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Outline:

• Reminder: martingales and posterior probabilities

• Static zero-sum games with incomplete information on one side

• Repeated zero-sum games with incomplete information on one side:

• Cav [u]-theorem via Blackwell’s approachability

• Cav [u]-theorem via martingales of posterior beliefs
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Reminder: martingales and posterior
probabilities
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Martingales

probability (Ω,F ,P) with filtration F0 ⊂ F1 ⊂ F2 ⊂ . . .

Definition

A sequence of random variables ξ0, ξ1, ξ2, . . . is a martingale if ξt is

Ft-measurable and

E[ξt+1 | Ft ] = ξt

Interpretation: the best prediction of the future value = current value

⇒ wide use in models of learning.
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Main example: martingale of posteriors

• Unobservable state θ ∈ {0, 1} with prior probability P(θ = 1) = p.

• An agent sequentially observes signals s1, s2, s3 . . . which have

arbitrary joint distribution with θ.

• The agent computes his posterior probability

pt = P[θ = 1 | s1, s2, . . . st ] using the Bayes rule.

Proposition

The sequence p0 = p, p1, p2, . . . is a martingale with values in [0, 1]

Interpretation: best prediction of tomorrow’s belief is today’s belief ⇔
rationality property: time-consistency of beliefs.
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Main example: martingale of posteriors

• Unobservable state θ ∈ {0, 1} with prior probability P(θ = 1) = p.

• An agent sequentially observes signals s1, s2, s3 . . . which have

arbitrary joint distribution with θ.

• The agent computes his posterior probability

pt = P[θ = 1 | s1, s2, . . . st ] using the Bayes rule.

Proposition

The sequence p0 = p, p1, p2, . . . is a martingale with values in [0, 1]

Interpretation: best prediction of tomorrow’s belief is today’s belief ⇔
rationality property: time-consistency of beliefs.

Proof: Denote F0 = {∅,Ω}, Ft = Σ(s1, s2, . . . st). Then

pt = P[θ = 1 | Ft ] = E[1{θ=1} | Ft ].

By the telescopic property of conditional expectations

E[pt+1 | Ft ] = E
[
E[1{θ=1} | Ft+1] | Ft

]
= E[1{θ=1} | Ft ] = pt .
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Static zero-sum games with
incomplete information on one side
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The model

Static zero-sum game G (p) with one-sided incomplete information

1. the “state of nature” θ ∈ {0, 1} with prior P(θ = 1) = p is realized.

• Player 1 observes θ

• Player 2 observes nothing but knows p

2. Players play a zero-sum game with n ×m payoff matrix

Aθ = (Aθi,j)i∈[n],j∈[m] which depends on θ.
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The model

Static zero-sum game G (p) with one-sided incomplete information

1. the “state of nature” θ ∈ {0, 1} with prior P(θ = 1) = p is realized.

• Player 1 observes θ

• Player 2 observes nothing but knows p

2. Players play a zero-sum game with n ×m payoff matrix

Aθ = (Aθi,j)i∈[n],j∈[m] which depends on θ.

Strategies:

• Player 1 specifies x = (x0, x1), where xθ ∈ ∆n

• Player 2 selects y ∈ ∆m.

The payoff to Player 1

Eθ,i∼xθ,j∼y
[
Aθi,j
]

= (1− p) ·
∑
i,j

x0i A
0
i,jyj + p ·

∑
i,j

x1i A
1
i,jyj

= (−1)·payoff to Player 2
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The value

P1 can guarantee: maxx miny

[
(1− p) ·

∑
i,j x

0
i A

0
i,jyj + p ·

∑
i,j x

1
i A

1
i,jyj
]

P2 can defend: miny maxx
[
(1− p) ·

∑
i,j x

0
i A

0
i,jyj + p ·

∑
i,j x

1
i A

1
i,jyj
]

8



The value

P1 can guarantee: maxx miny

[
(1− p) ·

∑
i,j x

0
i A

0
i,jyj + p ·

∑
i,j x

1
i A

1
i,jyj
]

P2 can defend: miny maxx
[
(1− p) ·

∑
i,j x

0
i A

0
i,jyj + p ·

∑
i,j x

1
i A

1
i,jyj
]

The value:

V (p) = maxx miny

[
(1−p) ·

∑
i,j x

0
i A

0
i,jyj +p ·

∑
i,j x

1
i A

1
i,jyj
]

= miny maxx

Question: max min = min max for zero-sum games with complete

information. Why here?

8



The value

The value:

V (p) = maxx miny

[
(1−p) ·

∑
i,j x

0
i A

0
i,jyj +p ·

∑
i,j x

1
i A

1
i,jyj
]

= miny maxx

Question: max min = min max for zero-sum games with complete

information. Why here?

• Answer 1: Sets of strategies are convex and compact, the payoff is

affine in strategies of each player ⇒ apply the min-max theorem.

• Answer 2: Reduce G (p) to a matrix game with complete

information:

• pure strategy of Player 1 is a function i ′ : θ → iθ (n2 pure

strategies).

• For a combination of pure strategies: i ′ = (i0, i1) and j the payoff

A′i′,j = (1− p) · A0
i0,j + p · A1

i1,j .

• V (p) = val[A′].
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The value

The value:

V (p) = maxx miny

[
(1−p) ·

∑
i,j x

0
i A

0
i,jyj +p ·

∑
i,j x

1
i A

1
i,jyj
]

= miny maxx

Question: max min = min max for zero-sum games with complete

information. Why here?

• Answer 1: Sets of strategies are convex and compact, the payoff is

affine in strategies of each player ⇒ apply the min-max theorem.

• Answer 2: Reduce G (p) to a matrix game with complete

information:

• pure strategy of Player 1 is a function i ′ : θ → iθ (n2 pure

strategies).

• For a combination of pure strategies: i ′ = (i0, i1) and j the payoff

A′i′,j = (1− p) · A0
i0,j + p · A1

i1,j .

• V (p) = val[A′].

A mystery: The part is bigger than the whole!
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Properties of the value

Lemma: concavity and Lipschitz property

V (p) is a concave function of p and
∣∣∣V (p)−V (p′)

p−p′

∣∣∣ ≤ 2 maxi,j,θ

∣∣∣Aθi,j ∣∣∣.
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Properties of the value

Lemma: concavity and Lipschitz property

V (p) is a concave function of p and
∣∣∣V (p)−V (p′)

p−p′

∣∣∣ ≤ 2 maxi,j,θ

∣∣∣Aθi,j ∣∣∣.
Proof:

V (p) = min
y

max
x0,x1

[
(1− p) ·

∑
i,j

x0i A
0
i,jyj + p ·

∑
i,j

x1i A
1
i,jyj
]

=

= min
y

[
(1− p) ·

(
max
x0

∑
i,j

x0i A
0
i,jyj
)

+ p ·
(

max
x1

∑
i,j

x1i A
1
i,jyj
)]
.

So V is the minimum over y of the family of affine functions.
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∑
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0
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)

+ p ·
(

max
x1
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x1i A
1
i,jyj
)]
.

So V is the minimum over y of the family of affine functions.

Definition: The non-revealing game ANR(p) = a version of G (p) where

nobody knows θ = the matrix game E[Aθ] = (1− p)A0 + p · A1.

Notation: The value u(p) = val[ANR(p)].
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Properties of the value

Lemma: concavity and Lipschitz property

V (p) is a concave function of p and
∣∣∣V (p)−V (p′)

p−p′

∣∣∣ ≤ 2 maxi,j,θ

∣∣∣Aθi,j ∣∣∣.
Proof:

V (p) = min
y

max
x0,x1

[
(1− p) ·

∑
i,j

x0i A
0
i,jyj + p ·

∑
i,j

x1i A
1
i,jyj
]

=

= min
y

[
(1− p) ·

(
max
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∑
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x0i A
0
i,jyj
)

+ p ·
(

max
x1

∑
i,j

x1i A
1
i,jyj
)]
.

So V is the minimum over y of the family of affine functions.

Definition: The non-revealing game ANR(p) = a version of G (p) where

nobody knows θ = the matrix game E[Aθ] = (1− p)A0 + p · A1.

Notation: The value u(p) = val[ANR(p)].

Lemma: a lower bound

V (p) ≥ u(p).

Proof: Player 1 “forgets” θ and plays the opt. strategy from ANR(p).
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The Cav [u]-lower bound on the value

Concavification: For a continuous function f on a compact convex set

Cav [f ](y) = min {ϕ(y) : ϕ is concave and ϕ(·) ≥ f (·)} .

So Cav [f ] is the minimal concave function dominating f .
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The Cav [u]-lower bound on the value

Concavification: For a continuous function f on a compact convex set

Cav [f ](y) = min {ϕ(y) : ϕ is concave and ϕ(·) ≥ f (·)} .

So Cav [f ] is the minimal concave function dominating f .

Home exercise: Cav [f ] is concave.
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Cav [f ](y) = min {ϕ(y) : ϕ is concave and ϕ(·) ≥ f (·)} .

So Cav [f ] is the minimal concave function dominating f .

Home exercise: Cav [f ] is concave.

Theorem (R.Aumann, M.Maschler, 1960ies)

V (p) ≥ Cav [u](p).
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The Cav [u]-lower bound on the value

Concavification: For a continuous function f on a compact convex set

Cav [f ](y) = min {ϕ(y) : ϕ is concave and ϕ(·) ≥ f (·)} .

So Cav [f ] is the minimal concave function dominating f .

Home exercise: Cav [f ] is concave.

Theorem (R.Aumann, M.Maschler, 1960ies)

V (p) ≥ Cav [u](p).

Proof: V ≥ u and V is concave.
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Example

A0 =

(
1 0

0 0

)
, A1 =

(
0 0

0 1

)

1. Find the value and optimal strategies in G (p)

2. Find the value of the non-revealing game ANR(p)
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Example

A0 =

(
1 0

0 0

)
, A1 =

(
0 0

0 1

)

1. Find the value and optimal strategies in G (p)

• The dominant strategy of P1: Top if θ = 0, and Bottom if θ = 1.

• P2 replies: if P2 plays Left, the payoff is 1− p, if Right, p ⇒

V (p) = min {1− p, p} .

• Optimal reply is unique ⇒ opt. strategy of P2 is playing Right if

p ≤ 1
2

and Left for p ≥ 1
2
.

2. Find the value of the non-revealing game ANR(p)
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Example

A0 =

(
1 0

0 0

)
, A1 =

(
0 0

0 1

)
1. Find the value and optimal strategies in G (p)

• The dominant strategy of P1: Top if θ = 0, and Bottom if θ = 1.

• P2 replies: if P2 plays Left, the payoff is 1− p, if Right, p ⇒

V (p) = min {1− p, p} .

• Optimal reply is unique ⇒ opt. strategy of P2 is playing Right if

p ≤ 1
2

and Left for p ≥ 1
2
.

2. Find the value of the non-revealing game ANR(p)

• ANR(p) =

(
1− p 0

0 p

)
. No pure-strategy equilibrium for p 6= 0, 1

⇒ players use both actions.

• Optimal mixed strategy makes another player indifferent between the

two actions: (1− p) · x1 = p · x2 and (1− p) · y1 = p · y2.

• The optimal strategies x = y =
(
p, (1− p)

)
. The value is

u(p) = (1− p) · p.
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Example

A0 =

(
1 0

0 0

)
, A1 =

(
0 0

0 1

)
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Repeated zero-sum games with
incomplete information on one side
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Motivation:

Birth in 1960ies: disarmament negotiations US ↔ USSR. Complex

interaction: multistage & both have secrets ⇒ interpret the past

behavior.

R.Aumann and M.Maschler consulted the US: secret reports1 ACDA

ST/80, ACDA ST/116, ACDA ST/143.

1Aumann, Maschler (1995) ”Repeated Games with Incomplete Information”

13
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Motivation:

Birth in 1960ies: disarmament negotiations US ↔ USSR. Complex

interaction: multistage & both have secrets ⇒ interpret the past

behavior.

R.Aumann and M.Maschler consulted the US: secret reports1 ACDA

ST/80, ACDA ST/116, ACDA ST/143.

Static games ↔ repeated games:

Static: P1 does not care about revealed information.

Repeated: P2 may guess θ from previous actions of P1 =⇒ P1 balances

between using and hiding his information.

Other examples:

• Nazi’s attack to Coventry and broken Enigma cypher (watch “The

Imitation Game” about Alan Turing)

• Insider trading on financial markets (Rothschild and Waterloo battle;

papers of B. De Meyer)
1Aumann, Maschler (1995) ”Repeated Games with Incomplete Information”
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The model

T -stage zero-sum game GT (p) with one-sided incomplete

information (RGII)

1. the “state of nature” θ ∈ {0, 1} with prior P(θ = 1) = p is realized.

• Player 1 observes θ

• Player 2 observes nothing but knows p

2. A zero-sum game with n ×m payoff matrix Aθ = (Aθi,j)i∈[n],j∈[m] is

played T times. Both players observe the history of actions.
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T -stage zero-sum game GT (p) with one-sided incomplete

information (RGII)

1. the “state of nature” θ ∈ {0, 1} with prior P(θ = 1) = p is realized.

• Player 1 observes θ

• Player 2 observes nothing but knows p

2. A zero-sum game with n ×m payoff matrix Aθ = (Aθi,j)i∈[n],j∈[m] is

played T times. Both players observe the history of actions.

Behavioral strategies:

• Player 1, for each state θ, time t = 0, 1 . . .T − 1 and history

ht = (iτ , jτ )t−1τ=1, specifies xθt (ht) ∈ ∆n. His action it ∼ xθt (ht)

conditional on θ and ht

• Player 2 selects yt(ht) ∈ ∆m. His action jt ∼ yt(ht).
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The model

T -stage zero-sum game GT (p) with one-sided incomplete

information (RGII)

1. the “state of nature” θ ∈ {0, 1} with prior P(θ = 1) = p is realized.

• Player 1 observes θ

• Player 2 observes nothing but knows p

2. A zero-sum game with n ×m payoff matrix Aθ = (Aθi,j)i∈[n],j∈[m] is

played T times. Both players observe the history of actions.

Behavioral strategies:

• Player 1, for each state θ, time t = 0, 1 . . .T − 1 and history

ht = (iτ , jτ )t−1τ=1, specifies xθt (ht) ∈ ∆n. His action it ∼ xθt (ht)

conditional on θ and ht
• Player 2 selects yt(ht) ∈ ∆m. His action jt ∼ yt(ht).

The payoff:

1

T
· Eθ,hT

[
T−1∑
t=0

Aθit ,jt

]
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The value

The value:

VT (p) = max
x

min
y

[
1

T
· Eθ,hT

[
T−1∑
t=0

Aθit ,jt

]]
= min

y
max
x

Question: Why min max = max min?
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Question: Why min max = max min?

Familiar mystery: GT (p) can be reduced to a one-stage matrix game

with complete information:

Pure strategies are deterministic behavioral strategies (for all possible

histories and states). For each pair of pure strategies x , y compute the

payoff A′x,y . By the construction VT (p) = val[A′].
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The value

The value:

VT (p) = max
x

min
y

[
1

T
· Eθ,hT

[
T−1∑
t=0

Aθit ,jt

]]
= min

y
max
x

Question: Why min max = max min?

Familiar mystery: GT (p) can be reduced to a one-stage matrix game

with complete information:

Pure strategies are deterministic behavioral strategies (for all possible

histories and states). For each pair of pure strategies x , y compute the

payoff A′x,y . By the construction VT (p) = val[A′].

We used Kuhn’s theorem: for any mixed strategy there is a behavioral

strategy with the same payoff and vice-versa.
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Example

T -stage RGII with payoffs

A0 =

(
1 0

0 0

)
, A1 =

(
0 0

0 1

)

Question: What should P1 do?

16



Example

T -stage RGII with payoffs

A0 =

(
1 0

0 0

)
, A1 =

(
0 0

0 1

)

Question: What should P1 do?

• Bad Idea: play the optimal strategy from the static game

G (p) ≡ G1(p): Top if θ = 0 and Bottom if θ = 1.

P2 guesses the state after the first round ⇒ the payoff is V (p)
T → 0

as T →∞.

• Better Idea: play the optimal strategy from

ANR(p) = (1− p) · A0 + p · A1.

Guarantees u(p) at every stage, so VT (p) ≥ u(p).
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16



Example

T -stage RGII with payoffs

A0 =

(
1 0

0 0

)
, A1 =

(
0 0

0 1

)
Question: What should P1 do?

• Bad Idea: play the optimal strategy from the static game

G (p) ≡ G1(p): Top if θ = 0 and Bottom if θ = 1.

P2 guesses the state after the first round ⇒ the payoff is V (p)
T → 0

as T →∞.

• Better Idea: play the optimal strategy from

ANR(p) = (1− p) · A0 + p · A1.

Guarantees u(p) at every stage, so VT (p) ≥ u(p).

Question: Can P1 do better?

Answer: Not much.
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The Cav [u]-theorem

Theorem (R.Aumann, M.Maschler, 1960ies)

Cav [u](p) ≤ VT (p) ≤ Cav [u](p) +
2‖A‖√

T
,

where ‖A‖ = maxi,j,θ
∣∣Aθi,j ∣∣.
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Cav [u](p) ≤ VT (p) ≤ Cav [u](p) +
2‖A‖√

T
,

where ‖A‖ = maxi,j,θ
∣∣Aθi,j ∣∣.
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Method 1: the upper bound via Blackwell’s approachability

Remark: this method gives a weaker result:

lim sup
T→∞

VT (p) ≤ Cav [u](p).

No control on the speed of convergence.
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Reminder: Blackwell’s approachability

Consider a game ~GT with vector payoff ~A =

(
A0

A1

)
.

Definition: A set C ⊂ R2 is approachable by P2 ⇔ P2 has a behavioral

strategy such that the average payoff approaches C in the limit, no

matter what P1 is doing:

E

(
dist

(
1

T

T−1∑
t=0

~Ait ,jt , C

))
→ 0 as T →∞.

Theorem (Blackwell)

L(α) = (−∞, α0]× (−∞, α1] is approachable by P2 if

val[(1− q)A0 + qA1] ≤ (1− q)α0 + q · α1 for any q ∈ [0, 1].
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Consider a game ~GT with vector payoff ~A =

(
A0

A1

)
.

Definition: A set C ⊂ R2 is approachable by P2 ⇔ P2 has a behavioral

strategy such that the average payoff approaches C in the limit, no

matter what P1 is doing:

E

(
dist

(
1

T

T−1∑
t=0

~Ait ,jt , C

))
→ 0 as T →∞.

Theorem (Blackwell)

L(α) = (−∞, α0]× (−∞, α1] is approachable by P2 if

val[(1− q)A0 + qA1] ≤ (1− q)α0 + q · α1 for any q ∈ [0, 1].

Remark: val[(1− q)A0 + qA1] = u(q)
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Application to RGII: the upper bound on VT (p)

Picking alphas: l(q) = (1− q) · α0 + q · α1 is the tangent line to the

graph of Cav [u] at p:

Cav [u](p) = l(p) and Cav [u](q) ≤ l(q) for q ∈ [0, 1].
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Corollary: the set L(α) is approachable for vector-payoff game ~GT .

Proposition

lim sup
T→∞

VT (p) ≤ Cav [u](p).

Proof:

• P2 plays his approachability strategy

1

T
·E

[
T−1∑
t=0

Aθit ,jt

]
= (1−p)

1

T
·E

[
T−1∑
t=0

A0
it ,jt
| θ = 0

]
+p·

1

T
·E

[
T−1∑
t=0

A1
it ,jt
| θ = 1

]
.

• L(α) is approachable ⇒ 1
T E
[∑T−1

t=0 A0
it ,jt
| θ
]

approaches (−∞, αθ].

lim sup
T→∞

1

T
· E

[
T−1∑
t=0

Aθit ,jt

]
≤ (1− p)α0 + p · α1 = Cav [u](p). 20
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Method 2: the upper bound via martingales of posterior beliefs

Remark: this method allows to control the error term

VT (p) ≤ Cav [u](p) +
2‖A‖√

T
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Variation of posterior beliefs

Fix some strategy x of Player 1.

Martingale of beliefs of Player 2: pt = P(θ = 1 | ht), p0 = p.
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A reasonable reply y to x: At stage t compute pt and play optimal

strategy from the non-revealing game ANR(pt).
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Martingale of beliefs of Player 2: pt = P(θ = 1 | ht), p0 = p.

A reasonable reply y to x: At stage t compute pt and play optimal

strategy from the non-revealing game ANR(pt).

Lemma

The payoff for a pair (x , y) satisfies

1

T
· E

[
T−1∑
t=0

Aθit ,jt

]
≤ Cav [u] + 2‖A‖ ·

E
[∑T−1

t=0 |pt+1 − pt |
]

T
.
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Variation of posterior beliefs

Lemma

The payoff for a pair (x , y) satisfies

1

T
· E

[
T−1∑
t=0

Aθit ,jt

]
≤ Cav [u] + 2‖A‖ ·

E
[∑T−1

t=0 |pt+1 − pt |
]

T
.

Proof:

• The contribution of stage t:

E
[
Aθit ,jt

]
= E

[
1{θ=0} · A0

it ,jt + 1{θ=1} · A1
it ,jt

]
= E

[
E[. . . | ht+1]

]
=

= E
[
(1− pt+1)A0

it ,jt + pt+1 · A1
it ,jt

]
= F

• This is a payoff in a game ANR(pt+1) if P2 plays his optimal strategy

from ANR(pt). Since
∣∣ANR

i,j (pt+1)− ANR
i,j (pt)

∣∣ ≤ 2‖A‖ · |pt+1 − pt |

F ≤ E[u(pt)] + 2‖A‖ · E|pt+1 − pt |.

• By Jensen’s inequality and the martingale property

E[u(pt)] ≤ E[Cav [u](pt)] ≤ Cav [u](Ept) = Cav [u](p).
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Upper bound on the variation

It remains to bound the L1-variation:

E

[
T−1∑
t=0

|pt+1 − pt |

]
≤
√
T .
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Telescopic property of L2 (aka quadratic) variation

For any martingale ξ0, ξ1, . . . on filtration F0 ⊂ F1 ⊂ . . .

E
[ T−1∑
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(ξt+1 − ξt)2
]

= E[ξ2T ]− E[ξ20 ].
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E
[ T−1∑

t=0

(ξt+1 − ξt)2
]

= E[ξ2T ]− E[ξ20 ].

Proof:

E
[ T−1∑

t=0

(ξt+1 − ξt)2
]

=
T−1∑
t=0

[
E[ξ2t+1] + E[ξ2t ]− 2E[ξt+1 · ξt ]

]
= F

Note that E[ξt+1 · ξt ] = E
[
E[ξt+1 · ξt | Ft ]

]
= E[ξ2t ].

F =
T−1∑
t=0

[
E[ξ2t+1]− E[ξ2t ]

]
= E[ξ2T ]− E[ξ20 ].
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√
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E
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]

= E[ξ2T ]− E[ξ20 ].

Bound on L1-variation

E
[ T−1∑

t=0

|ξt+1 − ξt |
]
≤
√
T ·
√

E[ξ2T ]− E[ξ20 ].

Proof: Cauchy-Shwartz inequality

E
[ T−1∑

t=0

|ξt+1−ξt |
]

= E
[ T−1∑

t=0

1·|ξt+1−ξt |
]
≤

√√√√E
[ T−1∑

t=0

1
]√√√√E

[ T−1∑
t=0

(ξt+1 − ξt)2
]
. 23



Extensions & references
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Extensions:

• Non-binary set of states Θ ⇒ no complications: ∆(Θ) replaces

[0, 1]. Continuous Θ and sets of actions are doable (Gensbittel 2015)

• Partial information on the side of P1 reduces to Θ′ = ∆(Θ) as the

new state space (Gensbittel 2015)

• Incomplete information on two sides (Mertens, Zamir 1971, Laraki

2001)

• Non-zero-sum: limit value and bi-martingales (S.Hart 1985)

• More than 2 players: nothing is known.
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Extensions:

• Non-binary set of states Θ ⇒ no complications: ∆(Θ) replaces

[0, 1]. Continuous Θ and sets of actions are doable (Gensbittel 2015)

• Partial information on the side of P1 reduces to Θ′ = ∆(Θ) as the

new state space (Gensbittel 2015)

• Incomplete information on two sides (Mertens, Zamir 1971, Laraki

2001)

• Non-zero-sum: limit value and bi-martingales (S.Hart 1985)

• More than 2 players: nothing is known.

Useful methods:

• Bellman equation VT+1 = F [VT ] (Zamir 1971, Gensbittel 2015)

• Dual game (P1 select the state), PDE, and CLT (De Meyer 1996)

• Continuous-time approximation and PDE (Gensbittel 2015)

• The value = a solution of a martingale-optimization problem (De

Meyer 2010, Gensbittel 2015)
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