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Outline:

• The model of Bayesian persuasion

• Geometric approach to persuasion: Splitting lemma and

Cav [U]-theorem

• Action-recommendation approach: revelation-principle
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Information Design

How to induce the desired behavior of a decision-maker by changing the

information available to him?

• A young field. The origin:
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A toy example of Bayesian persuasion

A court problem

• 75% of defendants are innocent (θ = 0), 25% are guilty (θ = 1)

• Prosecutor (P) observes θ, Judge (J) does not

• J has two actions: to acquit (a = 0) or to convict (a = 1)

• P’s utility uP(a, θ) = a (always wants to convict)

• J’s utility uJ(a, θ) = 1a=θ (cares about justice)
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4 )

• Send a noisy signal ∈ {innocent,maybe guilty} with some

θ-dependent probabilities π ⇒ the optimal payoff uP = 1
2 .
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• 75% of defendants are innocent (θ = 0), 25% are guilty (θ = 1)

• Prosecutor (P) observes θ, Judge (J) does not

• J has two actions: to acquit (a = 0) or to convict (a = 1)
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4 )

• Send a noisy signal ∈ {innocent,maybe guilty} with some

θ-dependent probabilities π ⇒ the optimal payoff uP = 1
2 .

Remark: Communication is possible because:
• Non-zero-sum: sometimes P and J want the same (convict guilty).

• J knows the information structure π.

• P announces π before observing θ and cannot change it after (P has

the commitment power). 5



Some other interpretations/applications:

• Employers and universities: θ =quality of a student (good/bad),

U wants a good placement for any student, E wants good

candidates.

• Explains coarse grading in schools, universities, and industries:1

“When recruiters call me up and ask me for the three best people, I tell

them, “No! I will give you the names of the six best.”

Robert J. Gordon, Econ. dept., Northwestern

1Ostrovsky, Schwarz (2010) Information disclosure and unraveling in matching

markets. AER
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• Police & drivers: θ = whether the region is patrolled (yes/no).

P wants D to obey the speed limit, D wants to obey only if the

region is patrolled.
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Bayesian persuasion: the model

The model

• A random state θ ∈ Θ, θ ∼ p ∈ ∆(Θ)

• Sender (S)

• selects an information structure (M, π : Θ→ ∆(M))

• observes θ and sends a message (signal) m ∈ M with distribution πθ

• Receiver (R) knows (M, π) and takes an action a ∈ A after getting m

• Payoffs uR(a, θ) and uS(a, θ)
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Geometric approach to persuasion:
splitting lemma and Cav [U ]-theorem
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Persuasion as inducing posterior beliefs

Simplifying assumption: binary state θ ∈ {0, 1}.
Prior p = P(θ = 1), posterior p′ = p′(m) = P(θ = 1 | m).
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]
=
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[0,1]

US(x) dµ(M,π)(x).
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The splitting lemma

D(p) ⊂

{
µ ∈ ∆([0, 1]) :

∫
[0,1]

x dµ(x) = p

}
Why?
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Proof for discrete µ via belief-recommendation:

• µ : point xk has mass µk ,
∑
µk = 1,

∑
xk · µk = p.

• define

πθ=1: point xk has mass xk
p µk

πθ=0: point xk has mass 1−xk
1−p µk

• sample m ∼ πθ conditional on θ
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1−p µk + p xk

p µk = µk .

• p′ = P(θ = 1 | m = xk) = P(m=xk |θ=1)P(θ=1)
P(m=xk ) = xk

p µk ·p · 1
µk

= xk = m
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Concavification as martingale-optimization

Concavification of continuous f on [0, 1] is

Cav [f ](x) = min {ϕ(x) : ϕ is concave and f ( · ) ≤ ϕ( · )}
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Back to the toy example

The court problem

• p = 0.25 are guilty (θ = 1), Prosecutor (P) observes θ

• Judge (J) has two actions: to acquit (a = 0) or to convict (a = 1)

• uP(a, θ) = a, uJ(a, θ) = 1a=θ
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• Cav [UP ](0.25) = 1
2 = 1

2UP(0) + 1
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UP(x) d
(

1
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• Two signals m ∈ {”0”, ”0.5”} with distribution π:
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(

0
p ·

1
2 ,
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1
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1
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2
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Why 2 signals are always enough:

• if Cav [US ](p) = US(p), send a dummy signal

• if Cav [US ](p) > US(p) we can “split” p:
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Why 2 signals are always enough:

More abstract point of view:

•
∫
US dµ is a linear functional of µ on a convex set D(p)

• Bauer’s maximum principle: a convex functional on a convex set

attains its maximum at an extreme point.

z ∈ K is an extreme point of a convex set K if z cannot be

represented as a convex combination of two distinct points

w ,w ′ ∈ K .

• Extreme points of D(p) are two-point distributions (1− α)δx + αδy
with (1− α)x + α · y = p.
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Extension to |Θ| > 2

All the results & proofs are the same with the following modifications:

• p′ is a posterior distribution, p′ ∈ ∆(Θ)

• µ(M,π) ∈ ∆(∆(Θ))

The only change: need |Θ| signals

15



Application to repeated games

Reminder:

• Repeated zero-sum game GT (p) with incomplete information:

• a state θ ∈ {0, 1} with prior p. P1 observes θ, P2 does not

• a zero-sum game Aθ is played T times, the history is observable.

• the payoff to P1 is E
[

1
T

∑T
t=0 A

θ
it ,jt

]
• P1 can guarantee Cav [u](p), where u(p) = val

[
(1− p)A0 + p · A1

]
.
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Action-recommendation approach:
revelation principle
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Idea of action-recommendation approach

Definition: (M, π) is an action-recommendation (AR) information

structure ⇔ M = A and a∗(a) = a (it is in R’s best interest to play the

action matching the signal aka obedience constraint).

• Similar to belief-recommendation from Splitting lemma
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Persuasion as a linear program

The obedience constraint for (A, ψ):

E
[
uR(a, θ) | m = a

]
≥ E

[
uR(ã, θ) | m = a

]
for all distinct a, ã ∈ A.
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θ∈Θ

(
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)
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