Lecture 2: Bayesian persuasion

Fedor Sandomirskiy
May 4, 2020
Technion, Haifa \& Higher School of Economics, St.Petersburg
e-mail: fedor.sandomirskiy@gmail.com
homepage: https://www.fedors.info/

Outline:

- The model of Bayesian persuasion
- Geometric approach to persuasion: Splitting lemma and Cav [U]-theorem
- Action-recommendation approach: revelation-principle

The model of Bayesian persuasion

Bayesian persuasion and Information Design

Information Design

How to induce the desired behavior of a decision-maker by changing the information available to him?

- A young field. The origin:

Bayesian persuasion
E Kamenica, M Gentzkow - American Economic Review, 2011 - aeaweb.org
... work that identifies which sequences of distributions of posteriors are consistent with Bayesian rationality ... we need only ask how $\mathrm{Et}_{\mathrm{t}} \mathrm{v}(\mu)$ varies over the space of Bayes-plausible distributions .. COROLLARY 1: sender benefits from persuasion if and only if there exists a Bayes ...
is 50 Cited by 1295 Related articles All 31 versions $\$$

Bayesian persuasion and Information Design

Information Design

How to induce the desired behavior of a decision-maker by changing the information available to him?

- A young field. The origin:

Bayesian persuasion

E Kamenica, M Gentzkow - American Economic Review, 2011 - aeaweb.org
... work that identifies which sequences of distributions of posteriors are consistent with Bayesian rationality ... we need only ask how Ет $\square \mathrm{v}(\mu)$ varies over the space of Bayes-plausible distributions ... COROLLARY 1: sender benefits from persuasion if and only if there exists a Bayes ...
A 20 Cited by 1295 Related articles All 31 versions 0

- Bayesian persuasion $=$ the simplest model of Information Design: 2 agents:
- Receiver: a decision maker who has no access to payoff-relevant information
- Sender: has information, cares about the action of Receiver, can send him a signal

Bayesian persuasion and Information Design

Information Design

How to induce the desired behavior of a decision-maker by changing the information available to him?

- A young field. The origin:

Bayesian persuasion

E Kamenica, M Gentzkow - American Economic Review, 2011 - aeaweb.org
... work that identifies which sequences of distributions of posteriors are consistent with Bayesian rationality ... we need only ask how Ет $\square \vee(\mu)$ varies over the space of Bayes-plausible distributions ... COROLLARY 1: sender benefits from persuasion if and only if there exists a Bayes ...
in Cited by 1295 Related articles All 31 versions 20

- Bayesian persuasion $=$ the simplest model of Information Design: 2 agents:
- Receiver: a decision maker who has no access to payoff-relevant information
- Sender: has information, cares about the action of Receiver, can send him a signal
- Bayesian persuasion \simeq Information Design

Bayesian persuasion and Information Design

Information Design

How to induce the desired behavior of a decision-maker by changing the information available to him?

- A young field. The origin:

Bayesian persuasion

E Kamenica, M Gentzkow - American Economic Review, 2011 - aeaweb.org
... work that identifies which sequences of distributions of posteriors are consistent with Bayesian rationality ... we need only ask how Ет $\square \vee(\mu)$ varies over the space of Bayes-plausible distributions ... COROLLARY 1: sender benefits from persuasion if and only if there exists a Bayes ...
in Cited by 1295 Related articles All 31 versions 20

- Bayesian persuasion $=$ the simplest model of Information Design: 2 agents:
- Receiver: a decision maker who has no access to payoff-relevant information
- Sender: has information, cares about the action of Receiver, can send him a signal
- Bayesian persuasion \simeq Information Design
- Popularity: simplicity, explicit solutions, many applications

Bayesian persuasion and Information Design

Information Design

How to induce the desired behavior of a decision-maker by changing the information available to him?

- A young field. The origin:

Bayesian persuasion

E Kamenica, M Gentzkow - American Economic Review, 2011 - aeaweb.org
When is it possible for one person to persuade another to change her action? We consider a symmetric information model where a sender chooses a signal to reveal to a receiver, who then takes a noncontractible action that affects the welfare of both players. We derive ...
i. 50 Cited by 949 Related articles All 38 versions

- Bayesian persuasion $=$ the simplest model of Information Design: 2 agents:
- Receiver: a decision maker who has no access to payoff-relevant information
- Sender: has information, cares about the action of Receiver, can send him a signal
- Bayesian persuasion \simeq Information Design
- Popularity: simplicity, explicit solutions, many applications

A toy example of Bayesian persuasion

A court problem

- 75% of defendants are innocent $(\theta=0), 25 \%$ are guilty $(\theta=1)$
- Prosecutor (P) observes θ, Judge (J) does not
- J has two actions: to acquit ($a=0$) or to convict ($a=1$)
- P's utility $u_{P}(a, \theta)=a$ (always wants to convict)
- J's utility $u_{J}(a, \theta)=\mathbb{1}_{a=\theta}$ (cares about justice)

A toy example of Bayesian persuasion

A court problem

- 75% of defendants are innocent $(\theta=0), 25 \%$ are guilty $(\theta=1)$
- Prosecutor (P) observes θ, Judge (J) does not
- J has two actions: to acquit ($a=0$) or to convict ($a=1$)
- P's utility $u_{P}(a, \theta)=a$ (always wants to convict)
- J's utility $u_{J}(a, \theta)=\mathbb{1}_{a=\theta}$ (cares about justice)

What should P do?

- Reveal no information $\Longrightarrow\left(a^{*}=0\right) \Longrightarrow\left(u_{P}=0\right)$
- Reveal $\theta \Longrightarrow\left(a^{*}=\theta\right) \Longrightarrow\left(u_{P}=\frac{1}{4}\right)$
- Send a noisv signal $\in\{$ innocent. mavbe guilty\} with some θ-dependent probabilities $\pi \Rightarrow$ the optimal payoff $u_{P}=\frac{1}{2}$

A toy example of Bayesian persuasion

A court problem

- 75% of defendants are innocent $(\theta=0), 25 \%$ are guilty $(\theta=1)$
- Prosecutor (P) observes θ, Judge (J) does not
- J has two actions: to acquit ($a=0$) or to convict ($a=1$)
- P's utility $u_{P}(a, \theta)=a$ (always wants to convict)
- J's utility $u_{J}(a, \theta)=\mathbb{1}_{a=\theta}$ (cares about justice)

What should \mathbf{P} do?

- Reveal no information $\Longrightarrow\left(a^{*}=0\right) \Longrightarrow\left(u_{P}=0\right)$
- Reveal $\theta \Longrightarrow\left(a^{*}=\theta\right) \Longrightarrow\left(u_{P}=\frac{1}{4}\right)$
- Send a noisy signal $\in\{$ innocent, maybe guilty $\}$ with some θ-dependent probabilities $\pi \Rightarrow$ the optimal payoff $u_{P}=\frac{1}{2}$

A toy example of Bayesian persuasion

A court problem

- 75% of defendants are innocent $(\theta=0), 25 \%$ are guilty $(\theta=1)$
- Prosecutor (P) observes θ, Judge (J) does not
- J has two actions: to acquit ($a=0$) or to convict ($a=1$)
- P's utility $u_{P}(a, \theta)=a$ (always wants to convict)
- J's utility $u_{J}(a, \theta)=\mathbb{1}_{a=\theta}$ (cares about justice)

What should \mathbf{P} do?

- Reveal no information $\Longrightarrow\left(a^{*}=0\right) \Longrightarrow\left(u_{P}=0\right)$
- Reveal $\theta \Longrightarrow\left(a^{*}=\theta\right) \Longrightarrow\left(u_{P}=\frac{1}{4}\right)$
- Send a noisy signal $\in\{$ innocent, maybe guilty $\}$ with some θ-dependent probabilities $\pi \Rightarrow$ the optimal payoff $u_{P}=\frac{1}{2}$

A toy example of Bayesian persuasion

A court problem

- 75% of defendants are innocent $(\theta=0), 25 \%$ are guilty $(\theta=1)$
- Prosecutor (P) observes θ, Judge (J) does not
- J has two actions: to acquit ($a=0$) or to convict ($a=1$)
- P's utility $u_{P}(a, \theta)=a$ (always wants to convict)
- J's utility $u_{J}(a, \theta)=\mathbb{1}_{a=\theta}$ (cares about justice)

What should \mathbf{P} do?

- Reveal no information $\Longrightarrow\left(a^{*}=0\right) \Longrightarrow\left(u_{P}=0\right)$
- Reveal $\theta \Longrightarrow\left(a^{*}=\theta\right) \Longrightarrow\left(u_{P}=\frac{1}{4}\right)$
- Send a noisy signal $\in\{$ innocent, maybe guilty $\}$ with some θ-dependent probabilities $\pi \Rightarrow$ the optimal payoff $u_{P}=\frac{1}{2}$.

A toy example of Bayesian persuasion

A court problem

- 75% of defendants are innocent $(\theta=0), 25 \%$ are guilty $(\theta=1)$
- Prosecutor (P) observes θ, Judge (J) does not
- J has two actions: to acquit ($a=0$) or to convict ($a=1$)
- P's utility $u_{P}(a, \theta)=a$ (always wants to convict)
- J's utility $u_{J}(a, \theta)=\mathbb{1}_{a=\theta}$ (cares about justice)

What should \mathbf{P} do?

- Reveal no information $\Longrightarrow\left(a^{*}=0\right) \Longrightarrow\left(u_{P}=0\right)$
- Reveal $\theta \Longrightarrow\left(a^{*}=\theta\right) \Longrightarrow\left(u_{P}=\frac{1}{4}\right)$
- Send a noisy signal $\in\{$ innocent, maybe guilty $\}$ with some θ-dependent probabilities $\pi \Rightarrow$ the optimal payoff $u_{P}=\frac{1}{2}$.
Remark: Communication is possible because:
- Non-zero-sum: sometimes P and J want the same (convict guilty).

[^0]
A toy example of Bayesian persuasion

A court problem

- 75% of defendants are innocent $(\theta=0), 25 \%$ are guilty $(\theta=1)$
- Prosecutor (P) observes θ, Judge (J) does not
- J has two actions: to acquit ($a=0$) or to convict ($a=1$)
- P's utility $u_{P}(a, \theta)=a$ (always wants to convict)
- J's utility $u_{J}(a, \theta)=\mathbb{1}_{a=\theta}$ (cares about justice)

What should \mathbf{P} do?

- Reveal no information $\Longrightarrow\left(a^{*}=0\right) \Longrightarrow\left(u_{P}=0\right)$
- Reveal $\theta \Longrightarrow\left(a^{*}=\theta\right) \Longrightarrow\left(u_{P}=\frac{1}{4}\right)$
- Send a noisy signal $\in\{$ innocent, maybe guilty $\}$ with some θ-dependent probabilities $\pi \Rightarrow$ the optimal payoff $u_{P}=\frac{1}{2}$.
Remark: Communication is possible because:
- Non-zero-sum: sometimes P and J want the same (convict guilty).
- J knows the information structure π.

A toy example of Bayesian persuasion

A court problem

- 75% of defendants are innocent $(\theta=0), 25 \%$ are guilty $(\theta=1)$
- Prosecutor (P) observes θ, Judge (J) does not
- J has two actions: to acquit ($a=0$) or to convict ($a=1$)
- P's utility $u_{P}(a, \theta)=a$ (always wants to convict)
- J's utility $u_{J}(a, \theta)=\mathbb{1}_{a=\theta}$ (cares about justice)

What should P do?

- Reveal no information $\Longrightarrow\left(a^{*}=0\right) \Longrightarrow\left(u_{P}=0\right)$
- Reveal $\theta \Longrightarrow\left(a^{*}=\theta\right) \Longrightarrow\left(u_{P}=\frac{1}{4}\right)$
- Send a noisy signal $\in\{$ innocent, maybe guilty $\}$ with some θ-dependent probabilities $\pi \Rightarrow$ the optimal payoff $u_{P}=\frac{1}{2}$.
Remark: Communication is possible because:
- Non-zero-sum: sometimes P and J want the same (convict guilty).
- J knows the information structure π.
- P announces π before observing θ and cannot change it after (P has the commitment power).

Some other interpretations/applications:

- Employers and universities: $\theta=$ quality of a student (good/bad), U wants a good placement for any student, E wants good candidates.
- Explains coarse grading in schools, universities, and industries: ${ }^{1}$ "When recruiters call me up and ask me for the three best people, I tell them, "No! I will give you the names of the six best."

Robert J. Gordon, Econ. dept., Northwestern

[^1]
Some other interpretations/applications:

- Employers and universities: $\theta=$ quality of a student (good/bad), U wants a good placement for any student, E wants good candidates.
- Explains coarse grading in schools, universities, and industries: ${ }^{1}$ "When recruiters call me up and ask me for the three best people, I tell them, "No! I will give you the names of the six best."

Robert J. Gordon, Econ. dept., Northwestern

- Buyers and Sellers : $\theta=$ quality of the product (good/bad), S wants to sell any product, B wants a good product.
- Explains why you cannot order the apts by rating or price on AirBNB ${ }^{2}$

[^2]
Some other interpretations/applications:

- Employers and universities: $\theta=$ quality of a student (good/bad), U wants a good placement for any student, E wants good candidates.
- Explains coarse grading in schools, universities, and industries: ${ }^{1}$ "When recruiters call me up and ask me for the three best people, I tell them, "No! I will give you the names of the six best."

Robert J. Gordon, Econ. dept., Northwestern

- Buyers and Sellers: $\theta=$ quality of the product (good/bad), S wants to sell any product, B wants a good product.
- Explains why you cannot order the apts by rating or price on AirBNB ${ }^{2}$
- Police \& drivers: $\theta=$ whether the region is patrolled (yes/no). P wants D to obey the speed limit, D wants to obey only if the region is patrolled.
${ }^{1}$ Ostrovsky, Schwarz (2010) Information disclosure and unraveling in matching markets. AER
${ }^{2}$ Romanyuk, Smolin (2019) Cream skimming and information design in matching markets. AEJ

Bayesian persuasion: the model

The model

- A random state $\theta \in \Theta, \theta \sim p \in \Delta(\Theta)$
- Sender (S)
- selects an information structure $(M, \pi: \Theta \rightarrow \Delta(M))$
- observes θ and sends a message (signal) $m \in M$ with distribution π_{θ}
- Receiver (R) knows (M, π) and takes an action $a \in A$ after getting m
- Payoffs $u_{R}(a, \theta)$ and $u_{S}(a, \theta)$

Bayesian persuasion: the model

The model

- A random state $\theta \in \Theta, \theta \sim p \in \Delta(\Theta)$
- Sender (S)
- selects an information structure $(M, \pi: \Theta \rightarrow \Delta(M))$
- observes θ and sends a message (signal) $m \in M$ with distribution π_{θ}
- Receiver (R) knows (M, π) and takes an action $a \in A$ after getting m
- Payoffs $u_{R}(a, \theta)$ and $u_{S}(a, \theta)$

R's problem: play the optimal reply to (M, π) and received signal m

$$
a^{*}(m) \in \arg \max _{a \in \mathcal{A}} \mathbb{E}\left[u_{R}(a, \theta) \mid m\right] .
$$

Standard assumption: ties are broken in favor of S .

Bayesian persuasion: the model

The model

- A random state $\theta \in \Theta, \theta \sim p \in \Delta(\Theta)$
- Sender (S)
- selects an information structure $(M, \pi: \Theta \rightarrow \Delta(M))$
- observes θ and sends a message (signal) $m \in M$ with distribution π_{θ}
- Receiver (R) knows (M, π) and takes an action $a \in A$ after getting m
- Payoffs $u_{R}(a, \theta)$ and $u_{S}(a, \theta)$

R's problem: play the optimal reply to (M, π) and received signal m

$$
a^{*}(m) \in \arg \max _{a \in A} \mathbb{E}\left[u_{R}(a, \theta) \mid m\right] .
$$

Standard assumption: ties are broken in favor of S .
S's problem: maximize

$$
\mathbb{E}\left[u_{S}\left(a^{*}(m), \theta\right)\right] \quad \text { over information structures }(M, \pi) .
$$

Bayesian persuasion: the model

The model

- A random state $\theta \in \Theta, \theta \sim p \in \Delta(\Theta)$
- Sender (S)
- selects an information structure $(M, \pi: \Theta \rightarrow \Delta(M))$
- observes θ and sends a message (signal) $m \in M$ with distribution π_{θ}
- Receiver (R) knows (M, π) and takes an action $a \in A$ after getting m
- Payoffs $u_{R}(a, \theta)$ and $u_{S}(a, \theta)$

R's problem: play the optimal reply to (M, π) and received signal m

$$
a^{*}(m) \in \arg \max _{a \in A} \mathbb{E}\left[u_{R}(a, \theta) \mid m\right] .
$$

Standard assumption: ties are broken in favor of S .
S's problem: maximize

$$
\mathbb{E}\left[u_{S}\left(a^{*}(m), \theta\right)\right] \quad \text { over information structures }(M, \pi) .
$$

Remark: $a^{*}(m)$ is computed $\Rightarrow 1$-agent problem

Geometric approach to persuasion: splitting lemma and Cav [U]-theorem

Persuasion as inducing posterior beliefs

Simplifying assumption: binary state $\theta \in\{0,1\}$.
Prior $p=\mathbb{P}(\theta=1)$, posterior $p^{\prime}=p^{\prime}(m)=\mathbb{P}(\theta=1 \mid m)$.

Persuasion as inducing posterior beliefs

Simplifying assumption: binary state $\theta \in\{0,1\}$.
Prior $p=\mathbb{P}(\theta=1)$, posterior $p^{\prime}=p^{\prime}(m)=\mathbb{P}(\theta=1 \mid m)$.
R's problem again: maximize over $a \in A$

$$
\begin{gathered}
\mathbb{E}\left[u_{R}(a, \theta) \mid m\right]=\mathbb{E}\left[\mathbb{1}_{\{\theta=0\}} u_{R}(a, 0)+\mathbb{1}_{\{\theta=1\}} u_{R}(a, 1) \mid m\right]= \\
=\left(1-p^{\prime}\right) u_{R}(a, 0)+p^{\prime} \cdot u_{R}(a, 1) \Longrightarrow a^{*}=a^{*}\left(p^{\prime}\right)
\end{gathered}
$$

Persuasion as inducing posterior beliefs

Simplifying assumption: binary state $\theta \in\{0,1\}$.
Prior $p=\mathbb{P}(\theta=1)$, posterior $p^{\prime}=p^{\prime}(m)=\mathbb{P}(\theta=1 \mid m)$.
R's problem again: maximize over $a \in A$

$$
\begin{aligned}
& \mathbb{E} {\left[u_{R}(a, \theta) \mid m\right]=\mathbb{E}\left[\mathbb{1}_{\{\theta=0\}} u_{R}(a, 0)+\mathbb{1}_{\{\theta=1\}} u_{R}(a, 1) \mid m\right]=} \\
&=\left(1-p^{\prime}\right) u_{R}(a, 0)+p^{\prime} \cdot u_{R}(a, 1) \Longrightarrow a^{*}=a^{*}\left(p^{\prime}\right) . \\
& \text { S's payoff }=\mathbb{E}\left[u_{S}\left(a^{*}\left(p^{\prime}\right), \theta\right)\right]=\mathbb{E}\left[\mathbb{E}\left[u_{S}\left(a^{*}\left(p^{\prime}\right), \theta\right) \mid m\right]\right]= \\
&=\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{\{\theta=0\}} u_{S}\left(a^{*}\left(p^{\prime}\right), 0\right)+\mathbb{1}_{\{\theta=1\}} u_{S}\left(a^{*}\left(p^{\prime}\right), 1\right) \mid m\right]\right]= \\
&=\mathbb{E}\left[\left(1-p^{\prime}\right) u_{S}\left(a^{*}\left(p^{\prime}\right), 0\right)+p^{\prime} \cdot u_{S}\left(a^{*}\left(p^{\prime}\right), 1\right)\right]=\mathbb{E}\left[U_{S}\left(p^{\prime}\right)\right]
\end{aligned}
$$

Persuasion as inducing posterior beliefs

$S^{\prime} s$ payoff $=\mathbb{E}\left[u_{S}\left(a^{*}\left(p^{\prime}\right), \theta\right)\right]=\mathbb{E}\left[\mathbb{E}\left[u_{S}\left(a^{*}\left(p^{\prime}\right), \theta\right) \mid m\right]\right]=$

$$
\begin{aligned}
& =\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{\{\theta=0\}} u_{S}\left(a^{*}\left(p^{\prime}\right), 0\right)+\mathbb{1}_{\{\theta=1\}} u_{S}\left(a^{*}\left(p^{\prime}\right), 1\right) \mid m\right]\right]= \\
& =\mathbb{E}\left[\left(1-p^{\prime}\right) u_{S}\left(a^{*}\left(p^{\prime}\right), 0\right)+p^{\prime} \cdot u_{S}\left(a^{*}\left(p^{\prime}\right), 1\right)\right]=\mathbb{E}\left[U_{S}\left(p^{\prime}\right)\right]
\end{aligned}
$$

Notation: $\mu_{(M, \pi)} \in \Delta([0,1])$ is the distribution of $p^{\prime}(m)$ induced by (M, π).

Persuasion as inducing posterior beliefs

S's payoff $=\mathbb{E}\left[u_{S}\left(a^{*}\left(p^{\prime}\right), \theta\right)\right]=\mathbb{E}\left[\mathbb{E}\left[u_{S}\left(a^{*}\left(p^{\prime}\right), \theta\right) \mid m\right]\right]=$

$$
\begin{aligned}
& =\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{\{\theta=0\}} u_{S}\left(a^{*}\left(p^{\prime}\right), 0\right)+\mathbb{1}_{\{\theta=1\}} u_{S}\left(a^{*}\left(p^{\prime}\right), 1\right) \mid m\right]\right]= \\
& =\mathbb{E}\left[\left(1-p^{\prime}\right) u_{S}\left(a^{*}\left(p^{\prime}\right), 0\right)+p^{\prime} \cdot u_{S}\left(a^{*}\left(p^{\prime}\right), 1\right)\right]=\mathbb{E}\left[U_{S}\left(p^{\prime}\right)\right]
\end{aligned}
$$

Notation: $\mu_{(M, \pi)} \in \Delta([0,1])$ is the distribution of $p^{\prime}(m)$ induced by (M, π).

Conclusion

- S cares only about $\mu_{(M, \pi)}$:

$$
\mathbb{E}\left[U_{S}\left(p^{\prime}\right)\right]=\int_{[0,1]} U_{S}(x) d \mu_{(M, \pi)}(x)
$$

If $\mu_{(M, \pi)}=\mu_{(\tilde{M}, \tilde{\pi})},(M, \pi)$ and $(\tilde{M}, \tilde{\pi})$ are payoff-equivalent.

Persuasion as inducing posterior beliefs

S's payoff $=\mathbb{E}\left[u_{S}\left(a^{*}\left(p^{\prime}\right), \theta\right)\right]=\mathbb{E}\left[\mathbb{E}\left[u_{S}\left(a^{*}\left(p^{\prime}\right), \theta\right) \mid m\right]\right]=$

$$
\begin{aligned}
& =\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{\{\theta=0\}} u_{S}\left(a^{*}\left(p^{\prime}\right), 0\right)+\mathbb{1}_{\{\theta=1\}} u_{S}\left(a^{*}\left(p^{\prime}\right), 1\right) \mid m\right]\right]= \\
& =\mathbb{E}\left[\left(1-p^{\prime}\right) u_{S}\left(a^{*}\left(p^{\prime}\right), 0\right)+p^{\prime} \cdot u_{S}\left(a^{*}\left(p^{\prime}\right), 1\right)\right]=\mathbb{E}\left[U_{S}\left(p^{\prime}\right)\right]
\end{aligned}
$$

Notation: $\mu_{(M, \pi)} \in \Delta([0,1])$ is the distribution of $p^{\prime}(m)$ induced by (M, π).

Conclusion

- S cares only about $\mu_{(M, \pi)}$:

$$
\mathbb{E}\left[U_{S}\left(p^{\prime}\right)\right]=\int_{[0,1]} U_{S}(x) d \mu_{(M, \pi)}(x)
$$

If $\mu_{(M, \pi)}=\mu_{(\tilde{M}, \tilde{\pi})},(M, \pi)$ and $(\tilde{M}, \tilde{\pi})$ are payoff-equivalent.

- Instead of maximizing over (M, π), it is enough to maximize over

$$
\mathcal{D}(p)=\left\{\mu \in \Delta[0,1]: \mu=\mu_{(M, \pi)} \text { for some }(M, \pi) \text { with prior } p\right\} .
$$

The splitting lemma

$$
\mathcal{D}(p) \subset\left\{\mu \in \Delta([0,1]): \int_{[0,1]} x d \mu(x)=p\right\}
$$

Why?

The splitting lemma

$$
\mathcal{D}(p) \subset\left\{\mu \in \Delta([0,1]): \int_{[0,1]} x d \mu(x)=p\right\}
$$

Why? By the martingale property $\mathbb{E}\left[p^{\prime}\right]=p$ (aka Bayesian plausibility).

The splitting lemma

$$
\mathcal{D}(p) \subset\left\{\mu \in \Delta([0,1]): \int_{[0,1]} x d \mu(x)=p\right\}
$$

Why? By the martingale property $\mathbb{E}\left[p^{\prime}\right]=p$ (aka Bayesian plausibility).
The splitting lemma (Aumann, Maschler (1960ies) / folk)
These two sets are equal: for any $\mu \in \Delta([0,1])$ with $\int x d \mu(x)=p$ there exists (M, π) s.t. $p^{\prime}(m) \sim \mu$.
One can take $M=\operatorname{supp} \mu \subset[0,1]$.

The splitting lemma

The splitting lemma (Aumann, Maschler (1960ies) / folk)
These two sets are equal: for any $\mu \in \Delta([0,1])$ with $\int x d \mu(x)=p$ there exists (M, π) s.t. $p^{\prime}(m) \sim \mu$.
One can take $M=\operatorname{supp} \mu \subset[0,1]$.
Proof for discrete μ via belief-recommendation:

- μ : point x_{k} has mass $\mu_{k}, \sum \mu_{k}=1, \sum x_{k} \cdot \mu_{k}=p$.
- define

- sample $m \sim \pi_{\theta}$ conditional on θ
- unconditionally $m \sim \ldots \cdot \pi(m=x)=(1-p) \frac{1-x_{k}}{1-p} \mu_{k}+p \frac{x_{k}}{p} \mu_{k}=\mu_{k}$
- $p^{\prime}=\mathbb{P}\left(\theta=1 \mid m=x_{k}\right)=\frac{\mathbb{P}\left(m=x_{k} \mid \theta=1\right) \mathbb{P}(\theta=1)}{\mathbb{P}\left(m=x_{k}\right)}=\frac{x_{k}}{p} \mu_{k} \cdot p \cdot \frac{1}{\mu_{k}}=x_{k}=m$

The splitting lemma

The splitting lemma (Aumann, Maschler (1960ies) / folk)
These two sets are equal: for any $\mu \in \Delta([0,1])$ with $\int x d \mu(x)=p$ there exists (M, π) s.t. $p^{\prime}(m) \sim \mu$.
One can take $M=\operatorname{supp} \mu \subset[0,1]$.
Proof for discrete μ via belief-recommendation:

- μ : point x_{k} has mass $\mu_{k}, \sum \mu_{k}=1, \sum x_{k} \cdot \mu_{k}=p$.
- define
$\pi_{\theta=1}$: point x_{k} has mass $\frac{x_{k}}{p} \mu_{k}$
$\pi_{\theta=0}$: point x_{k} has mass $\frac{1-x_{k}}{1-p} \mu_{k}$
- sample $m \sim \pi_{\theta}$ conditional on θ
- unconditionally $m \sim \mu: \mathbb{P}\left(m=x_{k}\right)=(1-p) \frac{1-x_{k}}{1-p} \mu_{k}+p \frac{x_{k}}{p} \mu_{k}=\mu_{k}$
- $p^{\prime}=\mathbb{P}\left(\theta=1 \mid m=x_{k}\right)=\frac{\mathbb{P}\left(m=x_{k} \mid \theta=1\right) \mathbb{P}(\theta=1)}{\mathbb{D}(m-x)}=\frac{x_{k}}{n} \mu_{k} \cdot p \cdot \frac{1}{n}=x_{k}=m$

The splitting lemma

The splitting lemma (Aumann, Maschler (1960ies) / folk)
These two sets are equal: for any $\mu \in \Delta([0,1])$ with $\int x d \mu(x)=p$ there exists (M, π) s.t. $p^{\prime}(m) \sim \mu$.
One can take $M=\operatorname{supp} \mu \subset[0,1]$.
Proof for discrete μ via belief-recommendation:

- μ : point x_{k} has mass $\mu_{k}, \sum \mu_{k}=1, \sum x_{k} \cdot \mu_{k}=p$.
- define
$\pi_{\theta=1}$: point x_{k} has mass $\frac{x_{k}}{p} \mu_{k}$
$\pi_{\theta=0}$: point x_{k} has mass $\frac{1-x_{k}}{1-p} \mu_{k}$
- sample $m \sim \pi_{\theta}$ conditional on θ
- unconditionally $m \sim \mu: \mathbb{P}\left(m=x_{k}\right)=(1-p) \frac{1-x_{k}}{1-p} \mu_{k}+p \frac{x_{k}}{p} \mu_{k}=\mu_{k}$
- $p^{\prime}=\mathbb{P}\left(\theta=1 \mid m=x_{k}\right)=\frac{\mathbb{P}\left(m=x_{k} \mid \theta=1\right) \mathbb{P}(\theta=1)}{\mathbb{P}\left(m=x_{k}\right)}=\frac{x_{k}}{p} \mu_{k} \cdot p \cdot \frac{1}{\mu_{k}}=x_{k}=m$

The splitting lemma

The splitting lemma (Aumann, Maschler (1960ies) / folk)
These two sets are equal: for any $\mu \in \Delta([0,1])$ with $\int x d \mu(x)=p$ there exists (M, π) s.t. $p^{\prime}(m) \sim \mu$.
One can take $M=\operatorname{supp} \mu \subset[0,1]$.
Proof for discrete μ via belief-recommendation:

- μ : point x_{k} has mass $\mu_{k}, \sum \mu_{k}=1, \sum x_{k} \cdot \mu_{k}=p$.
- define
$\pi_{\theta=1}$: point x_{k} has mass $\frac{x_{k}}{p} \mu_{k}$
$\pi_{\theta=0}$: point x_{k} has mass $\frac{1-x_{k}}{1-p} \mu_{k}$
- sample $m \sim \pi_{\theta}$ conditional on θ
- unconditionally $m \sim \mu: \mathbb{P}\left(m=x_{k}\right)=(1-p) \frac{1-x_{k}}{1-p} \mu_{k}+p \frac{x_{k}}{p} \mu_{k}=\mu_{k}$.
- $p^{\prime}=\mathbb{P}\left(\theta=1 \mid m=x_{k}\right)=$

The splitting lemma

The splitting lemma (Aumann, Maschler (1960ies) / folk)

These two sets are equal: for any $\mu \in \Delta([0,1])$ with $\int x d \mu(x)=p$ there exists (M, π) s.t. $p^{\prime}(m) \sim \mu$.
One can take $M=\operatorname{supp} \mu \subset[0,1]$.
Proof for discrete μ via belief-recommendation:

- μ : point x_{k} has mass $\mu_{k}, \sum \mu_{k}=1, \sum x_{k} \cdot \mu_{k}=p$.
- define
$\pi_{\theta=1}$: point x_{k} has mass $\frac{x_{k}}{p} \mu_{k}$
$\pi_{\theta=0}$: point x_{k} has mass $\frac{1-x_{k}}{1-p} \mu_{k}$
- sample $m \sim \pi_{\theta}$ conditional on θ
- unconditionally $m \sim \mu: \mathbb{P}\left(m=x_{k}\right)=(1-p) \frac{1-x_{k}}{1-p} \mu_{k}+p \frac{x_{k}}{p} \mu_{k}=\mu_{k}$.
- $p^{\prime}=\mathbb{P}\left(\theta=1 \mid m=x_{k}\right)=\frac{\mathbb{P}\left(m=x_{k} \mid \theta=1\right) \mathbb{P}(\theta=1)}{\mathbb{P}\left(m=x_{k}\right)}=\frac{x_{k}}{p} \mu_{k} \cdot p \cdot \frac{1}{\mu_{k}}=x_{k}=m$

The splitting lemma

The splitting lemma (Aumann, Maschler (1960ies) / folk)
These two sets are equal: for any $\mu \in \Delta([0,1])$ with $\int x d \mu(x)=p$ there exists (M, π) s.t. $p^{\prime}(m) \sim \mu$.
One can take $M=\operatorname{supp} \mu \subset[0,1]$.
Corollary: S's optimal payoff is

$$
\max _{(M, \pi)} \mathbb{E}\left[U_{S}\left(p^{\prime}(m)\right)\right]=\max _{\mu \in \mathcal{D}(p)} \int_{[0,1]} U_{S}(x) d \mu(x)
$$

where $\mathcal{D}(p)=\left\{\mu \in \Delta([0,1]): \int_{[0,1]} x d \mu(x)=p\right\}$.

Concavification as martingale-optimization

Concavification of continuous f on $[0,1]$ is

$$
\operatorname{Cav}[f](x)=\min \{\varphi(x): \varphi \text { is concave and } f(\cdot) \leq \varphi(\cdot)\}
$$

Concavification as martingale-optimization

Concavification of continuous f on $[0,1]$ is
$\operatorname{Cav}[f](x)=\min \{\varphi(x): \varphi$ is concave and $f(\cdot) \leq \varphi(\cdot)\}$

Lemma

$$
\operatorname{Cav}[f](p)=\max _{\mu \in \mathcal{D}(p)} \int_{[0,1]} f(x) d \mu(x),
$$

where $\mathcal{D}(p)=\left\{\mu \in \Delta([0,1]): \int_{[0,1]} x d \mu(x)=p\right\}$

Concavification as martingale-optimization

Concavification of continuous f on $[0,1]$ is

$$
\operatorname{Cav}[f](x)=\min \{\varphi(x): \varphi \text { is concave and } f(\cdot) \leq \varphi(\cdot)\}
$$

Lemma

$$
\operatorname{Cav}[f](p)=\max _{\mu \in \mathcal{D}(p)} \int_{[0,1]} f(x) d \mu(x),
$$

where $\mathcal{D}(p)=\left\{\mu \in \Delta([0,1]): \int_{[0,1]} x d \mu(x)=p\right\}$
Proof: Denote r.h.s. by $g(p)$.

$$
f(p) \leq g(p) \leq \operatorname{Cav}[f](p)
$$

Concavification as martingale-optimization

Concavification of continuous f on $[0,1]$ is

$$
\operatorname{Cav}[f](x)=\min \{\varphi(x): \varphi \text { is concave and } f(\cdot) \leq \varphi(\cdot)\}
$$

Lemma

$$
\operatorname{Cav}[f](p)=\max _{\mu \in \mathcal{D}(p)} \int_{[0,1]} f(x) d \mu(x),
$$

where $\mathcal{D}(p)=\left\{\mu \in \Delta([0,1]): \int_{[0,1]} x d \mu(x)=p\right\}$
Proof: Denote r.h.s. by $g(p)$.

$$
f(p) \leq g(p) \leq \operatorname{Cav}[f](p) \Longleftarrow\left(\delta_{p} \in \mathcal{D}(p) \& \text { Jensen's inequality }\right)
$$

Concavification as martingale-optimization

Concavification of continuous f on $[0,1]$ is

$$
\operatorname{Cav}[f](x)=\min \{\varphi(x): \varphi \text { is concave and } f(\cdot) \leq \varphi(\cdot)\}
$$

Lemma

$$
\operatorname{Cav}[f](p)=\max _{\mu \in \mathcal{D}(p)} \int_{[0,1]} f(x) d \mu(x)
$$

where $\mathcal{D}(p)=\left\{\mu \in \Delta([0,1]): \int_{[0,1]} x d \mu(x)=p\right\}$
Proof: Denote r.h.s. by $g(p)$.

$$
f(p) \leq g(p) \leq \operatorname{Cav}[f](p) \Longleftarrow\left(\delta_{p} \in \mathcal{D}(p) \& \text { Jensen's inequality }\right)
$$

Prove concavity of g, i.e., $\alpha g\left(p_{1}\right)+(1-\alpha) g\left(p_{2}\right) \leq g\left(\alpha p_{1}+(1-\alpha) p_{2}\right)$.
Pick optimal $\mu_{1} \in \mathcal{D}\left(p_{1}\right), \mu_{2} \in \mathcal{D}\left(p_{2}\right)$
$\alpha g\left(p_{1}\right)+(1-\alpha) g\left(p_{2}\right)=\int f(x) d\left(\alpha \mu_{1}+(1-\alpha) \mu_{2}\right) \leq g\left(\alpha p_{1}+(1-\alpha) p_{2}\right)$.

Concavification as martingale-optimization

Concavification of continuous f on $[0,1]$ is

$$
\operatorname{Cav}[f](x)=\min \{\varphi(x): \varphi \text { is concave and } f(\cdot) \leq \varphi(\cdot)\}
$$

Lemma

$$
\operatorname{Cav}[f](p)=\max _{\mu \in \mathcal{D}(p)} \int_{[0,1]} f(x) d \mu(x)
$$

where $\mathcal{D}(p)=\left\{\mu \in \Delta([0,1]): \int_{[0,1]} x d \mu(x)=p\right\}$
Proof: Denote r.h.s. by $g(p)$.

$$
f(p) \leq g(p) \leq \operatorname{Cav}[f](p) \Longleftarrow\left(\delta_{p} \in \mathcal{D}(p) \& \text { Jensen's inequality }\right) .
$$

Prove concavity of g, i.e., $\alpha g\left(p_{1}\right)+(1-\alpha) g\left(p_{2}\right) \leq g\left(\alpha p_{1}+(1-\alpha) p_{2}\right)$.
Pick optimal $\mu_{1} \in \mathcal{D}\left(p_{1}\right), \mu_{2} \in \mathcal{D}\left(p_{2}\right)$
$\alpha g\left(p_{1}\right)+(1-\alpha) g\left(p_{2}\right)=\int f(x) d\left(\alpha \mu_{1}+(1-\alpha) \mu_{2}\right) \leq g\left(\alpha p_{1}+(1-\alpha) p_{2}\right)$.
So g is a concave function above $f \Rightarrow(g \geq \operatorname{Cav}[f]) \Rightarrow(g \equiv \operatorname{Cav}[f])$.

Corollary: the Cav [U]-theorem for S's optimal payoff

Theorem (Kamenica, Gentzkow, 2011)

$$
\max _{(M, \pi)} \mathbb{E}\left[U_{S}\left(p^{\prime}\right)\right]=\operatorname{Cav}\left[U_{S}\right](p)
$$

Corollary: the Cav [U]-theorem for S's optimal payoff

Theorem (Kamenica, Gentzkow, 2011)

$$
\max _{(M, \pi)} \mathbb{E}\left[U_{S}\left(p^{\prime}\right)\right]=\operatorname{Cav}\left[U_{S}\right](p)
$$

Proof: By the two lemmas,

$$
\max _{(M, \pi)} \mathbb{E}\left[U_{S}\left(p^{\prime}\right)\right]=\max _{\mu \in \mathcal{D}(p)} \int_{[0,1]} U_{S}(x) d \mu(x)=\operatorname{Cav}\left[U_{S}\right](p)
$$

Corollary: the Cav [U]-theorem for S's optimal payoff

Theorem (Kamenica, Gentzkow, 2011)

$$
\max _{(M, \pi)} \mathbb{E}\left[U_{S}\left(p^{\prime}\right)\right]=\operatorname{Cav}\left[U_{S}\right](p)
$$

Proof: By the two lemmas,

$$
\max _{(M, \pi)} \mathbb{E}\left[U_{S}\left(p^{\prime}\right)\right]=\max _{\mu \in \mathcal{D}(p)} \int_{[0,1]} U_{S}(x) d \mu(x)=\operatorname{Cav}\left[U_{S}\right](p)
$$

Corollary: It is always enough to assume that $M \subset[0,1]$ and signals=induced beliefs.

Corollary: the Cav [U]-theorem for S's optimal payoff

Theorem (Kamenica, Gentzkow, 2011)

$$
\max _{(M, \pi)} \mathbb{E}\left[U_{S}\left(p^{\prime}\right)\right]=\operatorname{Cav}\left[U_{S}\right](p)
$$

Proof: By the two lemmas,

$$
\max _{(M, \pi)} \mathbb{E}\left[U_{S}\left(p^{\prime}\right)\right]=\max _{\mu \in \mathcal{D}(p)} \int_{[0,1]} U_{S}(x) d \mu(x)=\operatorname{Cav}\left[U_{S}\right](p)
$$

Corollary: It is always enough to assume that $M \subset[0,1]$ and signals=induced beliefs.

Remark: We will see that $|M|=2$ is enough.

Back to the toy example

The court problem

- $p=0.25$ are guilty $(\theta=1)$, Prosecutor (P) observes θ
- Judge (J) has two actions: to acquit $(a=0)$ or to convict ($a=1$)
- $u_{P}(a, \theta)=a, \quad u_{J}(a, \theta)=\mathbb{1}_{a=\theta}$

Back to the toy example

The court problem

- $p=0.25$ are guilty $(\theta=1)$, Prosecutor (P) observes θ
- Judge (J) has two actions: to acquit $(a=0)$ or to convict $(a=1)$
- $u_{P}(a, \theta)=a, \quad u_{J}(a, \theta)=\mathbb{1}_{a=\theta}$
- Optimal action of $\mathrm{J}: \quad a^{*}\left(p^{\prime}\right)=\left\{\begin{array}{cc}\text { convict } & p^{\prime} \geq 0.5 \\ \text { acquit } & p^{\prime}<0.5 .\end{array}\right.$

Back to the toy example

The court problem

- $p=0.25$ are guilty $(\theta=1)$, Prosecutor (P) observes θ
- Judge (J) has two actions: to acquit $(a=0)$ or to convict $(a=1)$
- $u_{P}(a, \theta)=a, \quad u_{J}(a, \theta)=\mathbb{1}_{a=\theta}$
- Optimal action of $\mathrm{J}: \quad a^{*}\left(p^{\prime}\right)=\left\{\begin{array}{cc}\text { convict } & p^{\prime} \geq 0.5 \\ \text { acquit } & p^{\prime}<0.5 .\end{array}\right.$
- P's payoff as a function of p^{\prime} and its concavification:

Back to the toy example

The court problem

- $p=0.25$ are guilty $(\theta=1)$, Prosecutor (P) observes θ
- Judge (J) has two actions: to acquit $(a=0)$ or to convict $(a=1)$
- $u_{P}(a, \theta)=a, \quad u_{J}(a, \theta)=\mathbb{1}_{a=\theta}$
- P's payoff as a function of p^{\prime} and its concavification:

- $\operatorname{Cav}\left[U_{P}\right](0.25)=\frac{1}{2}=\frac{1}{2} U_{P}(0)+\frac{1}{2} U_{P}(0.5)=$ $\int U_{P}(x) d\left(\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{0.5}\right)$

Back to the toy example

- P's payoff as a function of p^{\prime} and its concavification:

- $\operatorname{Cav}\left[U_{P}\right](0.25)=\frac{1}{2}=\frac{1}{2} U_{P}(0)+\frac{1}{2} U_{P}(0.5)=$ $\int U_{P}(x) d\left(\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{0.5}\right)$
- Two signals $m \in\{" 0 ", " 0.5 "\}$ with distribution π :

$$
\begin{aligned}
& \pi_{\theta=1}=\left(\frac{0}{p} \cdot \frac{1}{2}, \frac{0.5}{p} \cdot \frac{1}{2}\right)=(0,1) \\
& \pi_{\theta=0}=\left(\frac{1-0}{1-p} \cdot \frac{1}{2}, \frac{1-0.5}{1-p} \cdot \frac{1}{2}\right)=\left(\frac{2}{3}, \frac{1}{3}\right)
\end{aligned}
$$

Why 2 signals are always enough:

- if $\operatorname{Cav}\left[U_{S}\right](p)=U_{S}(p)$, send a dummy signal
- if $\operatorname{Cav}\left[U_{S}\right](p)>U_{S}(p)$ we can "split" $p:$

Why 2 signals are always enough:

- if $\operatorname{Cav}\left[U_{S}\right](p)=U_{S}(p)$, send a dummy signal
- if $\operatorname{Cav}\left[U_{S}\right](p)>U_{S}(p)$ we can "split" p :

Why 2 signals are always enough:

- if $\operatorname{Cav}\left[U_{S}\right](p)=U_{S}(p)$, send a dummy signal
- if $\operatorname{Cav}\left[U_{S}\right](p)>U_{S}(p)$ we can "split" p :
find $x<p<y$ such that

$$
\operatorname{Cav}\left[U_{S}\right](p)=(1-\alpha) U_{S}(x)+\alpha U_{S}(y) \text { and } p=(1-\alpha) x+\alpha y
$$

Why 2 signals are always enough:

- if $\operatorname{Cav}\left[U_{S}\right](p)=U_{S}(p)$, send a dummy signal
- if $\operatorname{Cav}\left[U_{S}\right](p)>U_{S}(p)$ we can "split" p :
find $x<p<y$ such that

$$
\begin{aligned}
& \operatorname{Cav}\left[U_{S}\right](p)=(1-\alpha) U_{S}(x)+\alpha U_{S}(y) \text { and } p=(1-\alpha) x+\alpha y \\
& \Longleftrightarrow \operatorname{Cav}\left[U_{S}\right](p)=\int U_{S} d \mu, \text { where } \mu=(1-\alpha) \delta_{x}+\alpha \delta_{y} \in \mathcal{D}(p)
\end{aligned}
$$

Why 2 signals are always enough:

More abstract point of view:

- $\int U_{S} d \mu$ is a linear functional of μ on a convex set $\mathcal{D}(p)$

[^3]- Extrame points of $\mathcal{D}(p)$ are two-point distributions $(1-\alpha) \delta_{x}+\alpha \delta_{y}$

Why 2 signals are always enough:

More abstract point of view:

- $\int U_{S} d \mu$ is a linear functional of μ on a convex set $\mathcal{D}(p)$
- Bauer's maximum principle: a convex functional on a convex set attains its maximum at an extreme point.
$z \in K$ is an extreme point of a convex set K if z cannot be represented as a convex combination of two distinct points $w, w^{\prime} \in K$.
- Extreme points of $\mathcal{D}(p)$ are two-point distributions $(1-\alpha) \delta_{x}+\alpha \delta_{y}$

Why 2 signals are always enough:

More abstract point of view:

- $\int U_{S} d \mu$ is a linear functional of μ on a convex set $\mathcal{D}(p)$
- Bauer's maximum principle: a convex functional on a convex set attains its maximum at an extreme point.
$z \in K$ is an extreme point of a convex set K if z cannot be represented as a convex combination of two distinct points $w, w^{\prime} \in K$.
- Extreme points of $\mathcal{D}(p)$ are two-point distributions $(1-\alpha) \delta_{x}+\alpha \delta_{y}$ with $(1-\alpha) x+\alpha \cdot y=p$.

Extension to $|\Theta|>2$

All the results \& proofs are the same with the following modifications:

- p^{\prime} is a posterior distribution, $p^{\prime} \in \Delta(\Theta)$
- $\mu_{(M, \pi)} \in \Delta(\Delta(\Theta))$

The only change: need $|\Theta|$ signals

Application to repeated games

Reminder:

- Repeated zero-sum game $G_{T}(p)$ with incomplete information:
- a state $\theta \in\{0,1\}$ with prior p. P1 observes θ, P2 does not
- a zero-sum game A^{0} is played T times, the history is observable
- the payoff to P1 is $\mathbb{E} \frac{1}{T} \sum_{t=0}^{T} A_{i_{t}, j t}^{\theta}$
- P1 can guarantee $\operatorname{Cav}[u](p)$, where $u(p)=\operatorname{val}\left[(1-p) A^{0}+p \cdot A^{1}\right]$

Application to repeated games

Reminder:

- Repeated zero-sum game $G_{T}(p)$ with incomplete information:
- a state $\theta \in\{0,1\}$ with prior p. P1 observes $\theta, \mathrm{P} 2$ does not
- a zero-sum game A^{θ} is played T times, the history is observable. - the payoff to P1 is $\mathbb{E} \frac{1}{T} \sum_{t=0}^{T} A_{i t, j t}^{\theta}$
- P1 can guarantee $\operatorname{Cav}[u](p)$, where $u(p)=\operatorname{val}\left[(1-p) A^{0}+p \cdot A^{1}\right]$

Application to repeated games

Reminder:

- Repeated zero-sum game $G_{T}(p)$ with incomplete information:
- a state $\theta \in\{0,1\}$ with prior p. P1 observes $\theta, \mathrm{P} 2$ does not
- a zero-sum game A^{θ} is played T times, the history is observable.
- the payoff to P1 is $\mathbb{E}\left[\frac{1}{T} \sum_{t=0}^{T} A_{i_{t}, j_{t}}^{\theta}\right]$
- P1 can guarantee $\operatorname{Cav}[u](p)$, where $u(p)=\operatorname{val}\left[(1-p) A^{0}+p \cdot A^{1}\right.$

Application to repeated games

Reminder:

- Repeated zero-sum game $G_{T}(p)$ with incomplete information:
- a state $\theta \in\{0,1\}$ with prior p. P1 observes $\theta, \mathrm{P} 2$ does not
- a zero-sum game A^{θ} is played T times, the history is observable.
- the payoff to P1 is $\mathbb{E}\left[\frac{1}{T} \sum_{t=0}^{T} A_{i_{t}, j_{t}}^{\theta}\right]$
- P1 can guarantee $\operatorname{Cav}[u](p)$, where $u(p)=\operatorname{val}\left[(1-p) A^{0}+p \cdot A^{1}\right]$.

Application to repeated games

Reminder:

- Repeated zero-sum game $G_{T}(p)$ with incomplete information:
- a state $\theta \in\{0,1\}$ with prior p. P1 observes $\theta, \mathrm{P} 2$ does not
- a zero-sum game A^{θ} is played T times, the history is observable.
- the payoff to P1 is $\mathbb{E}\left[\frac{1}{T} \sum_{t=0}^{T} A_{i_{t}, j_{t}}^{\theta}\right]$
- P1 can guarantee $\operatorname{Cav}[u](p)$, where $u(p)=\operatorname{val}\left[(1-p) A^{0}+p \cdot A^{1}\right]$.

Question: How can P1 guarantee $\operatorname{Cav}[u](p)$ in a long run?

Application to repeated games

Reminder:

- Repeated zero-sum game $G_{T}(p)$ with incomplete information:
- a state $\theta \in\{0,1\}$ with prior p. P1 observes θ, P2 does not
- a zero-sum game A^{θ} is played T times, the history is observable.
- the payoff to P 1 is $\mathbb{E}\left[\frac{1}{T} \sum_{t=0}^{T} A_{i_{t}, j_{t}}^{\theta}\right]$
- P1 can guarantee $\operatorname{Cav}[u](p)$, where $u(p)=\operatorname{val}\left[(1-p) A^{0}+p \cdot A^{1}\right]$.

Question: How can P1 guarantee $\operatorname{Cav}[u](p)$ in a long run?

- If it was a persuasion problem, P1 could send a signal m to P 2 such that $\mathbb{E}\left[u\left(p^{\prime}(m)\right)\right]=\operatorname{Cav}[u](p)$
- Idea: P1 can use first-stage action as a signal to induce p^{\prime} and then play the optimal strategy from $\left(1-p^{\prime}\right) A^{0}+p^{\prime} \cdot A^{1}$ at all stages.
- P1 gets at least

Application to repeated games

Reminder:

- Repeated zero-sum game $G_{T}(p)$ with incomplete information:
- a state $\theta \in\{0,1\}$ with prior p. P1 observes θ, P2 does not
- a zero-sum game A^{θ} is played T times, the history is observable.
- the payoff to P 1 is $\mathbb{E}\left[\frac{1}{T} \sum_{t=0}^{T} A_{i_{t}, j_{t}}^{\theta}\right]$
- P1 can guarantee $\operatorname{Cav}[u](p)$, where $u(p)=\operatorname{val}\left[(1-p) A^{0}+p \cdot A^{1}\right]$.

Question: How can P1 guarantee $\operatorname{Cav}[u](p)$ in a long run?

- If it was a persuasion problem, P1 could send a signal m to P2 such that $\mathbb{E}\left[u\left(p^{\prime}(m)\right)\right]=\operatorname{Cav}[u](p)$
- Idea: P1 can use first-stage action as a signal to induce p^{\prime} and then play the optimal strategy from $\left(1-p^{\prime}\right) A^{0}+p^{\prime} \cdot A^{1}$ at all stages.

Application to repeated games

Reminder:

- Repeated zero-sum game $G_{T}(p)$ with incomplete information:
- a state $\theta \in\{0,1\}$ with prior p. P1 observes θ, P2 does not
- a zero-sum game A^{θ} is played T times, the history is observable.
- the payoff to P 1 is $\mathbb{E}\left[\frac{1}{T} \sum_{t=0}^{T} A_{i_{t}, j_{t}}^{\theta}\right]$
- P1 can guarantee $\operatorname{Cav}[u](p)$, where $u(p)=\operatorname{val}\left[(1-p) A^{0}+p \cdot A^{1}\right]$.

Question: How can P1 guarantee $\operatorname{Cav}[u](p)$ in a long run?

- If it was a persuasion problem, P1 could send a signal m to P2 such that $\mathbb{E}\left[u\left(p^{\prime}(m)\right)\right]=\operatorname{Cav}[u](p)$
- Idea: P1 can use first-stage action as a signal to induce p^{\prime} and then play the optimal strategy from $\left(1-p^{\prime}\right) A^{0}+p^{\prime} \cdot A^{1}$ at all stages.
- P1 gets at least

$$
\mathbb{E}\left[\frac{1}{T} \cdot(T-1) \cdot u\left(p^{\prime}\right)\right]=\operatorname{Cav}[u] \cdot\left(1-\frac{1}{T}\right) \rightarrow \operatorname{Cav}[u], \quad T \rightarrow \infty
$$

Action-recommendation approach: revelation principle

Idea of action-recommendation approach

Definition: (M, π) is an action-recommendation (AR) information structure $\Leftrightarrow M=A$ and $a^{*}(a)=a$ (it is in R's best interest to play the action matching the signal aka obedience constraint).

- Similar to belief-recommendation from Splitting lemma

Idea of action-recommendation approach

Definition: (M, π) is an action-recommendation (AR) information structure $\Leftrightarrow M=A$ and $a^{*}(a)=a$ (it is in R's best interest to play the action matching the signal aka obedience constraint).

- Similar to belief-recommendation from Splitting lemma

Revelation principle

For any (M, π) there exists $\operatorname{AR}(A, \psi)$ with the same S's payoff.

Idea of action-recommendation approach

Definition: (M, π) is an action-recommendation (AR) information structure $\Leftrightarrow M=A$ and $a^{*}(a)=a$ (it is in R's best interest to play the action matching the signal aka obedience constraint).

Revelation principle

For any (M, π) there exists $\operatorname{AR}(A, \psi)$ with the same S's payoff.
Proof: How (M, π) works:

$$
\theta \rightarrow\left(m \sim \pi_{\theta}\right) \rightarrow a^{*}(m) .
$$

Idea of action-recommendation approach

Definition: (M, π) is an action-recommendation (AR) information structure $\Leftrightarrow M=A$ and $a^{*}(a)=a$ (it is in R's best interest to play the action matching the signal aka obedience constraint).

Revelation principle

For any (M, π) there exists $\operatorname{AR}(A, \psi)$ with the same S's payoff.
Proof: How (M, π) works:

$$
\theta \rightarrow\left(m \sim \pi_{\theta}\right) \rightarrow a^{*}(m) .
$$

Denote ψ_{θ} the distribution of a^{*} conditional on θ.
(A, ψ) recommends the action a whenever R plays a for (M, π).

Idea of action-recommendation approach

Definition: (M, π) is an action-recommendation (AR) information structure $\Leftrightarrow M=A$ and $a^{*}(a)=a$ (it is in R's best interest to play the action matching the signal aka obedience constraint).

Revelation principle

For any (M, π) there exists $\operatorname{AR}(A, \psi)$ with the same S's payoff.
Proof: How (M, π) works:

$$
\theta \rightarrow\left(m \sim \pi_{\theta}\right) \rightarrow a^{*}(m) .
$$

Denote ψ_{θ} the distribution of a^{*} conditional on θ.
(A, ψ) recommends the action a whenever R plays a for (M, π).

- $a^{*}(a)=a$. Otherwise, R can improve his action for (M, π).

Idea of action-recommendation approach

Definition: (M, π) is an action-recommendation (AR) information structure $\Leftrightarrow M=A$ and $a^{*}(a)=a$ (it is in R's best interest to play the action matching the signal aka obedience constraint).

Revelation principle

For any (M, π) there exists $\operatorname{AR}(A, \psi)$ with the same S's payoff.
Proof: How (M, π) works:

$$
\theta \rightarrow\left(m \sim \pi_{\theta}\right) \rightarrow a^{*}(m) .
$$

Denote ψ_{θ} the distribution of a^{*} conditional on θ.
(A, ψ) recommends the action a whenever R plays a for (M, π).

- $a^{*}(a)=a$. Otherwise, R can improve his action for (M, π).
- the payoff is the same.

Idea of action-recommendation approach

Definition: (M, π) is an action-recommendation (AR) information structure $\Leftrightarrow M=A$ and $a^{*}(a)=a$ (it is in R's best interest to play the action matching the signal aka obedience constraint).

Revelation principle

For any (M, π) there exists $\operatorname{AR}(A, \psi)$ with the same S's payoff.
Proof: How (M, π) works:

$$
\theta \rightarrow\left(m \sim \pi_{\theta}\right) \rightarrow a^{*}(m) .
$$

Denote ψ_{θ} the distribution of a^{*} conditional on θ.
(A, ψ) recommends the action a whenever R plays a for (M, π).

- $a^{*}(a)=a$. Otherwise, R can improve his action for (M, π).
- the payoff is the same.

Corollary:

- Restriction to AR is w.l.o.g.

Idea of action-recommendation approach

Definition: (M, π) is an action-recommendation (AR) information structure $\Leftrightarrow M=A$ and $a^{*}(a)=a$ (it is in R's best interest to play the action matching the signal aka obedience constraint).

Revelation principle

For any (M, π) there exists $\operatorname{AR}(A, \psi)$ with the same S's payoff.
Proof: How (M, π) works:

$$
\theta \rightarrow\left(m \sim \pi_{\theta}\right) \rightarrow a^{*}(m) .
$$

Denote ψ_{θ} the distribution of a^{*} conditional on θ.
(A, ψ) recommends the action a whenever R plays a for (M, π).

- $a^{*}(a)=a$. Otherwise, R can improve his action for (M, π).
- the payoff is the same.

Corollary:

- Restriction to AR is w.l.o.g.
- $\min \{|\Theta|,|A|\}$ signals are enough for optimal persuasion.

Persuasion as a linear program

The obedience constraint for (A, ψ) :

$$
\mathbb{E}\left[u_{R}(a, \theta) \mid m=a\right] \geq \mathbb{E}\left[u_{R}(\tilde{a}, \theta) \mid m=a\right] \quad \text { for all distinct } a, \tilde{a} \in A \text {. }
$$

Persuasion as a linear program

The obedience constraint for (A, ψ) :

$$
\mathbb{E}\left[u_{R}(a, \theta) \mid m=a\right] \geq \mathbb{E}\left[u_{R}(\tilde{a}, \theta) \mid m=a\right] \quad \text { for all distinct } a, \tilde{a} \in A \text {. }
$$

Rewrite the I.h.s.:

$$
\text { I.h.s. }=\sum_{\theta \in \Theta} u_{R}(a, \theta) \cdot \mathbb{P}(\theta \mid m=a)=\sum_{\theta \in \Theta} u_{R}(a, \theta) \cdot \frac{p(\theta) \cdot \psi_{\theta}(a)}{\mathbb{P}(m=a)} .
$$

Persuasion as a linear program

The obedience constraint for (A, ψ) :

$$
\mathbb{E}\left[u_{R}(a, \theta) \mid m=a\right] \geq \mathbb{E}\left[u_{R}(\tilde{a}, \theta) \mid m=a\right] \quad \text { for all distinct } a, \tilde{a} \in A
$$

Rewrite the I.h.s. (r.h.s. is similar):

$$
\text { l.h.s. }=\sum_{\theta \in \Theta} u_{R}(a, \theta) \cdot \mathbb{P}(\theta \mid m=a)=\sum_{\theta \in \Theta} u_{R}(a, \theta) \cdot \frac{p(\theta) \cdot \psi_{\theta}(a)}{\mathbb{P}(m=a)}
$$

Persuasion as a linear program

The obedience constraint for (A, ψ) : Rewrite the I.h.s. (r.h.s. is similar):

$$
\text { l.h.s. }=\sum_{\theta \in \Theta} u_{R}(a, \theta) \cdot \mathbb{P}(\theta \mid m=a)=\sum_{\theta \in \Theta} u_{R}(a, \theta) \cdot \frac{p(\theta) \cdot \psi_{\theta}(a)}{\mathbb{P}(m=a)}
$$

Obedience \Longleftrightarrow

$$
\sum_{\theta \in \Theta}\left(u_{R}(a, \theta)-u_{R}(\tilde{a}, \theta)\right) \cdot p(\theta) \cdot \psi_{\theta}(a) \geq 0 \quad \forall a \neq \tilde{a} \in A
$$

Persuasion as a linear program

The obedience constraint for (A, ψ) :

$$
\sum_{\theta \in \Theta}\left(u_{R}(a, \theta)-u_{R}(\tilde{a}, \theta)\right) \cdot p(\theta) \cdot \psi_{\theta}(a) \geq 0 \quad \forall a \neq \tilde{a} \in A .
$$

Corollary: optimal action-recommendation $=$ LP:

$$
\begin{gathered}
\text { maximize } \sum_{\theta, a} u_{S}(a, \theta) \cdot p(\theta) \cdot \psi_{\theta}(a) \\
\text { over }\left(\psi_{\theta}(a)\right)_{\theta \in \Theta, a \in A} \text { such that } \\
\psi_{\theta}(a) \geq 0, \& \sum_{a} \psi_{\theta}(a)=1 \text { \& Obedience }
\end{gathered}
$$

Persuasion as a linear program

The obedience constraint for (A, ψ) :

$$
\sum_{\theta \in \Theta}\left(u_{R}(a, \theta)-u_{R}(\tilde{a}, \theta)\right) \cdot p(\theta) \cdot \psi_{\theta}(a) \geq 0 \quad \forall a \neq \tilde{a} \in A .
$$

Corollary: optimal action-recommendation $=$ LP:

$$
\begin{gathered}
\text { maximize } \sum_{\theta, a} u_{S}(a, \theta) \cdot p(\theta) \cdot \psi_{\theta}(a) \\
\operatorname{over}\left(\psi_{\theta}(a)\right)_{\theta \in \Theta, a \in A} \text { such that } \\
\psi_{\theta}(a) \geq 0, \quad \& \sum_{a} \psi_{\theta}(a)=1 \quad \& \quad \text { Obedience }
\end{gathered}
$$

- Easy to solve algorithmically + structural information about solution + duality
- AR extends to n receivers, who play a game G after receiving the signals. Joint distributions of $\left(a_{1}, \ldots, a_{n}\right)$ that can be generated

Persuasion as a linear program

The obedience constraint for (A, ψ) :

$$
\sum_{\theta \in \Theta}\left(u_{R}(a, \theta)-u_{R}(\tilde{a}, \theta)\right) \cdot p(\theta) \cdot \psi_{\theta}(a) \geq 0 \quad \forall a \neq \tilde{a} \in A .
$$

Corollary: optimal action-recommendation $=$ LP:

$$
\begin{gathered}
\text { maximize } \sum_{\theta, a} u_{S}(a, \theta) \cdot p(\theta) \cdot \psi_{\theta}(a) \\
\text { over }\left(\psi_{\theta}(a)\right)_{\theta \in \Theta, a \in A} \text { such that } \\
\psi_{\theta}(a) \geq 0, \quad \& \sum_{a} \psi_{\theta}(a)=1 \quad \& \text { Obedience }
\end{gathered}
$$

- Easy to solve algorithmically + structural information about solution + duality
- AR extends to n receivers, who play a game G after receiving the signals. Joint distributions of $\left(a_{1}, \ldots, a_{n}\right)$ that can be generated by $\mathrm{AR}=$ Bayesian Correlated Equilibria of G.

References

References:

- E. Kamenica (2019) Bayesian persuasion and information design Annual Review of Economics
A comprehensive survey of geometric approach, its extensions, and applications.
- D.Bergemann, S. Morris (2019) Information design: A unified perspective. Journal of Economic Literature Survey of action-recommendation approach, multi-receiver persuasion, and Bayesian correlated equilibrium

[^0]: - J knows the information structure π

[^1]: ${ }^{1}$ Ostrovsky, Schwarz (2010) Information disclosure and unraveling in matching markets. AER

[^2]: ${ }^{1}$ Ostrovsky, Schwarz (2010) Information disclosure and unraveling in matching markets. AER
 ${ }^{2}$ Romanyuk, Smolin (2019) Cream skimming and information design in matching markets. AEJ

[^3]: - Bauer's maximum principle: a convex functional on a convex set
 attains its maximum at an extreme point.
 $z \in K$ is an extreme point of a convex set K if z cannot be
 represented as a convex combination of two distinct points
 $w, w^{\prime} \in K$

