Lecture 2: Bayesian persuasion

Fedor Sandomirskiy

May 4, 2020

Technion, Haifa & Higher School of Economics, St.Petersburg e-mail: fedor.sandomirskiy@gmail.com homepage: https://www.fedors.info/

- The model of Bayesian persuasion
- Geometric approach to persuasion: Splitting lemma and Cav [*U*]-theorem
- Action-recommendation approach: revelation-principle

The model of Bayesian persuasion

Information Design

How to induce the desired behavior of a decision-maker by changing the information available to him?

• A young field. The origin:

Bayesian persuasion

E Kamenica, M Gentzkow - American Economic Review, 2011 - aeaweb.org

... work that identifies which sequences of distributions of posteriors are consistent with **Bayesian** rationality ... we need only ask how $\text{Et} \square v(\mu)$ varies over the space of **Bayes**-plausible distributions ... COROLLARY 1: sender benefits from **persuasion** if and only if there exists a **Bayes** ...

☆ 50 Cited by 1295 Related articles All 31 versions ≫

Information Design

How to induce the desired behavior of a decision-maker by changing the information available to him?

• A young field. The origin:

Bayesian persuasion

E Kamenica, M Gentzkow - American Economic Review, 2011 - aeaweb.org

... work that identifies which sequences of distributions of posteriors are consistent with **Bayesian** rationality ... we need only ask how $\text{Et} \square v$ (μ) varies over the space of **Bayes**-plausible distributions ... COROLLARY 1: sender benefits from **persuasion** if and only if there exists a **Bayes** ...

☆ 55 Cited by 1295 Related articles All 31 versions ≫

- Bayesian persuasion = the simplest model of Information Design: 2 agents:
 - Receiver: a decision maker who has no access to payoff-relevant information
 - Sender: has information, cares about the action of Receiver, can send him a signal

Information Design

How to induce the desired behavior of a decision-maker by changing the information available to him?

• A young field. The origin:

Bayesian persuasion

E Kamenica, M Gentzkow - American Economic Review, 2011 - aeaweb.org

... work that identifies which sequences of distributions of posteriors are consistent with **Bayesian** rationality ... we need only ask how $\text{Er} \square v (\mu)$ varies over the space of **Bayes**-plausible distributions ... COROLLARY 1: sender benefits from **persuasion** if and only if there exists a **Bayes** ...

☆ 55 Cited by 1295 Related articles All 31 versions ≫

- Bayesian persuasion = the simplest model of Information Design: 2 agents:
 - Receiver: a decision maker who has no access to payoff-relevant information
 - Sender: has information, cares about the action of Receiver, can send him a signal
- Bayesian persuasion \simeq Information Design

Information Design

How to induce the desired behavior of a decision-maker by changing the information available to him?

• A young field. The origin:

Bayesian persuasion

E Kamenica, M Gentzkow - American Economic Review, 2011 - aeaweb.org

... work that identifies which sequences of distributions of posteriors are consistent with **Bayesian** rationality ... we need only ask how $\text{Er} \square v (\mu)$ varies over the space of **Bayes**-plausible distributions ... COROLLARY 1: sender benefits from **persuasion** if and only if there exists a **Bayes** ...

☆ 55 Cited by 1295 Related articles All 31 versions ≫

- Bayesian persuasion = the simplest model of Information Design: 2 agents:
 - Receiver: a decision maker who has no access to payoff-relevant information
 - Sender: has information, cares about the action of Receiver, can send him a signal
- Bayesian persuasion \simeq Information Design
- Popularity: simplicity, explicit solutions, many applications

Information Design

How to induce the desired behavior of a decision-maker by changing the information available to him?

• A young field. The origin:

Bayesian persuasion

<u>E Kamenica</u>, <u>M Gentzkow</u> - American Economic Review, 2011 - aeaweb.org When is it possible for one person to persuade another to change her action? We consider a symmetric information model where a sender chooses a signal to reveal to a receiver, who then takes a noncontractible action that affects the welfare of both players. We derive ...

☆ 55 Cited by 949 Related articles All 38 versions

- Bayesian persuasion = the simplest model of Information Design: 2 agents:
 - Receiver: a decision maker who has no access to payoff-relevant information
 - Sender: has information, cares about the action of Receiver, can send him a signal
- Bayesian persuasion \simeq Information Design
- Popularity: simplicity, explicit solutions, many applications

A court problem

- 75% of defendants are innocent ($\theta = 0$), 25% are guilty ($\theta = 1$)
- Prosecutor (P) observes θ , Judge (J) does not
- J has two actions: to acquit (a = 0) or to convict (a = 1)
- P's utility $u_P(a, \theta) = a$ (always wants to convict)
- J's utility $u_J(a, \theta) = \mathbb{1}_{a=\theta}$ (cares about justice)

A court problem

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes θ , Judge (J) does not
- J has two actions: to acquit (a = 0) or to convict (a = 1)
- P's utility $u_P(a, \theta) = a$ (always wants to convict)
- J's utility $u_J(a, \theta) = \mathbb{1}_{a=\theta}$ (cares about justice)

- Reveal no information $\implies (a^* = 0) \implies (u_P = 0)$
- Reveal $\theta \Longrightarrow (a^* = \theta) \Longrightarrow (u_P = \frac{1}{4})$
- Send a noisy signal ∈ {innocent, maybe guilty} with some θ-dependent probabilities π ⇒ the optimal payoff u_P = ¹/₂.

A court problem

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes θ , Judge (J) does not
- J has two actions: to acquit (a = 0) or to convict (a = 1)
- P's utility $u_P(a, \theta) = a$ (always wants to convict)
- J's utility $u_J(a, \theta) = \mathbb{1}_{a=\theta}$ (cares about justice)

- Reveal no information $\implies (a^* = 0) \implies (u_P = 0)$
- Reveal $\theta \Longrightarrow (a^* = \theta) \Longrightarrow (u_P = \frac{1}{4})$
- Send a noisy signal ∈ {innocent, maybe guilty} with some θ-dependent probabilities π ⇒ the optimal payoff u_P = ¹/₂.

A court problem

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes θ , Judge (J) does not
- J has two actions: to acquit (a = 0) or to convict (a = 1)
- P's utility $u_P(a, \theta) = a$ (always wants to convict)
- J's utility $u_J(a, \theta) = \mathbb{1}_{a=\theta}$ (cares about justice)

- Reveal no information $\implies (a^* = 0) \implies (u_P = 0)$
- Reveal $\theta \Longrightarrow (a^* = \theta) \Longrightarrow (u_P = \frac{1}{4})$
- Send a noisy signal ∈ {innocent, maybe guilty} with some θ-dependent probabilities π ⇒ the optimal payoff u_P = ¹/₂.

A court problem

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes θ , Judge (J) does not
- J has two actions: to acquit (a = 0) or to convict (a = 1)
- P's utility $u_P(a, \theta) = a$ (always wants to convict)
- J's utility $u_J(a, \theta) = \mathbb{1}_{a=\theta}$ (cares about justice)

- Reveal no information $\implies (a^* = 0) \implies (u_P = 0)$
- Reveal $\theta \Longrightarrow (a^* = \theta) \Longrightarrow (u_P = \frac{1}{4})$
- Send a noisy signal ∈ {innocent, maybe guilty} with some θ-dependent probabilities π ⇒ the optimal payoff u_P = ¹/₂.

A court problem

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes θ , Judge (J) does not
- J has two actions: to acquit (a = 0) or to convict (a = 1)
- P's utility $u_P(a, \theta) = a$ (always wants to convict)
- J's utility $u_J(a, \theta) = \mathbb{1}_{a=\theta}$ (cares about justice)

- Reveal no information \Longrightarrow $(a^* = 0) \Longrightarrow (u_P = 0)$
- Reveal $\theta \Longrightarrow (a^* = \theta) \Longrightarrow (u_P = \frac{1}{4})$
- Send a noisy signal ∈ {innocent, maybe guilty} with some θ-dependent probabilities π ⇒ the optimal payoff u_P = ¹/₂.
 Remark: Communication is possible because:
 - Non-zero-sum: sometimes P and J want the same (convict guilty).
 - J knows the information structure π .

A court problem

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes θ , Judge (J) does not
- J has two actions: to acquit (a = 0) or to convict (a = 1)
- P's utility $u_P(a, \theta) = a$ (always wants to convict)
- J's utility $u_J(a, \theta) = \mathbb{1}_{a=\theta}$ (cares about justice)

- Reveal no information \Longrightarrow $(a^* = 0) \Longrightarrow (u_P = 0)$
- Reveal $\theta \Longrightarrow (a^* = \theta) \Longrightarrow (u_P = \frac{1}{4})$
- Send a noisy signal ∈ {innocent, maybe guilty} with some θ-dependent probabilities π ⇒ the optimal payoff u_P = ¹/₂.
 Remark: Communication is possible because:
 - Non-zero-sum: sometimes P and J want the same (convict guilty).
 - J knows the information structure π .

A court problem

- 75% of defendants are innocent (heta=0), 25% are guilty (heta=1)
- Prosecutor (P) observes θ , Judge (J) does not
- J has two actions: to acquit (a = 0) or to convict (a = 1)
- P's utility $u_P(a, \theta) = a$ (always wants to convict)
- J's utility $u_J(a, \theta) = \mathbb{1}_{a=\theta}$ (cares about justice)

- Reveal no information $\implies (a^* = 0) \implies (u_P = 0)$
- Reveal $\theta \Longrightarrow (a^* = \theta) \Longrightarrow (u_P = \frac{1}{4})$
- Send a noisy signal ∈ {innocent, maybe guilty} with some θ-dependent probabilities π ⇒ the optimal payoff u_P = ¹/₂.
 Remark: Communication is possible because:
 - Non-zero-sum: sometimes P and J want the same (convict guilty).
 - J knows the information structure π .
 - P announces π before observing θ and cannot change it after (P has the commitment power).

- Employers and universities: θ =quality of a student (good/bad), U wants a good placement for any student, E wants good candidates.
 - Explains coarse grading in schools, universities, and industries:¹ "When recruiters call me up and ask me for the three best people, I tell them, "No! I will give you the names of the six best."

Robert J. Gordon, Econ. dept., Northwestern

¹Ostrovsky, Schwarz (2010) Information disclosure and unraveling in matching markets. AER

Some other interpretations/applications:

- Employers and universities: θ =quality of a student (good/bad), U wants a good placement for any student, E wants good candidates.
 - Explains coarse grading in schools, universities, and industries:¹ "When recruiters call me up and ask me for the three best people, I tell them, "No! I will give you the names of the six best."

Robert J. Gordon, Econ. dept., Northwestern

- Buyers and Sellers : θ = quality of the product (good/bad), S wants to sell any product, B wants a good product.
 - $\bullet~\mbox{Explains why you cannot order the apts by rating or price on $$AirBNB^2$$}$

 $^1\mbox{Ostrovsky},$ Schwarz (2010) Information disclosure and unraveling in matching markets. AER

 $^2 {\rm Romanyuk}, \, {\rm Smolin}$ (2019) Cream skimming and information design in matching markets. AEJ

Some other interpretations/applications:

- Employers and universities: θ =quality of a student (good/bad), U wants a good placement for any student, E wants good candidates.
 - Explains coarse grading in schools, universities, and industries:¹ "When recruiters call me up and ask me for the three best people, I tell them, "No! I will give you the names of the six best."

Robert J. Gordon, Econ. dept., Northwestern

- Buyers and Sellers : θ = quality of the product (good/bad), S wants to sell any product, B wants a good product.
 - $\bullet~\mbox{Explains why you cannot order the apts by rating or price on $$AirBNB^2$$}$
- Police & drivers: θ = whether the region is patrolled (yes/no).
 P wants D to obey the speed limit, D wants to obey only if the region is patrolled.

 $^{1}\mbox{Ostrovsky},$ Schwarz (2010) Information disclosure and unraveling in matching markets. AER

 $^2 {\rm Romanyuk}, \, {\rm Smolin}$ (2019) Cream skimming and information design in matching markets. AEJ

The model

- A random state $\theta \in \Theta$, $\theta \sim p \in \Delta(\Theta)$
- Sender (S)
 - selects an information structure $(M, \ \pi: \Theta \to \Delta(M))$
 - observes heta and sends a message (signal) $m \in M$ with distribution $\pi_{ heta}$
- Receiver (R) knows (M, π) and takes an action $a \in A$ after getting m
- Payoffs $u_R(a, \theta)$ and $u_S(a, \theta)$

Bayesian persuasion: the model

The model

- A random state $heta \in \Theta$, $heta \sim p \in \Delta(\Theta)$
- Sender (S)
 - selects an information structure $(M, \pi: \Theta \rightarrow \Delta(M))$
 - observes heta and sends a message (signal) $m \in M$ with distribution $\pi_{ heta}$
- Receiver (R) knows (M, π) and takes an action $a \in A$ after getting m
- Payoffs $u_R(a, \theta)$ and $u_S(a, \theta)$

R's problem: play the optimal reply to (M, π) and received signal m

$$a^*(m) \in \arg \max_{a \in A} \mathbb{E}[u_R(a, \theta) \mid m].$$

Standard assumption: ties are broken in favor of S.

Bayesian persuasion: the model

The model

- A random state $\theta \in \Theta$, $\theta \sim p \in \Delta(\Theta)$
- Sender (S)
 - selects an information structure (M, $\pi: \Theta \rightarrow \Delta(M)$)
 - observes heta and sends a message (signal) $m \in M$ with distribution $\pi_{ heta}$
- Receiver (R) knows (M,π) and takes an action $a\in A$ after getting m
- Payoffs $u_R(a, \theta)$ and $u_S(a, \theta)$

R's problem: play the optimal reply to (M, π) and received signal m

$$a^*(m) \in \arg \max_{a \in A} \mathbb{E}[u_R(a, \theta) \mid m].$$

<u>Standard assumption</u>: ties are broken in favor of S. **S's problem:** maximize

 $\mathbb{E}[u_{S}(a^{*}(m), \theta)]$ over information structures (M, π) .

Bayesian persuasion: the model

The model

- A random state $\theta \in \Theta$, $\theta \sim p \in \Delta(\Theta)$
- Sender (S)
 - selects an information structure (M, $\pi: \Theta \rightarrow \Delta(M)$)
 - observes heta and sends a message (signal) $m \in M$ with distribution $\pi_{ heta}$
- Receiver (R) knows (M,π) and takes an action $a \in A$ after getting m
- Payoffs $u_R(a, \theta)$ and $u_S(a, \theta)$

R's problem: play the optimal reply to (M, π) and received signal m

$$a^*(m) \in \arg \max_{a \in A} \mathbb{E}[u_R(a, \theta) \mid m].$$

<u>Standard assumption</u>: ties are broken in favor of S. **S's problem:** maximize

 $\mathbb{E}[u_{S}(a^{*}(m), \theta)]$ over information structures (M, π) .

Remark: $a^*(m)$ is computed \Rightarrow 1-agent problem

Geometric approach to persuasion: splitting lemma and Cav [U]-theorem

Simplifying assumption: binary state $\theta \in \{0, 1\}$. Prior $p = \mathbb{P}(\theta = 1)$, posterior $p' = p'(m) = \mathbb{P}(\theta = 1 \mid m)$. **Simplifying assumption:** binary state $\theta \in \{0, 1\}$. Prior $p = \mathbb{P}(\theta = 1)$, posterior $p' = p'(m) = \mathbb{P}(\theta = 1 \mid m)$.

R's problem again: maximize over $a \in A$

$$\mathbb{E}[u_R(a,\theta) \mid m] = \mathbb{E}[\mathbb{1}_{\{\theta=0\}}u_R(a,0) + \mathbb{1}_{\{\theta=1\}}u_R(a,1) \mid m] =$$
$$= (1-p')u_R(a,0) + p' \cdot u_R(a,1) \implies a^* = a^*(p').$$

Simplifying assumption: binary state $\theta \in \{0, 1\}$. Prior $p = \mathbb{P}(\theta = 1)$, posterior $p' = p'(m) = \mathbb{P}(\theta = 1 \mid m)$.

R's problem again: maximize over $a \in A$

$$\mathbb{E}[u_{R}(a,\theta) \mid m] = \mathbb{E}[\mathbb{1}_{\{\theta=0\}}u_{R}(a,0) + \mathbb{1}_{\{\theta=1\}}u_{R}(a,1) \mid m] =$$

$$= (1-p')u_{R}(a,0) + p' \cdot u_{R}(a,1) \implies a^{*} = a^{*}(p').$$
S's payoff= $\mathbb{E}[u_{S}(a^{*}(p'),\theta)] = \mathbb{E}[\mathbb{E}[u_{S}(a^{*}(p'),\theta) \mid m]] =$

$$= \mathbb{E}[\mathbb{E}[\mathbb{1}_{\{\theta=0\}}u_{S}(a^{*}(p'),0) + \mathbb{1}_{\{\theta=1\}}u_{S}(a^{*}(p'),1) \mid m]] =$$

$$= \mathbb{E}[(1-p')u_{S}(a^{*}(p'),0) + p' \cdot u_{S}(a^{*}(p'),1)] = \mathbb{E}[U_{S}(p')]$$

S's payoff=
$$\mathbb{E}[u_{S}(a^{*}(p'), \theta)] = \mathbb{E}[\mathbb{E}[u_{S}(a^{*}(p'), \theta) | m]] =$$

$$= \mathbb{E}[\mathbb{E}[\mathbb{1}_{\{\theta=0\}}u_{S}(a^{*}(p'), 0) + \mathbb{1}_{\{\theta=1\}}u_{S}(a^{*}(p'), 1) | m]] =$$

$$= \mathbb{E}[(1 - p')u_{S}(a^{*}(p'), 0) + p' \cdot u_{S}(a^{*}(p'), 1)] = \mathbb{E}[U_{S}(p')]$$
Notation: $\mu_{(M,\pi)} \in \Delta([0, 1])$ is the distribution of $p'(m)$ induced by (M, π) .

Persuasion as inducing posterior beliefs

S's payoff=
$$\mathbb{E}[u_{S}(a^{*}(p'), \theta)] = \mathbb{E}\left[\mathbb{E}[u_{S}(a^{*}(p'), \theta) \mid m]\right] =$$

$$= \mathbb{E}\left[\mathbb{E}[\mathbb{1}_{\{\theta=0\}}u_{S}(a^{*}(p'), 0) + \mathbb{1}_{\{\theta=1\}}u_{S}(a^{*}(p'), 1) \mid m]\right] =$$

$$= \mathbb{E}\left[(1 - p')u_{S}(a^{*}(p'), 0) + p' \cdot u_{S}(a^{*}(p'), 1)\right] = \mathbb{E}\left[U_{S}(p')\right]$$
Notation: $\mu_{(M,\pi)} \in \Delta([0, 1])$ is the distribution of $p'(m)$ induced

by (M, π) .

Conclusion

• S cares only about $\mu_{(M,\pi)}$:

$$\mathbb{E}\Big[U_S(p')\Big] = \int_{[0,1]} U_S(x) \, d\mu_{(M,\pi)}(x).$$

If $\mu_{(M,\pi)} = \mu_{(\tilde{M},\tilde{\pi})}$, (M,π) and $(\tilde{M},\tilde{\pi})$ are payoff-equivalent.

Persuasion as inducing posterior beliefs

S's payoff=
$$\mathbb{E}[u_{S}(a^{*}(p'),\theta)] = \mathbb{E}\left[\mathbb{E}[u_{S}(a^{*}(p'),\theta) \mid m]\right] =$$

$$= \mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{\{\theta=0\}}u_{S}(a^{*}(p'),0) + \mathbb{1}_{\{\theta=1\}}u_{S}(a^{*}(p'),1) \mid m]\right] =$$

$$= \mathbb{E}\left[(1-p')u_{S}(a^{*}(p'),0) + p' \cdot u_{S}(a^{*}(p'),1)\right] = \mathbb{E}\left[U_{S}(p')\right]$$
Notation: $u_{M,n} \in \Delta([0,1])$ is the distribution of $p'(m)$ induced

Notation: $\mu_{(M,\pi)} \in \Delta([0,1])$ is the distribution of p'(m) induced by (M,π) .

Conclusion

• S cares only about $\mu_{(M,\pi)}$:

$$\mathbb{E}\Big[U_{\mathcal{S}}(p')\Big]=\int_{[0,1]}U_{\mathcal{S}}(x)\,d\mu_{(M,\pi)}(x).$$

If $\mu_{(M,\pi)} = \mu_{(\tilde{M},\tilde{\pi})}$, (M,π) and $(\tilde{M},\tilde{\pi})$ are payoff-equivalent.

• Instead of maximizing over (M, π) , it is enough to maximize over

$$\mathcal{D}(p) = \Big\{ \mu \in \Delta[0,1] \, : \, \mu = \mu_{(M,\pi)} \text{ for some } (M,\pi) \text{ with prior } p \Big\}.$$

$$\mathcal{D}(p) \subset \left\{ \mu \in \Delta([0,1]) \, : \, \int_{[0,1]} x \, d\mu(x) = p
ight\}$$

Why?

$$\mathcal{D}(p) \subset \left\{ \mu \in \Delta([0,1]) \, : \, \int_{[0,1]} x \, d\mu(x) = p
ight\}$$

Why? By the martingale property $\mathbb{E}[p'] = p$ (aka Bayesian plausibility).

$$\mathcal{D}(p) \subset \left\{ \mu \in \Delta([0,1]) \, : \, \int_{[0,1]} x \, d\mu(x) = p
ight\}$$

Why? By the martingale property $\mathbb{E}[p'] = p$ (aka Bayesian plausibility).

The splitting lemma (Aumann, Maschler (1960ies) / folk) These two sets are equal: for any $\mu \in \Delta([0,1])$ with $\int x d\mu(x) = p$ there exists (M, π) s.t. $p'(m) \sim \mu$. One can take $M = \operatorname{supp} \mu \subset [0,1]$.

The splitting lemma

The splitting lemma (Aumann, Maschler (1960ies) / folk) These two sets are equal: for any $\mu \in \Delta([0,1])$ with $\int x d\mu(x) = p$ there exists (M, π) s.t. $p'(m) \sim \mu$. One can take $M = \operatorname{supp} \mu \subset [0,1]$.

Proof for discrete μ via <u>belief-recommendation</u>:

- μ : point x_k has mass μ_k , $\sum \mu_k = 1$, $\sum x_k \cdot \mu_k = p$.
- define

 $\pi_{\theta=1}$: point x_k has mass $\frac{x_k}{p}\mu_k$ $\pi_{\theta=0}$: point x_k has mass $\frac{1-x_k}{1-p}\mu_k$

- sample $m \sim \pi_{ heta}$ conditional on heta
- unconditionally $m \sim \mu$: $\mathbb{P}(m = x_k) = (1 p) \frac{1 x_k}{1 p} \mu_k + p \frac{x_k}{p} \mu_k = \mu_k$.

•
$$p' = \mathbb{P}(\theta = 1 \mid m = x_k) = \frac{\mathbb{P}(m = x_k \mid \theta = 1)\mathbb{P}(\theta = 1)}{\mathbb{P}(m = x_k)} = \frac{x_k}{p}\mu_k \cdot p \cdot \frac{1}{\mu_k} = x_k = m$$

The splitting lemma

The splitting lemma (Aumann, Maschler (1960ies) / folk) These two sets are equal: for any $\mu \in \Delta([0,1])$ with $\int x d\mu(x) = p$ there exists (M, π) s.t. $p'(m) \sim \mu$. One can take $M = \operatorname{supp} \mu \subset [0,1]$.

Proof for discrete μ via <u>belief-recommendation</u>:

- μ : point x_k has mass μ_k , $\sum \mu_k = 1$, $\sum x_k \cdot \mu_k = p$.
- define

 $\pi_{\theta=1}$: point x_k has mass $\frac{x_k}{p}\mu_k$ $\pi_{\theta=0}$: point x_k has mass $\frac{1-x_k}{1-p}\mu_k$

• sample $m \sim \pi_{\theta}$ conditional on θ

• unconditionally $m \sim \mu$: $\mathbb{P}(m = x_k) = (1 - p) \frac{1 - x_k}{1 - p} \mu_k + p \frac{x_k}{p} \mu_k = \mu_k$.

•
$$p' = \mathbb{P}(\theta = 1 \mid m = x_k) = \frac{\mathbb{P}(m = x_k \mid \theta = 1)\mathbb{P}(\theta = 1)}{\mathbb{P}(m = x_k)} = \frac{x_k}{p}\mu_k \cdot p \cdot \frac{1}{\mu_k} = x_k = m$$

The splitting lemma

The splitting lemma (Aumann, Maschler (1960ies) / folk) These two sets are equal: for any $\mu \in \Delta([0,1])$ with $\int x d\mu(x) = p$ there exists (M, π) s.t. $p'(m) \sim \mu$. One can take $M = \operatorname{supp} \mu \subset [0,1]$.

Proof for discrete μ via <u>belief-recommendation</u>:

- μ : point x_k has mass μ_k , $\sum \mu_k = 1$, $\sum x_k \cdot \mu_k = p$.
- define

 $\pi_{\theta=1}$: point x_k has mass $\frac{x_k}{p}\mu_k$ $\pi_{\theta=0}$: point x_k has mass $\frac{1-x_k}{1-p}\mu_k$

- sample $m \sim \pi_{\theta}$ conditional on θ
- unconditionally $m \sim \mu$: $\mathbb{P}(m = x_k) = (1 p) \frac{1 x_k}{1 p} \mu_k + p \frac{x_k}{p} \mu_k = \mu_k$.

•
$$p' = \mathbb{P}(\theta = 1 \mid m = x_k) = \frac{\mathbb{P}(m = x_k \mid \theta = 1)\mathbb{P}(\theta = 1)}{\mathbb{P}(m = x_k)} = \frac{x_k}{p}\mu_k \cdot p \cdot \frac{1}{\mu_k} = x_k = m$$
The splitting lemma

The splitting lemma (Aumann, Maschler (1960ies) / folk) These two sets are equal: for any $\mu \in \Delta([0,1])$ with $\int x d\mu(x) = p$ there exists (M, π) s.t. $p'(m) \sim \mu$. One can take $M = \operatorname{supp} \mu \subset [0,1]$.

Proof for discrete μ via <u>belief-recommendation</u>:

- μ : point x_k has mass μ_k , $\sum \mu_k = 1$, $\sum x_k \cdot \mu_k = p$.
- define

 $\pi_{\theta=1}$: point x_k has mass $\frac{x_k}{p}\mu_k$ $\pi_{\theta=0}$: point x_k has mass $\frac{1-x_k}{1-p}\mu_k$

- sample $m \sim \pi_{\theta}$ conditional on θ
- unconditionally $m \sim \mu$: $\mathbb{P}(m = x_k) = (1 p) \frac{1 x_k}{1 p} \mu_k + p \frac{x_k}{p} \mu_k = \mu_k$.

• $p' = \mathbb{P}(\theta = 1 \mid m = x_k) = \frac{\mathbb{P}(m = x_k \mid \theta = 1)\mathbb{P}(\theta = 1)}{\mathbb{P}(m = x_k)} = \frac{x_k}{p}\mu_k \cdot p \cdot \frac{1}{\mu_k} = x_k = m$

The splitting lemma

The splitting lemma (Aumann, Maschler (1960ies) / folk) These two sets are equal: for any $\mu \in \Delta([0,1])$ with $\int x d\mu(x) = p$ there exists (M, π) s.t. $p'(m) \sim \mu$. One can take $M = \operatorname{supp} \mu \subset [0,1]$.

Proof for discrete μ via <u>belief-recommendation</u>:

- μ : point x_k has mass μ_k , $\sum \mu_k = 1$, $\sum x_k \cdot \mu_k = p$.
- define

 $\pi_{\theta=1}$: point x_k has mass $\frac{x_k}{p}\mu_k$ $\pi_{\theta=0}$: point x_k has mass $\frac{1-x_k}{1-p}\mu_k$

- sample $m \sim \pi_{\theta}$ conditional on θ
- unconditionally $m \sim \mu$: $\mathbb{P}(m = x_k) = (1 p) \frac{1 x_k}{1 p} \mu_k + p \frac{x_k}{p} \mu_k = \mu_k$.

•
$$p' = \mathbb{P}(\theta = 1 \mid m = x_k) = \frac{\mathbb{P}(m = x_k \mid \theta = 1)\mathbb{P}(\theta = 1)}{\mathbb{P}(m = x_k)} = \frac{x_k}{p}\mu_k \cdot p \cdot \frac{1}{\mu_k} = x_k = m$$

The splitting lemma (Aumann, Maschler (1960ies) / folk) These two sets are equal: for any $\mu \in \Delta([0, 1])$ with $\int x d\mu(x) = p$ there exists (M, π) s.t. $p'(m) \sim \mu$. One can take $M = \operatorname{supp} \mu \subset [0, 1]$.

Corollary: S's optimal payoff is

$$\max_{(M,\pi)} \mathbb{E}\Big[U_S(p'(m))\Big] = \max_{\mu \in \mathcal{D}(p)} \int_{[0,1]} U_S(x) \, d\mu(x),$$

where $\mathcal{D}(p) = \Big\{\mu \in \Delta([0,1]) \, : \, \int_{[0,1]} x \, d\mu(x) = p\Big\}.$

 $\operatorname{Cav} [f](x) = \min \{\varphi(x) : \varphi \text{ is concave and } f(\cdot) \leq \varphi(\cdot) \}$

 $\operatorname{Cav} [f](x) = \min \{\varphi(x) : \varphi \text{ is concave and } f(\cdot) \leq \varphi(\cdot) \}$

Lemma

$$\operatorname{Cav} [f](p) = \max_{\mu \in \mathcal{D}(p)} \int_{[0,1]} f(x) d\mu(x)$$

where $\mathcal{D}(p) = \left\{ \mu \in \Delta([0,1]) : \int_{[0,1]} x \, d\mu(x) = p \right\}$

 $\operatorname{Cav} [f](x) = \min \{\varphi(x) : \varphi \text{ is concave and } f(\cdot) \leq \varphi(\cdot) \}$

Lemma

$$\operatorname{Cav} [f](p) = \max_{\mu \in \mathcal{D}(p)} \int_{[0,1]} f(x) d\mu(x),$$
where $\mathcal{D}(p) = \left\{ \mu \in \Delta([0,1]) : \int_{[0,1]} x \, d\mu(x) = p \right\}$

Proof: Denote r.h.s. by g(p).

 $f(p) \leq g(p) \leq \operatorname{Cav} [f](p).$

 $\operatorname{Cav} [f](x) = \min \{\varphi(x) : \varphi \text{ is concave and } f(\cdot) \leq \varphi(\cdot) \}$

Lemma

$$\operatorname{Cav} [f](p) = \max_{\mu \in \mathcal{D}(p)} \int_{[0,1]} f(x) d\mu(x),$$
where $\mathcal{D}(p) = \left\{ \mu \in \Delta([0,1]) : \int_{[0,1]} x \, d\mu(x) = p \right\}$

Proof: Denote r.h.s. by g(p).

 $f(p) \leq g(p) \leq \operatorname{Cav}[f](p) \iff (\delta_p \in \mathcal{D}(p) \text{ \& Jensen's inequality}).$

Concavification as martingale-optimization

Concavification of continuous f on [0, 1] is

 $\operatorname{Cav}[f](x) = \min \{\varphi(x) : \varphi \text{ is concave and } f(\cdot) \leq \varphi(\cdot)\}$

Lemma

W

$$\operatorname{Cav} [f](p) = \max_{\mu \in \mathcal{D}(p)} \int_{[0,1]} f(x) d\mu(x)$$

here $\mathcal{D}(p) = \left\{ \mu \in \Delta([0,1]) : \int_{[0,1]} x \, d\mu(x) = p \right\}$

Proof: Denote r.h.s. by g(p).

 $f(p) \leq g(p) \leq \operatorname{Cav}[f](p) \iff (\delta_p \in \mathcal{D}(p) \text{ \& Jensen's inequality}).$

Prove concavity of g, i.e., $\alpha g(p_1) + (1 - \alpha)g(p_2) \le g(\alpha p_1 + (1 - \alpha)p_2)$. Pick optimal $\mu_1 \in \mathcal{D}(p_1), \ \mu_2 \in \mathcal{D}(p_2)$

$$\alpha g(p_1)+(1-\alpha)g(p_2)=\int f(x)d\left(\alpha \mu_1+(1-\alpha)\mu_2\right)\leq g(\alpha p_1+(1-\alpha)p_2).$$

Concavification as martingale-optimization

Concavification of continuous f on [0, 1] is

 $\operatorname{Cav}[f](x) = \min \{\varphi(x) : \varphi \text{ is concave and } f(\cdot) \leq \varphi(\cdot)\}$

Lemma

W

$$\operatorname{Cav} [f](p) = \max_{\mu \in \mathcal{D}(p)} \int_{[0,1]} f(x) d\mu(x)$$

here $\mathcal{D}(p) = \left\{ \mu \in \Delta([0,1]) : \int_{[0,1]} x \, d\mu(x) = p \right\}$

Proof: Denote r.h.s. by g(p).

 $f(p) \leq g(p) \leq \operatorname{Cav}[f](p) \iff (\delta_p \in \mathcal{D}(p) \ \& \ {\sf Jensen's \ inequality}).$

Prove concavity of g, i.e., $\alpha g(p_1) + (1 - \alpha)g(p_2) \le g(\alpha p_1 + (1 - \alpha)p_2)$. Pick optimal $\mu_1 \in \mathcal{D}(p_1), \ \mu_2 \in \mathcal{D}(p_2)$

$$\alpha g(p_1) + (1-\alpha)g(p_2) = \int f(x)d(\alpha \mu_1 + (1-\alpha)\mu_2) \le g(\alpha p_1 + (1-\alpha)p_2).$$

So g is a concave function above $f \Rightarrow (g \ge \operatorname{Cav}[f]) \Rightarrow (g \equiv \operatorname{Cav}[f]).$

11

$$\max_{(M,\pi)} \mathbb{E}\Big[U_{\mathcal{S}}(p')\Big] = \operatorname{Cav}\left[U_{\mathcal{S}}\right](p)$$

$$\max_{(M,\pi)} \mathbb{E}\Big[U_{\mathcal{S}}(p')\Big] = \operatorname{Cav} [U_{\mathcal{S}}](p)$$

Proof: By the two lemmas,

$$\max_{(M,\pi)} \mathbb{E}\Big[U_{\mathcal{S}}(p')\Big] = \max_{\mu \in \mathcal{D}(p)} \int_{[0,1]} U_{\mathcal{S}}(x) \, d\mu(x) = \operatorname{Cav}\left[U_{\mathcal{S}}\right](p). \quad \Box$$

$$\max_{(M,\pi)} \mathbb{E} \Big[U_{\mathcal{S}}(p') \Big] = \operatorname{Cav} [U_{\mathcal{S}}](p)$$

Proof: By the two lemmas,

$$\max_{(M,\pi)} \mathbb{E}\Big[U_{\mathcal{S}}(p')\Big] = \max_{\mu \in \mathcal{D}(p)} \int_{[0,1]} U_{\mathcal{S}}(x) \, d\mu(x) = \operatorname{Cav} \left[U_{\mathcal{S}}\right](p). \quad \Box$$

Corollary: It is always enough to assume that $M \subset [0, 1]$ and signals=induced beliefs.

$$\max_{(M,\pi)} \mathbb{E}\Big[U_S(p')\Big] = \operatorname{Cav}\left[U_S\right](p)$$

Proof: By the two lemmas,

$$\max_{(M,\pi)} \mathbb{E}\Big[U_{\mathcal{S}}(p')\Big] = \max_{\mu \in \mathcal{D}(p)} \int_{[0,1]} U_{\mathcal{S}}(x) \, d\mu(x) = \operatorname{Cav} \left[U_{\mathcal{S}}\right](p). \quad \Box$$

Corollary: It is always enough to assume that $M \subset [0, 1]$ and signals=induced beliefs.

Remark: We will see that |M| = 2 is enough.

The court problem

- p = 0.25 are guilty ($\theta = 1$), Prosecutor (P) observes θ
- Judge (J) has two actions: to acquit (a = 0) or to convict (a = 1)

•
$$u_P(a, \theta) = a$$
, $u_J(a, \theta) = \mathbb{1}_{a=\theta}$

The court problem

- p = 0.25 are guilty ($\theta = 1$), Prosecutor (P) observes θ
- Judge (J) has two actions: to acquit (a = 0) or to convict (a = 1)

•
$$u_P(a, \theta) = a$$
, $u_J(a, \theta) = \mathbb{1}_{a=\theta}$

• Optimal action of J:
$$a^*(p') = \begin{cases} \text{ convict } p' \geq 0.5 \\ \text{ acquit } p' < 0.5. \end{cases}$$

Back to the toy example

The court problem

- p = 0.25 are guilty ($\theta = 1$), Prosecutor (P) observes θ
- Judge (J) has two actions: to acquit (a = 0) or to convict (a = 1)

•
$$u_P(a, \theta) = a$$
, $u_J(a, \theta) = \mathbb{1}_{a=\theta}$

• Optimal action of J:
$$a^*(p') = \begin{cases} \text{convict} & p' \ge 0.5 \\ \text{acquit} & p' < 0.5. \end{cases}$$

• P's payoff as a function of p' and its concavification:

Back to the toy example

The court problem

- p = 0.25 are guilty ($\theta = 1$), Prosecutor (P) observes θ
- Judge (J) has two actions: to acquit (a = 0) or to convict (a = 1)

•
$$u_P(a, \theta) = a$$
, $u_J(a, \theta) = \mathbb{1}_{a=\theta}$

• P's payoff as a function of p' and its concavification:

• Cav $[U_P](0.25) = \frac{1}{2} = \frac{1}{2}U_P(0) + \frac{1}{2}U_P(0.5) = \int U_P(x) d\left(\frac{1}{2}\delta_0 + \frac{1}{2}\delta_{0.5}\right)$

Back to the toy example

• P's payoff as a function of p' and its concavification:

- Cav $[U_P](0.25) = \frac{1}{2} = \frac{1}{2}U_P(0) + \frac{1}{2}U_P(0.5) = \int U_P(x) d(\frac{1}{2}\delta_0 + \frac{1}{2}\delta_{0.5})$
- Two signals $m \in \{"0", "0.5"\}$ with distribution π :

$$\pi_{\theta=1} = \begin{pmatrix} \frac{0}{p} \cdot \frac{1}{2}, & \frac{0.5}{p} \cdot \frac{1}{2} \end{pmatrix} = (0,1) \pi_{\theta=0} = \begin{pmatrix} \frac{1-0}{1-p} \cdot \frac{1}{2}, & \frac{1-0.5}{1-p} \cdot \frac{1}{2} \end{pmatrix} = (\frac{2}{3}, \frac{1}{3})$$

- if $\operatorname{Cav}[U_S](p) = U_S(p)$, send a dummy signal
- if $\operatorname{Cav}[U_S](p) > U_S(p)$ we can "split" p:

- if $\operatorname{Cav}[U_S](p) = U_S(p)$, send a dummy signal
- if $\operatorname{Cav}[U_S](p) > U_S(p)$ we can "split" p:

- if $\operatorname{Cav}[U_S](p) = U_S(p)$, send a dummy signal
- if Cav [U_S](p) > U_S(p) we can "split" p: find x

$$\operatorname{Cav}[U_S](p) = (1 - \alpha)U_S(x) + \alpha U_S(y)$$
 and $p = (1 - \alpha)x + \alpha y$

- if $\operatorname{Cav}[U_S](p) = U_S(p)$, send a dummy signal
- if Cav [U_S](p) > U_S(p) we can "split" p: find x

 $\operatorname{Cav}[U_S](p) = (1 - \alpha)U_S(x) + \alpha U_S(y)$ and $p = (1 - \alpha)x + \alpha y$

$$\iff \operatorname{Cav} [U_{\mathcal{S}}](p) = \int U_{\mathcal{S}} d\mu, \text{ where } \mu = (1 - \alpha)\delta_x + \alpha\delta_y \in \mathcal{D}(p)$$

More abstract point of view:

- $\int U_S d\mu$ is a linear functional of μ on a convex set $\mathcal{D}(p)$
- Bauer's maximum principle: a convex functional on a convex set attains its maximum at an extreme point.

 $z \in K$ is an extreme point of a convex set K if z cannot be represented as a convex combination of two distinct points $w, w' \in K$.

• Extreme points of $\mathcal{D}(p)$ are two-point distributions $(1 - \alpha)\delta_x + \alpha\delta_y$ with $(1 - \alpha)x + \alpha \cdot y = p$.

More abstract point of view:

- $\int U_S d\mu$ is a linear functional of μ on a convex set $\mathcal{D}(p)$
- <u>Bauer's maximum principle:</u> a convex functional on a convex set attains its maximum at an extreme point.

 $z \in K$ is an extreme point of a convex set K if z cannot be represented as a convex combination of two distinct points $w, w' \in K$.

• Extreme points of $\mathcal{D}(p)$ are two-point distributions $(1 - \alpha)\delta_x + \alpha\delta_y$ with $(1 - \alpha)x + \alpha \cdot y = p$.

More abstract point of view:

- $\int U_S d\mu$ is a linear functional of μ on a convex set $\mathcal{D}(p)$
- <u>Bauer's maximum principle:</u> a convex functional on a convex set attains its maximum at an extreme point.

 $z \in K$ is an extreme point of a convex set K if z cannot be represented as a convex combination of two distinct points $w, w' \in K$.

Extreme points of D(p) are two-point distributions (1 − α)δ_x + αδ_y with (1 − α)x + α ⋅ y = p.

All the results & proofs are the same with the following modifications:

- p' is a posterior distribution, $p' \in \Delta(\Theta)$
- $\mu_{(M,\pi)} \in \Delta(\Delta(\Theta))$

The only change: need $|\Theta|$ signals

- Repeated zero-sum game $G_T(p)$ with incomplete information:
 - a state $\theta \in \{0, 1\}$ with prior *p*. P1 observes θ , P2 does not
 - a zero-sum game A^{θ} is played T times, the history is observable.
 - the payoff to P1 is $\mathbb{E} \left| \frac{1}{T} \sum_{t=0}^{T} A_{i_t, j_t}^{\theta} \right|$

• P1 can guarantee $\operatorname{Cav}[u](p)$, where $u(p) = \operatorname{val}[(1-p)A^0 + p \cdot A^1]$.

- Repeated zero-sum game $G_T(p)$ with incomplete information:
 - a state $\theta \in \{0,1\}$ with prior *p*. P1 observes θ , P2 does not
 - a zero-sum game A^{θ} is played T times, the history is observable.
 - the payoff to P1 is $\mathbb{E} \left| \frac{1}{T} \sum_{t=0}^{T} A_{i_t, j_t}^{\theta} \right|$

• P1 can guarantee $\operatorname{Cav}[u](p)$, where $u(p) = \operatorname{val}[(1-p)A^0 + p \cdot A^1]$.

- Repeated zero-sum game $G_T(p)$ with incomplete information:
 - a state $\theta \in \{0,1\}$ with prior *p*. P1 observes θ , P2 does not
 - a zero-sum game A^{θ} is played T times, the history is observable.
 - the payoff to P1 is $\mathbb{E}\left[\frac{1}{T}\sum_{t=0}^{T}A_{i_t,j_t}^{\theta}\right]$

• P1 can guarantee $\operatorname{Cav}[u](p)$, where $u(p) = \operatorname{val}[(1-p)A^0 + p \cdot A^1]$.

- Repeated zero-sum game $G_T(p)$ with incomplete information:
 - a state $\theta \in \{0,1\}$ with prior *p*. P1 observes θ , P2 does not
 - a zero-sum game A^{θ} is played T times, the history is observable.
 - the payoff to P1 is $\mathbb{E}\left[\frac{1}{T}\sum_{t=0}^{T}A_{i_t,j_t}^{\theta}\right]$
- P1 can guarantee $\operatorname{Cav}[u](p)$, where $u(p) = \operatorname{val}[(1-p)A^0 + p \cdot A^1]$.

- Repeated zero-sum game $G_T(p)$ with incomplete information:
 - a state $\theta \in \{0,1\}$ with prior *p*. P1 observes θ , P2 does not
 - a zero-sum game A^{θ} is played T times, the history is observable.
 - the payoff to P1 is $\mathbb{E}\left[\frac{1}{T}\sum_{t=0}^{T}A_{i_t,j_t}^{\theta}\right]$
- P1 can guarantee $\operatorname{Cav}[u](p)$, where $u(p) = \operatorname{val}[(1-p)A^0 + p \cdot A^1]$.

- Repeated zero-sum game $G_T(p)$ with incomplete information:
 - a state $\theta \in \{0,1\}$ with prior *p*. P1 observes θ , P2 does not
 - a zero-sum game A^{θ} is played T times, the history is observable.
 - the payoff to P1 is $\mathbb{E}\left[\frac{1}{T}\sum_{t=0}^{T}A_{i_t,j_t}^{\theta}\right]$
- P1 can guarantee $\operatorname{Cav}[u](p)$, where $u(p) = \operatorname{val}[(1-p)A^0 + p \cdot A^1]$.

- If it was a persuasion problem, P1 could send a signal m to P2 such that E[u(p'(m))] = Cav [u](p)
- Idea: P1 can use first-stage action as a signal to induce p' and then play the optimal strategy from $(1 p')A^0 + p' \cdot A^1$ at all stages.
- P1 gets at least

$$\mathbb{E}\left[rac{1}{T}\cdot(T-1)\cdot u(p')
ight]=\mathrm{Cav}\left[u
ight]\cdot\left(1-rac{1}{T}
ight)
ightarrow\mathrm{Cav}\left[u
ight],\quad T
ightarrow\infty.$$

- Repeated zero-sum game $G_T(p)$ with incomplete information:
 - a state $\theta \in \{0,1\}$ with prior *p*. P1 observes θ , P2 does not
 - a zero-sum game A^{θ} is played T times, the history is observable.
 - the payoff to P1 is $\mathbb{E}\left[\frac{1}{T}\sum_{t=0}^{T}A_{i_t,j_t}^{\theta}\right]$
- P1 can guarantee $\operatorname{Cav}[u](p)$, where $u(p) = \operatorname{val}[(1-p)A^0 + p \cdot A^1]$.

- If it was a persuasion problem, P1 could send a signal m to P2 such that E[u(p'(m))] = Cav [u](p)
- Idea: P1 can use first-stage action as a signal to induce p' and then play the optimal strategy from $(1 p')A^0 + p' \cdot A^1$ at all stages.
- P1 gets at least

$$\mathbb{E}\left[rac{1}{T}\cdot (T-1)\cdot u(p')
ight] = \operatorname{Cav}\left[u
ight]\cdot \left(1-rac{1}{T}
ight) o \operatorname{Cav}\left[u
ight], \quad T o\infty.$$

- Repeated zero-sum game $G_T(p)$ with incomplete information:
 - a state $\theta \in \{0,1\}$ with prior *p*. P1 observes θ , P2 does not
 - a zero-sum game A^{θ} is played T times, the history is observable.
 - the payoff to P1 is $\mathbb{E}\left[\frac{1}{T}\sum_{t=0}^{T}A_{i_t,j_t}^{\theta}\right]$
- P1 can guarantee $\operatorname{Cav}[u](p)$, where $u(p) = \operatorname{val}[(1-p)A^0 + p \cdot A^1]$.

- If it was a persuasion problem, P1 could send a signal m to P2 such that E[u(p'(m))] = Cav [u](p)
- Idea: P1 can use first-stage action as a signal to induce p' and then play the optimal strategy from $(1 p')A^0 + p' \cdot A^1$ at all stages.
- P1 gets at least

$$\mathbb{E}\left[\frac{1}{T}\cdot(T-1)\cdot u(p')\right] = \operatorname{Cav}\left[u\right]\cdot\left(1-\frac{1}{T}\right) \to \operatorname{Cav}\left[u\right], \quad T \to \infty.$$

Action-recommendation approach: revelation principle

Definition: (M, π) is an action-recommendation (AR) information structure $\Leftrightarrow M = A$ and $a^*(a) = a$ (it is in R's best interest to play the action matching the signal aka obedience constraint).

• Similar to belief-recommendation from Splitting lemma
• Similar to belief-recommendation from Splitting lemma

Revelation principle

For any (M, π) there exists AR (A, ψ) with the same S's payoff.

Revelation principle

For any (M, π) there exists AR (A, ψ) with the same S's payoff.

Proof: How (M, π) works:

$$heta
ightarrow (m \sim \pi_{ heta})
ightarrow a^*(m).$$

Revelation principle

For any (M, π) there exists AR (A, ψ) with the same S's payoff.

Proof: How (M, π) works:

$$heta
ightarrow (m \sim \pi_{ heta})
ightarrow a^*(m).$$

Denote ψ_{θ} the distribution of a^* conditional on θ . (A, ψ) recommends the action a whenever R plays a for (M, π).

Revelation principle

For any (M, π) there exists AR (A, ψ) with the same S's payoff.

Proof: How (M, π) works:

$$heta
ightarrow (m \sim \pi_{ heta})
ightarrow a^*(m).$$

Denote ψ_{θ} the distribution of a^* conditional on θ . (A, ψ) recommends the action a whenever R plays a for (M, π).

• $a^*(a) = a$. Otherwise, R can improve his action for (M, π) .

Revelation principle

For any (M, π) there exists AR (A, ψ) with the same S's payoff.

Proof: How (M, π) works:

$$heta
ightarrow (m \sim \pi_{ heta})
ightarrow a^*(m).$$

Denote ψ_{θ} the distribution of a^* conditional on θ . (A, ψ) recommends the action a whenever R plays a for (M, π).

- $a^*(a) = a$. Otherwise, R can improve his action for (M, π) .
- the payoff is the same.

Idea of action-recommendation approach

Definition: (M, π) is an action-recommendation (AR) information structure $\Leftrightarrow M = A$ and $a^*(a) = a$ (it is in R's best interest to play the action matching the signal aka obedience constraint).

Revelation principle

For any (M, π) there exists AR (A, ψ) with the same S's payoff.

Proof: How (M, π) works:

$$heta
ightarrow (m \sim \pi_{ heta})
ightarrow a^*(m).$$

Denote ψ_{θ} the distribution of a^* conditional on θ .

 (A, ψ) recommends the action *a* whenever R plays *a* for (M, π) .

- $a^*(a) = a$. Otherwise, R can improve his action for (M, π) .
- the payoff is the same.

Corollary:

- Restriction to AR is w.l.o.g.
- min{ $|\Theta|, |A|$ } signals are enough for optimal persuasion.

Idea of action-recommendation approach

Definition: (M, π) is an action-recommendation (AR) information structure $\Leftrightarrow M = A$ and $a^*(a) = a$ (it is in R's best interest to play the action matching the signal aka obedience constraint).

Revelation principle

For any (M, π) there exists AR (A, ψ) with the same S's payoff.

Proof: How (M, π) works:

$$heta
ightarrow (m \sim \pi_{ heta})
ightarrow a^*(m).$$

Denote ψ_{θ} the distribution of a^* conditional on θ .

 (A, ψ) recommends the action *a* whenever R plays *a* for (M, π) .

- $a^*(a) = a$. Otherwise, R can improve his action for (M, π) .
- the payoff is the same.

Corollary:

- Restriction to AR is w.l.o.g.
- $\min\{|\Theta|, |A|\}$ signals are enough for optimal persuasion.

$$\mathbb{E}\big[u_R(a,\theta)\mid m=a\big]\geq \mathbb{E}\big[u_R(\tilde{a},\theta)\mid m=a\big]\quad\text{for all distinct }a,\tilde{a}\in A.$$

 $\mathbb{E}\big[u_R(a,\theta)\mid m=a\big]\geq \mathbb{E}\big[u_R(\tilde{a},\theta)\mid m=a\big]\quad\text{for all distinct }a,\tilde{a}\in A.$

Rewrite the l.h.s.:

$$l.h.s. = \sum_{\theta \in \Theta} u_R(a, \theta) \cdot \mathbb{P}(\theta \mid m = a) = \sum_{\theta \in \Theta} u_R(a, \theta) \cdot \frac{p(\theta) \cdot \psi_{\theta}(a)}{\mathbb{P}(m = a)}.$$

 $\mathbb{E}\big[u_R(a,\theta)\mid m=a\big]\geq \mathbb{E}\big[u_R(\tilde{a},\theta)\mid m=a\big]\quad\text{for all distinct }a,\tilde{a}\in A.$

Rewrite the l.h.s. (r.h.s. is similar):

$$l.h.s. = \sum_{\theta \in \Theta} u_R(a, \theta) \cdot \mathbb{P}(\theta \mid m = a) = \sum_{\theta \in \Theta} u_R(a, \theta) \cdot \frac{p(\theta) \cdot \psi_{\theta}(a)}{\mathbb{P}(m = a)}.$$

The **obedience constraint** for (A, ψ) : Rewrite the l.h.s. (r.h.s. is similar):

$$l.h.s. = \sum_{\theta \in \Theta} u_R(a,\theta) \cdot \mathbb{P}(\theta \mid m = a) = \sum_{\theta \in \Theta} u_R(a,\theta) \cdot \frac{p(\theta) \cdot \psi_{\theta}(a)}{\mathbb{P}(m = a)}.$$

 $\mathsf{Obedience} \iff$

$$\sum_{\theta \in \Theta} \left(u_{\mathsf{R}}(\mathsf{a},\theta) - u_{\mathsf{R}}(\tilde{\mathsf{a}},\theta) \right) \cdot \mathsf{p}(\theta) \cdot \psi_{\theta}(\mathsf{a}) \geq 0 \quad \forall \mathsf{a} \neq \tilde{\mathsf{a}} \in \mathsf{A}.$$

$$\sum_{\theta \in \Theta} (u_R(a,\theta) - u_R(\tilde{a},\theta)) \cdot p(\theta) \cdot \psi_{\theta}(a) \ge 0 \quad \forall a \neq \tilde{a} \in A.$$

Corollary: optimal action-recommendation = LP:

Persuasion as a linear program

The **obedience constraint** for (A, ψ) :

$$\sum_{\theta \in \Theta} \left(u_R(a,\theta) - u_R(\tilde{a},\theta) \right) \cdot p(\theta) \cdot \psi_{\theta}(a) \ge 0 \quad \forall a \neq \tilde{a} \in A.$$

Corollary: optimal action-recommendation = LP:

$$\begin{aligned} & \underset{\theta,a}{\text{maximize}} \sum_{\theta,a} u_{S}(a,\theta) \cdot p(\theta) \cdot \psi_{\theta}(a) \\ & \text{over } (\psi_{\theta}(a))_{\theta \in \Theta, a \in A} \text{ such that} \\ & \psi_{\theta}(a) \geq 0, \quad \& \quad \sum_{a} \psi_{\theta}(a) = 1 \quad \& \quad \text{Obedience} \end{aligned}$$

- Easy to solve algorithmically + structural information about solution + duality
- AR extends to *n* receivers, who play a game *G* after receiving the signals. Joint distributions of (*a*₁,..., *a_n*) that can be generated by AR = Bayesian Correlated Equilibria of *G*.

Persuasion as a linear program

The **obedience constraint** for (A, ψ) :

$$\sum_{\theta \in \Theta} \left(u_R(a,\theta) - u_R(\tilde{a},\theta) \right) \cdot p(\theta) \cdot \psi_{\theta}(a) \ge 0 \quad \forall a \neq \tilde{a} \in A.$$

Corollary: optimal action-recommendation = LP:

- Easy to solve algorithmically + structural information about solution + duality
- AR extends to *n* receivers, who play a game *G* after receiving the signals. Joint distributions of (*a*₁,..., *a_n*) that can be generated by AR = Bayesian Correlated Equilibria of *G*.

References

- E. Kamenica (2019) Bayesian persuasion and information design Annual Review of Economics A comprehensive survey of geometric approach, its extensions, and applications.
- D.Bergemann, S. Morris (2019) Information design: A unified perspective. Journal of Economic Literature Survey of action-recommendation approach, multi-receiver persuasion, and Bayesian correlated equilibrium