incomplete information on two sides (Mertens, Zamir 1971, Laraki 2001)
- Non-zero-sum: limit value and bi-martingales (S.Hart 1985)
- More than 2 players: nothing is known.

- Bellman equation $V_{T+1} = F[V_T]$ (Zamir 1971, Gensbittel 2015)
- Dual game (P1 select the state), PDE, and CLT (De Meyer 1996)
- Continuous-time approximation and PDE (Gensbittel 2015)
- The value = a solution of a martingale-optimization problem (De Meyer 2010, Gensbittel 2015)

- **S.Zamir** Repeated games of incomplete information: Zero-sum Handbook of Game Theory, 1992 A good survey of classic results with proofs.
- M.Maschler, E.Solan, S.Zamir "Game Theory" 2013 Static games & Cav [*u*] by approachability for RGII
- J.-F. Mertens, S.Sorin, S.Zamir "Repeated games" 2014 Read from Chapter V.
 Static games & classic martingale-based proof of Cav [u] and much
- Fabien Gensbittel "Extensions of the Cav(u) theorem for repeated games with one-sided information.", Math. Oper. Res,40(1), 80-104, 2015.

- **S.Zamir** Repeated games of incomplete information: Zero-sum Handbook of Game Theory, 1992 A good survey of classic results with proofs.
- M.Maschler, E.Solan, S.Zamir "Game Theory" 2013 Static games & Cav [u] by approachability for RGII
- J.-F. Mertens, S.Sorin, S.Zamir "Repeated games" 2014 Read from Chapter V.
 Static games & classic martingale-based proof of Cav [u] and much
- Fabien Gensbittel "Extensions of the Cav(u) theorem for repeated games with one-sided information.", Math. Oper. Res,40(1), 80-104, 2015.

- **S.Zamir** Repeated games of incomplete information: Zero-sum Handbook of Game Theory, 1992 A good survey of classic results with proofs.
- M.Maschler, E.Solan, S.Zamir "Game Theory" 2013 Static games & Cav [u] by approachability for RGII
- J.-F. Mertens, S.Sorin, S.Zamir "Repeated games" 2014 Read from Chapter V.

Static games & classic martingale-based proof of Cav[u] and much more

• Fabien Gensbittel "Extensions of the Cav(u) theorem for repeated games with one-sided information.", Math. Oper. Res,40(1), 80-104, 2015.

- **S.Zamir** Repeated games of incomplete information: Zero-sum Handbook of Game Theory, 1992 A good survey of classic results with proofs.
- M.Maschler, E.Solan, S.Zamir "Game Theory" 2013 Static games & Cav [u] by approachability for RGII
- J.-F. Mertens, S.Sorin, S.Zamir "Repeated games" 2014 Read from Chapter V.

Static games & classic martingale-based proof of Cav[u] and much more

• Fabien Gensbittel "Extensions of the Cav(u) theorem for repeated games with one-sided information.", Math. Oper. Res,40(1), 80-104, 2015.