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Chapter 1

About this course

The course is an introduction to an active research area at the intersection of Econ and CS,
sometimes referred to as algorithmic economics. It deals with multi-agent systems, where
agents differ in their preferences and may behave strategically to improve the outcome for
themselves. We will discuss applications to voting, crowd-sourcing, rating design, revenue-
maximization, auctions, allocation of resources without money, and matching markets.

Algorithmic economics can be roughly divided into algorithmic game theory (rules of
interaction are given, and we ask how the system behaves) and mechanism design (rules are
to be designed). As there is a full-fledged course on game theory per se (PS/EC 172), we will
focus on the design perspective and try to avoid intersections as much as possible. The broad
topic of matching markets will be touched on briefly; an extensive discussion they deserve is
given in EC 117. Some topics will be developed in homework assignments that are included
in the appendix.

1.0.1 Prerequisites

The course has no prerequisites; in particular, prior knowledge of game theory is not needed.
However, you are assumed to be comfortable with mathematical proofs and know calculus
and algebra basics (derivatives, integration, and vectors). Familiarity with the basics of
probability theory (random variables, distributions, independence, the Bayes formula) will
also be useful.

1.0.2 Goals

The course will teach you the basic building blocks and insights economists use to design
multi-agent systems. You will learn the language and the model needed to formulate design
goals, tools to achieve them, and some workarounds allowing you to find a reasonable solution
if the goals are incompatible.

By the end of the course, you will be able to follow more than half1 of talks at the
top conferences at the intersection of economics and computation, such as the annual ACM

1To follow the other 30%, you need a game-theory course. The remaining 5-10% nobody understands :-)
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6 CHAPTER 1. ABOUT THIS COURSE

Conference on Economics and Computation (2022 edition) or start your research on one of
the cutting-edge topics.

1.0.3 Materials

You may find the following sources useful, all freely available online. I also used them to
prepare the lectures:

• Game Theory, Alive by Anna Karlin and Yuval Peres, in my opinion, is the best
introduction to both game theory and mechanism design for readers with math or CS
background.

• Handbook of computational social choice edited by Felix Brandt, Vincent Conitzer,
Ulle Endriss, Jerome Lang, and Ariel Procaccia
Topics: voting (Section 2), judgment aggregation (Section 17), fair division (Section
13).

• Handbook of Algorithmic Game Theory edited by Noam Nisan, Tim Roughgarden, Eva
Tardos, and Vijay Vazirani
Topics: competitive equilibrium (Chapter 5), social choice (Chapters 9,10)

• Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations by Yoav
Shoham and Kevin Leyton-Brown, Cambridge University Press, 2009
Topics: voting (Section 9), VCG (Section 10), auctions (Section 11).

I also recommend amazing lecture notes by Tim Roughgarden’s “Incentives in Computer
Science”, from where I borrowed quite a few ideas. Some inspiration came from courses by
Ariel Procaccia; slides are available on his website.

https://ec22.sigecom.org/
https://homes.cs.washington.edu/~karlin/GameTheoryBook.pdf
http://procaccia.info/wp-content/uploads/2020/03/comsoc.pdf
https://www.cs.cmu.edu/~sandholm/cs15-892F13/algorithmic-game-theory.pdf
http://www.masfoundations.org/download.html
http://timroughgarden.org/notes.html
http://timroughgarden.org/notes.html
http://procaccia.info/


Chapter 2

Multi-agent systems: economics or
CS?

This course is about multi-agent systems. But who are the agents? Originally, economics was
about people producing, selling, and buying goods for money. These people — and, more
generally, their groups, such as firms or countries — are economic agents. However, the key
feature of these economic agents is not the type of interaction they engage in but the fact
that different agents may pursue different goals, may differ in their preferences
and characteristics. A device in a network having its own local objective, a car following a
route suggested by Google Maps, or processes sharing common computational resources can
all be modeled as such agents.

Game theory aims to understand how systems of agents behave when the rules of inter-
action are given. We will be interested in the opposite questions: How to design multi-agent
systems? How to take differences in preferences and agents’ incentives into account? These
questions belong to the field of economic design, also known as mechanism design.

Originally, mechanism design was a part of economics, but now it can be considered
interdisciplinary research at the interface of economics, CS, and math. We will discuss
applications of mechanism design to ranking aggregation, sponsored search auctions used by
search engines such as Google, platform markets, crowdsourcing, fair resource allocation in
sharing economy, and others.

There is a group of key goals that a designer can have:

• Efficiency: The outcome of a mechanism must be optimal in some sense, e.g., maximize
a particular numerical objective (revenue or welfare) or be non-improvable in some other
way.

• Robustness to strategic behavior (strategy-proofness): Agents’ incentives to game the
system should not ruin the outcome.

• Fairness: Agents must be treated fairly, e.g., enjoy equal opportunities.

While formalizing these goals depends on the particular application, the rule of thumb is that
they are typically incompatible. This incompatibility discovered early by economists (famous

7



8 CHAPTER 2. MULTI-AGENT SYSTEMS: ECONOMICS OR CS?

Arrow’s theorem and the Gibbard-Sattherwaite theorem that we will discuss soon) became
a significant obstacle and discouragement to the economic theory of mechanism design. The
current research on mechanism design is largely affected by new ideas from CS offering a
workaround for impossibilities and allowing you to design good mechanisms if you must.



Chapter 3

Ranking aggregation (aka Voting or
Social Choice)

The most fundamental problem of economic design: how to aggregate a collection of distinct
rankings of alternatives into one collective ranking or one collective decision? It is usually
called the social choice problem or voting by its most immediate application. Applications:

• Voting in political elections (voters have different preferences over candidates, and the
goal is to choose the “best” candidate)

• Collective decision-making within an organization (the board of directors decides on a
marketing campaign).

• Aggregating experts’ opinions, crowd-sourcing (workers on Mechanical Turk are asked
to rank several interface options by their usability), and peer grading (students are
asked to rank works of their peers).

• Aggregating algorithmic recommendations (experts=algorithms), e.g., setting up an
ensemble of neural networks (aka boosting)

• Ranking aggregation (sports, movies)

• Exotic examples: Blockchain governance and DAOs (decentralized autonomous orga-
nizations).

Apart from these direct applications, social choice problem is important as you can think
of any economic design problem as that of social choice. The idea is as follows. Think of
an auction. The set of outcomes consists of possible allocations of the goods and payments.
Clearly, each bidder prefers to get the auctioned good and to pay less. In other words, agents
have different preferences over a common set of “outcomes,” and the auction can be seen as
a mechanism for choosing an outcome given these conflicting preferences.

In particular, social choice is a benchmark problem illustrating all the obstacles that we
will see later in other economic design problems.

9
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10 CHAPTER 3. RANKING AGGREGATION (AKA VOTING OR SOCIAL CHOICE)

The problem of social choice There is a set N = {1, 2, . . . , n} of agents (we will some-
times refer to them as “voters”) and a set A of |A| = m alternatives (“candidates” or
“outcomes”). We will denote generic alternatives by a, b, c and generic voters by i, j, k.

Each agent’s preferences (ranking) are given by a list of alternatives, from best to worst.
We will denote agent i’s preference by ≻i and write a ≻i b to indicate that voter i prefers the
alternative a to b. We assume transitivity: if i prefers a to b and b to c, then i prefers a to
c i.e., ≻i is a transitive relation.1 In the basic setting discussed in the first two lectures, we
also assume that the voter is never indifferent (has strict preferences): for any two distinct
alternatives a, b either a ≻i b or b ≻i a.

A collection of preferences of each of the agents is called a preference profile and is
denoted by π = (≻1, . . . ,≻n) = (≻i)i∈N .

A voting rule is a map f assigning a winning alternative f(π) ∈ A to each preference
profile π.

A ranking rule is a map F assigning a ranking of alternatives F (π) =≻π to each pref-
erence profile π.

3.1 Some (de)motivating examples

3.1.1 Success story: two alternatives.

First consider the case of just two candidates, |A| = 2 and odd number of voters |N |.
The will of the majority is the idea underlying modern democracy and is rooted in ancient

Greece. The majority rule which outputs the candidate preferred by the majority2.

In what sense the majority rule is good? It treats voters symmetrically and gives no
incentive for them to “game the rule” by misreporting their preferences to make their favorite
candidate win. Formally, these properties are captured by the following two notions that also
apply to voting rules with any number of alternatives.

A voting rule F is said to be

• strategy-proof (aka truthful aka non-manipulable) if no agent i with preferences
≻i can make her more preferable candidate win by pretending that her preferences are
given by some ≻′

i. Formally, for any profile (≻i)i∈N of preferences and any agent i,
there is no ≻′

i such that3

f (≻1, . . . ,≻i−1,≻′
i,≻i+1, . . . ,≻n) ≻i f (≻1, . . . ,≻n) .

1This requirement captures the idea that agents are rational. Experiments show that real people’s pref-
erences may violate this requirement, but this is still a natural approximation to the incomprehensible
complexity of real life.

2It is uniquely defined thanks to the assumption that there is an odd number of voters.
3For those of you familiar with game theory: Equivalently, a rule f is strategy-proof if submitting the

true preferences is a weakly dominant strategy in the game defined by f .
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• voter-symmetric (aka anonymous)4 if voters’ names do not matter. Formally, for
any profile (≻i)i∈N and any permutation5 σ of voters,

f ((≻i)i∈N) = f
(
(≻σ(i))i∈N

)
.

Such requirements on a voting rule are usually called axioms. Are there any other rules
satisfying the two axioms?

Theorem 1 (a version of May’s theorem). For two alternatives A = {0, 1} and an odd
number of voters |N |, any strategy-proof anonymous voting rule f is a threshold rule: there
is a number t ∈ {0, 1, 2, . . . , n, n+ 1} such that

f((≻i)i∈N) =

{
1, |{i ∈ N : 1 ≻i 0}| ≥ t
0, otherwise.

Corollary 1. If we additionally assume that the rule treats the two alternatives in a sym-
metric way, i.e., candidate’s names do not matter6 (the axiom called neutrality), then we

recover the majority rule corresponding to t = |N |
2
.

To prove May’s theorem note that we can represent any profile of preferences over two
alternatives A = {0, 1} via the set of voters N1 = {i ∈ N : 1 ≻i 0} preferring the alternative
1. In other words, any rule f can be seen as a function of N1. With this representation, the
two axioms are reformulated handily.

Claim 1. A rule f = f(N1) with A = {0, 1} is

• strategy-proof if and only if f is monotone, i.e., f(N1) ≤ f(N1 ∪ {i}) for any i ∈ N .

• anonymous if and only if f(N1) = g(|N1|), i.e., f depends only on the number of
elements in |N1|.

Now we can prove the theorem.

Proof. We know that f = g(|N1|), where g is a monotone function on {0, 1, . . . , n} with values
in {0, 1}. Any such function is a step function, i.e., g(x) = 1 for x ≥ t and 0, otherwise. This
step function gives the threshold rule from the theorem.

4This assumption is reasonable in political elections but may not be so in crowd-sourcing, where the weight
of a “voter” may depend on their performance, e.g., on the average number of mistakes they make.

5A permutation of a set B is a bijection B → B.
6If the alternatives differ in their nature (e.g., implementing a project or not), there is no reason to assume

that they must be treated symmetrically.
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3.1.2 This irrational majority

What should we do if there are more than two alternatives? The idea goes back to Marquise
de Condorcet7 is using the majority rule to compare each pair of alternatives.

Define the preference of the majority as follows:

a ≻maj b if and only if the majority of voters prefers a to b.

To focus on the problem’s essence, we assume an odd number of voters n.
An alternative a is called the Condorcet winner if a ≻maj b for any b ∈ A. The problem

with this definition is that the Condorcet winner may fail to exist because of the fundamental
problem with majority preferences, illustrated by the following example.

Example 1 (Condorcet paradox). Consider the 3-voter profile:

≻1 ≻2 ≻3

a b c
b c a
c a b

Then a ≻maj b by the majority (voters 1,3) and b ≻maj c by the majority (voters 1,2). We
conclude that

a ≻maj b ≻maj c.

But wait, c ≻maj a by the majority (voters 2,3)?!? We end up with the so-called Condorcet
cycle and see that the Condorcet winner may fail to exist.

The example demonstrates that the majority preferences may violate transitivity, i.e., can
be irrational. The reason is that the “majority” is not always the same; it depends on the
question we ask. In particular, if sequential pairwise comparisons are used to come up with
a non-binary decision, the outcome may depend on the sequence of comparisons.

The Condorcet paradox also suggests that committees may fail to maintain consistent
policies over time as voting outcomes for different — but possibly related —– issues may be
determined by different majorities.8 This point is illustrated in the following irrationality
phenomenon known in the field of judgment aggregation9, which studies voting over logically
related issues.

Example 2 (Doctrinal paradox in judgment aggregation). Consider 3 judges that need to
decide on 3 logically related issues: whether the defendant was obliged to complete the task,

7He was a remarkable 18th-century thinker and politician defending humanistic ideas two centuries before
this became mainstream. Read about him on Wikipedia.

8To ensure time consistency over a period of time, companies appoint one CEO and countries, one pres-
ident. Time inconsistency of committee decisions is an important concern in light of the decentralization
trends of Web3 and direct democracy.

9If you want to learn more, check the chapter on judgment aggregation in the Handbook of Computational
Social Choice.

https://en.wikipedia.org/wiki/Marquis_de_Condorcet
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whether she failed, and whether she is liable. The judges are rational, which is captured by
the following logical relation obliged&failed ⇒ liable. Judges’ individual judgments are as
follows:

obliged failed liable
Judge 1 yes yes yes
Judge 1 yes no no
Judge 1 no yes no
majority yes yes no

As we see, the majority’s judgments are irrational.

While the Condorcet winner may fail to exist, it often does both in real-life elections10

and in theory.11

When the Condorcet winner exists, it is natural to require that she gets elected. Voting
rules satisfying this requirement are called Condorcet consistent or satisfying the Con-
dorcet winner property. While this requirement seems to be mild and unambiguous, most of
the voting rules we are familiar with fail to pass this test.

A seemingly must-have property is that the alternative defeated by any other alternative
in the majority vote must never be chosen. Formally, an alternative a is the Condorcet
loser if a ≺maj b for any b ∈ A. A rule is said to have the Condorcet loser property if
such a loser is never selected by the rule. As we will see, even this test is failed by the most
popular voting rule that we discuss next.

3.2 Plurality rule

The plurality rule selects the alternative top-ranked by the maximum number of voters.
It is the most common voting rule. This rule and its variants, such as the plurality with
runoff12 are omnipresent in politics. This rule can be seen as another attempt to extend the
majority rule to |A| > 2 alternatives. But is it a good extension?

Example 3. Consider the following profile of preferences:

21% of voters 19% of voters 20% of voters 20% of voters 20% of voters
a c d e f
b b b b b
c f e d c
...

...
...

...
...

a a a a

10As argued, for example, by Eric Maskin, a Nobel laureate for his works on mechanism design and
proponent of majority-based voting rules.

11Various results show that, if you fix the number of alternatives |A| and take voters’ preferences at random,
then (depending on a particular model of randomness), the Condorcet winner either exists with probability
approaching 1 or approaching some number strictly above 0. See a survey.

12The plurality with runoff selects the winner in two rounds. In the first round, the two candidates with
the maximal number of first places get selected. In the second round, the majority selects the winner among
the two.

https://link.springer.com/article/10.1023/A:1015551010381
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The alternative a selected by the plurality is hated by 79% of the population. The flaw
of the plurality rule is that it does not take into account these “dislikes” and fails to find
a compromise such as the alternative b in this profile. In general, the plurality rule favors
candidates with extreme views strongly supported by a relatively small group of fanatics.

Formally, these concerns are captured by the fact that a is the Condorcet loser, i.e., the
plurality rule does not have the Condorcet loser property.

Another phenomenon that can be illustrated using this example is the manipulability of
the plurality rule. If, say, 3% of voters from the last group report the preference

c
f
b
...

instead of their sincere preferences, the alternative c gets selected instead of a, i.e., by this
misreport they make their 3rd best alternative c win whereas a was their worst alternative.
We conclude that the plurality rule is not strategy-proof.13

All the flaws of the plurality are shared by the plurality with runoff. Plurality is om-
nipresent but is arguably the worst among popular voting rules.

3.3 Scoring rules

How could we take into account both likes and dislikes and their strength so that the com-
promise alternative b in the above example is selected?

Consider a family of scoring rules, where each voter gives sk points to the alternative
she ranks k’th, and the alternative with the maximal total number of points wins. The
resulting rule is parameterized by the vector of scores s = (s1, s2, . . . , s|A|).

Note that the plurality rule is a particular case corresponding to s = (1, 0, 0, . . . , 0). The
Borda rule named after chevalier de Borda, a contemporary of Condorcet, corresponds to

s = (|A| − 1, |A| − 2, |A| − 3, . . . , 0)

and is used to determine the winner of the Eurovision Song Contest.
The Borda rule balances likes and dislikes. In particular, it selects b in the example above

and never chooses the Condorcet loser.14 As you will see in the first homework, the Borda
rule is not strategy-proof and may not select the Condorcet winner even if it exists.

13Formally, the definition of strategy-proofness requires that only one voter misreports her preference. How
can we modify the example so even a single voter has a profitable manipulation?

14Try proving this. It is not immediate but is a good puzzle to think about.



Chapter 4

Impossibility results

In the last lecture, we saw that the problem of ranking aggregation with three or more
alternatives is prone to paradoxes and does not admit a simple solution. For two alternatives,
the combination of non-manipulability and a fairness requirement pined down the family of
threshold rules. Fixing the requirements (axioms) and exploring the set of rules satisfying
them is known as the normative approach. In this lecture, we explore what the normative
approach gives in the case of more than two alternatives.

We will start by discussing the ranking rules and prove the famous Arrow’s theorem, then
discuss voting rules and formulate the Gibbard-Sattherwaite theorem. These two results are
known as impossibility theorems as they show that even a combination of mild requirements
leads to an almost vacuous set of rules. These results show that often there are no “ideal”
mechanisms; in future lectures, we will see how one can circumvent impossibilities and design
good ones.

The model. Let us recall the setting. That there is a set N = {1, 2, . . . , n} of agents (aka
voters) and a set A of alternatives (“candidates” or “outcomes”). We will denote generic
alternatives by a, b, c and generic voters by i, j, k. Each agent’s preferences (ranking) are
given by a list of alternatives, from best to worst. We will denote agent i’s preference by
≻i and write a ≻i b to indicate that voter i prefers the alternative a to b. A collection of
preferences of each of the agents is called a preference profile and is denoted by π = (≻1

, . . . ,≻n) = (≻i)i∈N . A voting rule is a map f assigning a winning alternative f(π) ∈ A
to each preference profile π. A ranking rule is a map F assigning a ranking of alternatives
F (π) =≻π to each preference profile π.

4.1 Irrelevant alternatives

To motivate the problem, we define scoring ranking rules similarly to scoring voting rules.
Each voter gives sk points to the alternative she ranks k’th, and then the alternatives are
ordered by the maximal number of points.

These rules are especially popular in sports to aggregate athletes’ results over several

15
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competitions as these rules have very transparent mechanics easy-to-follow for spectators. In
this application, i ∈ N indexes different competitions, and ≻i is the ranking of athletes in
this particular competition. The goal is, given π = (≻1, . . . ,≻n), to determine the overall
ranking of athletes ≻π.

The following historical example1 illustrates what irrelevant alternatives are and why we
would like the ranking rule to be independent of them.

Example 4. The 2014/2015 IBU Biathlon World Cup Women’s Pursuit category consisted
of seven races. To aggregate the results over the races, IBU uses a scoring ranking rule with
the following weights

(s1, s2, s3, . . .) = (60, 54, 48, 43, 40, 38, 36, 34, 32, 31, 30, 29, 28, . . . , 1).

Kaisa Mäkäräinen came first with two first-place finishes, two second places, a third, a fourth,
and a twelfth, for a total score of 348 points. Second was Darya Domracheva, with four first-
place finishes, one fourth, a seventh, and a thirteenth, for a total score of 347. In tenth place
was Ekaterina Glazyrina, well out of the running with 190 points.

athlete 1 2 3 4 5 6 7 total score
Mäkäräinen 60 60 54 48 54 29 43 348
Domracheva 43 28 60 60 60 36 60 347

. . . . . . . . . . . . . . . . . . . . . . . .
Glazyrina 32 54 10 26 38 20 10 190

Four years later, Glazyrina was disqualified for doping violations and all her results from
2013 onwards were annulled. This bumped Domracheva’s thirteenth-place finish in race two
into a twelfth and her total score to 348. The number of first-place finishes is used as a tie-
breaker, and in March 2019, the official results implied that Mäkäräinen would be stripped
of the trophy in favor of Domracheva. Because the tenth-place competitor was disqualified
for doping four years after the fact.

There is something dissatisfactory about this example: ideally, we would like the com-
parison of the two athletes to depend on their relative performance only but not on the
performance or presence of some other athlete. This is captured by the following axiom.

A ranking rule F : π →≻π is independent of irrelevant alternatives (IIA) if, for
any pair of alternatives, their ranking ≻π depend only on voters’ preferences over these two
alternatives. Formally, for any a ̸= b and π = (≻1, . . . ,≻n) and π

′ = (≻′
1, . . . ,≻′

n)

(∀i a ≻i b⇔ a ≻′
i b) ⇒ (a ≻π b⇔ a ≻π′ b).

Of course, IIA can be easily satisfied, for example, by choosing ≻π independent of π.
There is, however, one situation where the question of ranking aggregation is unambiguous:

1We borrow this example from a fun-to-read paper (Kondratev et al., 2019) containing multiple examples
of voting paradoxes emerging in athletes ranking and finding a subfamily of scoring rules that is the least
paradoxical.
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when athletes ranking in each competition is the same. A ranking rule F is said to be
unanimous if for

π = (≻, . . . ,≻) =⇒ ≻π=≻ .

Are there ranking rules satisfying both IIA and unanimity? Yes, but they do not really
aggregate information, as the ranking of athletes is determined by one given race. A rule F
is said to be dictatorial if there exists i ∈ N such that ≻π=≻i for any π = (≻1, . . . ,≻n).

Theorem 2 (Kenneth Arrow 1951). If |A| ≥ 3, then any unanimous F satisfying indepen-
dence of irrelevant alternatives is a dictatorship.

As we see, the paradox illustrated by the biathlon example was not specific to the par-
ticular scoring rule but is unavoidable.

There are many proofs of Arrow’s theorem. One of the most elementary and easiest to
follow can be found in Chapter 9.2 of Handbook of Algorithmic Game Theory.

There is another perspective on Arrow’s theorem connecting it to Condorcet cycles. As-
sume that for each pair of alternatives, we want to decide on the pairwise comparison a ≻π b
or a ≺π b as a function of the set of voters {i ∈ N : a ≻i b} preferring a to b. For example,
we can use the majority rule, but, as we already know, the resulting relation ≻π may exhibit
Condorcet cycles for some preference profiles.

Theorem 3 (an equivalent form of Arrow’s theorem). If |A| ≥ 3 and the pairwise comparison
≻π of a and b is determined by {i ∈ N : a ≻i b} and is unanimous2, then there is π such that
the relation ≻π has a cycle unless ≻π is dictatorial.

A proof of Arrow’s theorem by Gil Kalai relies on this reinterpretation. He computes the
probability that≻π exhibits a cycle on a random preference profile π. His elegant computation
uses the Fourier analysis on the binary cube and shows that the probability of the cycle is
non-zero unless the comparison depends on just one coordinate, i.e., is dictatorial.3

4.2 Manipulable rules

Arrow’s theorem is related to an equally important impossibility result for voting rules, the
Gibbard-Sattherwaite theorem.

Now we are back to considering voting rules, maps f assigning a winning alternative
f(π) ∈ A to each preference profile π. Recall that a voting rule f is said to be strategy-
proof (SP) if no agent i with preferences ≻i can make her more preferable candidate win
by pretending that her preferences are given by some ≻′

i. Formally, for any profile (≻i)i∈N
of preferences and any agent i, there is no ≻′

i such that

f (≻1, . . . ,≻i−1,≻′
i,≻i+1, . . . ,≻n) ≻i f (≻1, . . . ,≻n) .

2Whenever {i ∈ N : a ≻i b} = N , we have a ≻π b.
3You are not assumed to read this paper or have any prior knowledge of Fourier analysis for our course.

However, I encourage you to learn it as it is a powerful technique appearing in various problems of probability,
combinatorics, and algorithms.

https://www.cs.cmu.edu/~sandholm/cs15-892F13/algorithmic-game-theory.pdf
http://www.cs.cmu.edu/~odonnell/papers/analysis-survey.pdf
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What are the examples of SP voting rules? A rule selecting the same alternative a for any
preference profile. What if we want a rule that non-trivially depends on voters’ preferences?
Then we can use the majority vote (or any other threshold rule) between any two predefined
alternatives {a, b} ⊂ A. Unfortunately, this rule will not select an alternative c ̸= a, b even if
all voters top rank it. Are there any SP rules that can select any alternative c ∈ A depending
on the preference profile? A non-satisfactory answer is a dictatorial f that selects voter i’s
top alternative for any profile π.

Theorem 4 (Gibbard (1973), Sattherwaite (1975)). If f is strategy-proof and takes at least
3 different values, then f is dictatorial.

The proof sketch that we discussed in the classroom was also from Chapter 9.2 of Hand-
book of Algorithmic Game Theory.

As we see, the manipulability of the plurality and the Borda rules are not their faults but
an unavoidable consequence of being non-dictatorial. Can we escape this impossibility by
allowing randomization, i.e., considering voting rules that output a probability distribution
over A from which then the winner is sampled? As it was shown by Gibbard (1978), random-
ization alone does not open any new possibilities, and any randomized strategy-proof rule
can be decomposed as randomization over already familiar rules: those that take at most
two values or dictatorships.

In the subsequent lectures, we will discuss workarounds for today’s impossibilities.

https://www.cs.cmu.edu/~sandholm/cs15-892F13/algorithmic-game-theory.pdf
https://www.cs.cmu.edu/~sandholm/cs15-892F13/algorithmic-game-theory.pdf


Chapter 5

Escaping impossibilities: domain
restriction

At the end of the previous lecture, we formulated the Gibbard-Sattherwaite theorem stating
that there are no non-trivial non-manipulable rules for non-binary decisions. There are
several ways to escape this impossibility result:

• domain restriction: Let’s add some extra structure on preferences that the agents can
have.

• complexity-theoretic barriers: Maybe a rule is manipulable but finding a profitable
manipulation is nearly impossible as it requires unlimited computational resources or
detailed knowledge of others’ preferences.

• typical behavior aka non-worst-case approach: Maybe there are preference profiles where
the rule behaves poorly — e.g., is manipulable — but they are rare.

• quantitative relaxation of requirements: Maybe a rule is manipulable, but the manipu-
lator cannot gain much by the manipulation.

• randomization: Let’s allow for rules that sample the outcome at random with a distri-
bution depending on the profile of preferences.

There is synergy between these ideas. For example, as we discussed, randomization alone
does not help, but it does if combined with a domain restriction.

In this lecture, we will see examples of how a domain restriction works. This is the main
method to cope with impossibilities.

5.1 Domain restriction and utilities

Previously, we’ve assumed that each agent can have an arbitrary strict preference ≻i over
the set of alternatives A. A domain restriction refers to altering one or both “arbitrary” and
“strict”.

19
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A useful tool to describe a domain restriction is using utility functions. We say that a
function u : A→ R is a utility function representing ≻ if and only if

a ≻ b⇔ u(a) > u(b).

We say that the two utility functions u and v are equivalent if there is a strictly monotone-
increasing function g : R → R such that v(a) = g(u(a)) for all alternatives a. Equivalent
utility functions define the same preferences, and one can think of preferences as a class of
equivalent utility functions.

Utility functions can represent not only strict preferences but also preferences with in-
differences. For example, if u(c) = 3, u(a) = u(b) = 1, and u(d) = 0, the corresponding
preferences are as follows:

≻
c

{a, b}
d

in other words, the agent is indifferent between a and b, prefers c to both of them, and prefers
both a and b to d. In what follows, we will write e ⪰ f to indicate that e is either strictly
preferred to f , or that the agent is indifferent between the two, or that e = f .

To describe a domain restriction, we will specify the functional form of utilities.

5.2 Dichotomous domain

In the dichotomous domain of preferences, each agent’s preference ≻i corresponds to a utility
function ui : A → {0, 1}, i.e., each agent either approves or disapproves each of the alterna-
tives and is indifferent between all those approved and all those disapproved.

The approval voting rule f selects an alternative approved by the maximal number of
voters. It has the following properties:

• it treats all the voters and all the alternatives in a symmetric way (is anonymous and
neutral)

• if all the voters have the same preferences and approve just one alternative, this alter-
native gets selected (a version of unanimity).

In particular, any alternative a ∈ A can be selected for some preference profile.
Recall the definition of strategy-proofness. It remains unchanged even though now we

allow for indifferences. A rule f is strategy-proof if for any profile (≻i)i∈N of preferences and
any agent i, there is no ≻′

i such that

f (≻1, . . . ,≻i−1,≻′
i,≻i+1, . . . ,≻n) ≻i f (≻1, . . . ,≻n) .

Proposition 1. The approval voting rule is strategy-proof.
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Proof. Consider a profile π = (≻i)i∈N and a voter i. If the alternative a = f(π) is approved
by i, then i has no profitable manipulation ≻′

i as she is already maximally happy (she gets
an alternative from her top indifference class). If a is not approved by i, then by pretending
that she likes alternatives that she actually disapproves or by pretending that she dislikes
alternatives that she actually approves, she can only make her disliked alternatives win. In
other words, if the rule selects i’s disapproved alternative a, i’s manipulation can only result
in another disapproved alternative a′ being selected.

In 2016, the specialists on computational social choice (COMSOC) conducted voting over
voting rules to rank them by attractiveness. The approval voting won. By coincidence, the
procedure used was a version of the approval voting that ranks the alternatives by the number
of approvals. No causality is suspected, though :-)

Note that the rules designed for a particular domain restriction can be used outside of
this domain but may lose their good properties. In particular, approval voting can also be
used if agents have strict preferences over alternatives A. Then, however, each voter faces a
strategic decision of choosing a threshold such that all the alternatives above are approved
and below are disapproved.

5.3 Single-peaked preferences

Assume that the set of alternatives A is a subset of the real line R (or the real line itself).
Each agent i has an ideal point ai on this line called i’s peak, and the closer an alternative is
to i’s peak, the more it is preferred by i. Denote by > the natural ordering on the real line.
Formally, we say that i has single-peaked preferences if there is an alternative ai such that

x < y < ai ⇒ x ≺i y ≺i ai and ai < x < y ⇒ ai ≻i x ≻i y.

Equivalently, the utility function ui has a peak at ai and decreases to the left of ai and to the
right of it. The notion of single-peakedness restricts the structure of preferences on both sides
of the peak but does not restrict how the alternatives to the left are compared to alternatives
to the right.

Single-peaked preferences are natural if we think of candidates located on the conservative-
liberal scale, decide where to locate a facility on the road, or choose the temperature in the
room, tax rate, or production level of any other public good.

What would be a good mechanism for finding a compromise in a profile of single-peaked
preferences? The first one that comes to mind is the mean: it uses the information about
the peaks only and outputs

a1 + a2 + . . .+ an
n

.

However, it is easy to see that the mean is manipulable. Indeed, if the mean equals m and
ai > m, then i can pretend that her peak is a′i = ai + n(m− ai) so that the mean after the
manipulation coincides with her true peak ai.

1

1Even if the data is not generated by strategic agents, the mean is sensitive to outliers in the data-
generating process.
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What can we use instead of the mean? The median! For a profile (≻1, . . . ,≻n), the
median is the alternative a = median(≻1, . . . ,≻n) such that

|{i : ai ≥ a}| ≥ n

2
and |{i : ai ≤ a}| ≥ n

2
.

We assume that n is odd so that the median is uniquely defined.

Proposition 2. The median rule is strategy-proof.

Proof. Consider a voter with ai ̸= median(≻1, . . . ,≻n). If she reports a′i instead of ai and
a′i is on the same side of the median as ai, then nothing changes. The only way i can affect
the median is by choosing a′i on the other side of the median. In this case, however, the
median can only move further away from the true peak ai. Hence, there are no profitable
manipulations.

Any k’th order statistic also gives a strategy-proof rule for a similar reason. The median
corresponds to k =

[
n+1
2

]
. Chapter 10 of Handbook of Algorithmic Game Theory contains a

characterization of even a more general class of strategy-proof rules called generalized median
rules.

Even in non-strategic data, the rule of thumb is to use the median instead of the mean
whenever possible to make robust predictions.

5.4 House-allocation domain

This domain captures allocation of private goods without money transfers, e.g., public hous-
ing, charity, or organ transplants.

There is a set H = (h1, h2, . . . , hm) of “houses.” For simplicity, we assume that m is
bigger or equal to the number of agents n. Each agent i has strict preferences ≻i over H and
is interested in receiving exactly one house.2

The set of alternatives A consists of injective maps µ : {1, . . . , n} → H that specify a
house received by each agent. We will refer to µ as allocation or matching. The preferences
over allocations are defined as follows:

µ ≻i µ
′ ⇔ µ(i) ≻i µ

′(i).

In other words, an agent cares only about her house and is indifferent to what other agents
receive.

Serial Dictatorship (SD) aka the priority mechanism3 is omnipresent in practice: There
is a fixed order of agents σ (a permutation of {1, . . . , n}), agents come sequentially according
to this order and pick their best house among available ones until every agent is allocated a
house.

2The assumption of strict preferences is not very realistic and is imposed for simplicity. Usually, there are
different housing types, and an agent is indifferent between houses of the same type.

3For resource allocation, rules are often called mechanisms or procedures.

https://www.cs.cmu.edu/~sandholm/cs15-892F13/algorithmic-game-theory.pdf
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This procedure defines a map (≻1, . . . ,≻n) → µ. Note that there is no need to implement
this procedure in this dynamic way: agents can submit their preferences, then we run the
serial dictatorship algorithm on these preferences and so determine who gets what.4

Proposition 3. Serial Dictatorship is strategy-proof.

Proof. Assume an agent i misreports her preference over houses. Then either the house that
she gets remains the same, or at the time she picks the house from the set of available houses
H ′ ⊂ H, she selects some other house instead of her most preferred one µ(i). We conclude
that i cannot be better off by manipulation.

Another reason to like Serial Dictatorship is that it produces non-improvable outcomes.
This is captured by the following notion of Pareto Optimality which is the central efficiency
concept in economics and is applicable beyond the house allocation domain.

Definition 1. For a profile of preferences (not necessarily strict) (≻1, . . . ,≻n) over A, an
alternative a is Pareto Optimal if there is no other alternative b such that b ⪰i a for all i and
b ≻j a for some j.

A rule is Pareto Optimal if it always selects a Pareto Optimal alternative.

In the context of house allocation, Pareto Optimality of µmeans that we cannot reallocate
houses so that no agent is harmed (either strictly prefers the new allocation or receives the
same house), and some agent strictly prefers her new house.

Proposition 4. Serial Dictatorship is Pareto Optimal.5

Proof. The first agent to pick i = σ(1) receives her best house h = µ(i), and so her allocation
cannot be improved. Eliminate (i, µ(i)) and repeat the argument. We conclude that without
harming the allocation of agents σ(1), . . . , σ(t−1), the allocation of σ(t) cannot be improved.
Thus Serial Dictatorship is Pareto Optimal.

5.5 Open problem: characterize random serial dicta-

torship (RSD)

Sometimes there is a natural priority ordering σ, say, by the application date for social
housing or urgency of transplantation needed. But what should we do if there is no natural
ordering and all the agents have equal rights for resources? Take σ uniformly at random!
The outcome is known as Random Serial Dictatorship (RSD). Denote by pµ(≻1, . . . ,≻n) the
probability that an allocation µ is chosen by RSD.

Why is this a good idea? RSD is:

4This equivalence is a particular case of the general phenomenon called the revelation principle: any
mechanism — no matter how complicated, e.g., dynamic — is equivalent to a “direct revelation mechanism”,
where agents submit their preferences and then the original mechanism is emulated inside a black box.

5The converse is also true. Namely, for any Pareto Optimal µ, there is an ordering σ of agents producing
µ. You can try proving it yourself (Hint: show that for any Pareto Optimal µ, there is an agent receiving
her most preferred house; she must be the first dictator) or check the paper by Abdulkadiroğlu and Sönmez
(1998).
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• Anonymous (agent-symmetric): treats all agents the same way.

• Efficient: only Pareto optimal allocations µ appear with non-zero probability, i.e.,
pµ > 0 ⇒ µ is Pareto Optimal.6

• Strategy-Proof:7 For any profile of preferences (≻1, . . . ,≻n), any agent i and utility
function ui representing her true preference ≻i, there is no misreport ≻′

i such that∑
µ

pµ(≻1, . . . ,≻′
i, . . . ,≻n)ui (µ(i)) ≥

∑
µ

pµ(≻1, . . . ,≻i, . . . ,≻n)ui (µ(i)) .

In other words, the expected utility from misreporting never exceeds that from staying
truthful.

A long-standing high-stake easy-to-formulate hard-to-solve conjecture in economic design is
to show that these properties characterize RSD. We say that two randomized mechanisms are
equivalent if, for each profile, each agent i, and each house h, the probability that µ(i) = h
is the same under these two mechanisms.

Conjecture 1. If n = m, then any randomized mechanism satisfying Anonymity, Efficiency,
and Strategy-proofness is equivalent to RSD.

For n = 3, this conjecture is proved in the influential paper by Bogomolnaia and Moulin
(2001). Recently, Brandt et al. (2023) have developed a computational technique demon-
strating that the conjecture also holds for n = 4 and 5, but no analytic proofs for n ≥ 4 have
been published so far. If you find the conjecture interesting, check this thread on Twitter as
well as several related threads by Nick Arnosti.

6This type of efficiency of randomized mechanisms is known as ex-post efficiency. It requires that the
outcome is efficiency after the lottery has been realized.

7We need to adjust the familiar definition to allow for randomized outcomes. There are different ways to
do that, and the one we use is known as Stochastic-Dominance-Strategy-Proofness.

https://twitter.com/NickArnosti/status/1486443382323003397?s=20&t=v-4btn9UcWMFDBnfYS3qug


Chapter 6

Escaping impossibilities: complexity
barriers

The Gibbard-Sattherwaite theorem demonstrates that any non-trivial voting rule defined on
the full domain of strict preferences is manipulable. In the first part of this lecture, we will
discuss complexity-theoretic barriers to manipulation. The idea is that some rules are hard
to manipulate just because finding a manipulation requires solving a computationally hard
problem.

In the second part of the lecture, we will discuss an alternative non-axiomatic approach
to the design of voting rules based on maximum likelihood estimation.

6.1 Complexity of manipulations

The study of manipulation complexity was pioneered by Bartholdi et al. (1989b,a). Their
papers attracted the attention of computer scientists to the problems of social choice giving
birth to the field of computational social choice or COMSOC. Our discussion is largely based
on two sources: Chapter 6 of Handbook of Algorithmic Game Theory offers a technical
survey of results and Faliszewski and Procaccia (2010)1 give an informal introduction to
manipulation complexity.

Today we consider the case of a finite number of alternatives A = {a, b, c, . . .} and n
voters having a profile of strict preferences π = (≻1, . . . ,≻n) over A. A voting rule is a map
assigning a winning alternative to each π.

6.1.1 Hard-to-compute rules.

A rule can be hard to manipulate just because its outcome is hard to compute, even if all
agents are truthful.

We will need to measure how different the two preferences ≻ and ≻′ over A are. For this
purpose, we use the Kendall tau distance between two permutations. In our context, it is

1The paper is available via the link.
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https://www.cs.cmu.edu/~sandholm/cs15-892F13/algorithmic-game-theory.pdf
https://ojs.aaai.org/index.php/aimagazine/article/download/2314/2180
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defined as follows:

dK(≻,≻′) = |{(a, b) ∈ A× A : a ̸= b, a ≻ b, a ≺′ b}| ,

i.e., the distance is the total number of pairs of alternatives where the two preferences disagree.
An equivalent definition of dK is the minimal number of flips of adjacent alternatives in the
ranking ≻ needed to obtain ≻′ out of it. This number is equal to the number of steps made by
the bubble-sort algorithm, and, for this reason, dK is sometimes called bubble-sort distance.

To define the Dodgson2 voting rule on a profile π = (≻1, . . . ,≻n), we compute the Dodgson
score of an alternative a as the minimal sum of distances

∑n
i=1 dK(≻i,≻′

i) over profiles π
′ =

(≻′
1, . . . ,≻′

n) such that a is the unique Condorcet winner for π′. The Dodgson rule selects an
alternative with a minimal score.

By the construction, the Dodgson rule is Condorcet consistent, i.e., the rule selects a
Condorcet winner whenever it exists.3

Theorem 5 (Bartholdi et al. (1989a)). Computing the outcome of the Dodgson rule is NP-
hard.

In practice, NP-hardness means that there are instances of the problem (preference pro-
files) such that the solution cannot be found substantially faster than exhaustively checking
the whole space of parameters.4 The hardness, however, does not exclude easy-to-solve in-
stances5 and the presence of efficient heuristics finding/approximating the answer for all/most
of all instances. One such approach is based on using integer linear programming solvers.
We will illustrate it for the next rule we discuss.

Consider a ranking rule π = (≻1, . . . ,≻n) →≻π that outputs the ranking ≻π=≻ mini-
mizing the sum of distances

n∑
i=1

dK(≻i,≻) → min .

This rule is known as the Kemeny-Young rule.
The Kemeny-Young rule is often used in practice for ranking aggregation. The corre-

sponding voting rule which outputs the top-ranked alternative is Condorcet consistent and
never selects a Condorcet loser.

Theorem 6 (Bartholdi et al. (1989a)). Computing the outcome of the Kemeny-Young rule
is NP-hard.

This hardness makes the rule hard to manipulate but also hard to compute in problems
with many alternatives. Note that the hardness result holds even if the number of agents

2A mathematician Charles Dodgson is also known as Lewis Carroll, the author of Alice’s Adventures in
Wonderland.

3The Dodgson rule may, however, select a Condorcet loser.
4For the Dodgson rule, this means that we need to compute the score for each of the alternatives and, to

do that, we need to check all the possible profiles π′ (a set of hyper-exponential size!).
5For example, profiles admitting a Condorcet winner.
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n = 4 is fixed. Usually, the Kemeny-Young rule is computed via the following optimization
problem.

Let xab be the indicator of a ≻π b. A collection (xab)a,b∈A,a ̸=b corresponds to a valid
ranking if and only if

xab ∈ {0, 1}, xab + xba = 1, xab + xbc + xca ≤ 2.

The second condition means that the ranking is strict, and the third one captures transitivity.
Finding the outcome of the Kemeny-Young rule boils down to minimizing

n∑
i=1

dK(≻i,≻) =
∑
a̸=b

xab |{i : b ≻i a}|

over such collections (xab)a,b∈A,a ̸=b. This problem can be fed to any commercial integer LP
solver.

6.1.2 Hard-to-manipulate easy-to-compute rules.

Plurality, Borda, and, more generally, all the scoring rules are easy to compute; namely, there
is a polynomial algorithm computing the outcome for any profile, and this algorithm is given
by the definition of the rule. Are these rules easy to manipulate? Let us first formalize this
question.

Manipulation problem:
Input: a set of alternatives A, a voting rule f , preferences of all voters except for the first
one (≻2,≻3, . . . ,≻n), an alternative a ∈ A
Question: Does there exist ≻′

1 such that a = f(≻′
1, . . . ,≻n)?

6

If f is computable in polynomial time, then this problem belongs to the class NP as the
positive answer comes with a simple proof: the preferences ≻1.

For Plurality, the manipulation problem has a trivial solution: select arbitrary ≻1 with
a at the top and check if a wins. For Borda and all the scoring rules, the following greedy
algorithm solves the manipulation problem in polynomial time (Bartholdi et al., 1989b):

• Fill the ranking ≻1 sequentially, from top to bottom:

• Place a at the top.

• While there is an unranked alternative b

– If there is b that can be placed next without preventing a from winning, place it
next. Otherwise, return “no.”

6The true preferences ≻1 of voter 1 is not included in the input of the manipulation problem for the
following reason: If the manipulation problem is solvable in polynomial time, then for all preference profiles
π = (≻1, . . . ,≻n) where voter 1 has a profitable manipulation, this manipulation can be found in polynomial
time. Indeed, for each alternative a preferred by voter 1 to the truthful outcome f(π), she can check whether
there exists ≻′

1 such that a = f(≻′
1,≻2 . . . ,≻n). Thus finding a profitable manipulation boils down to solving

the manipulation problem a linear number of times.
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Repeat.

• If all alternatives are ranked, return “yes”.

Only three voting rules are known to be computable in polynomial time, but the manip-
ulation problem is hard for them (STV, Copeland, and Ranked Pairs). We will discuss STV
and Copeland. The third one, Ranked Pairs relies on pairwise majority comparison similar
to Copeland; you can read about RP on Wikipedia.

The single transferable vote (STV), also known as Plurality with instant runoff, works as
follows:

• Find an alternative b with the minimal number of agents who top-rank it. Eliminate b.

• Repeat until only one alternative is left. This alternative is the winner.

STV is quite popular in practice and is used in political elections in Australia and New
Zealand. It inherits flaws of Plurality: it may not select a Condorcet winner and may select
a loser. However, STV has one clear advantage.

Theorem 7 (Bartholdi and Orlin (1991)). The manipulation problem for STV is NP-hard.

The Copeland score of an alternative C(a) is equal to the total number of alternatives
defeated by a in the majority comparison: C(a) = |{b ∈ A : a ≻maj b}| . The Copeland rule
selects the alternative with the highest score.

Theorem 8 (Bartholdi et al. (1989b)). The manipulation problem for Copeland is NP-hard.

The Copeland rule is prone to ties, and the hardness result is specific to a particular tie-
breaking: if there are several alternatives with the maximal score, the one with the highest
“second-order Copeland score” C2(a) =

∑
b≺maja

C(b) is selected.
This nuance highlights a weakness of the plain complexity-theoretic approach. Hardness

is defined as the worst-case notion, and the manipulation may be deemed hard because it is
hard for a particular knife-edge class of instances: for example, in the case of the Copeland
rule, hardness comes from instances with lots of ties. There are results indicating that for
manipulable rules, even a random manipulation is likely to be successful; see (Faliszewski
and Procaccia, 2010) for the modern debate.

6.2 Voting rules as instruments to discover ground truth

We have not discussed the origin of agents’ preferences ≻i. Are they subjective opinions or
noisy signals about some ground truth reflecting the underlying true ranking ≻? While the
answer is not apparent in the context of political elections, it is apparent in crowdsourcing.

Think of a group of n workers on Amazon Mechanical Turk who are asked to perform the
data labeling, say, are asked whether there is a cat in the photo θ = 1 or not θ = 0. Assume
that each worker i gives a correct answer ai = θ with probability 1 − ϵi and mistakes are
independent across workers.

https://en.wikipedia.org/wiki/Ranked_pairs
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Given the observed answers (a1, . . . , an), the maximum likelihood estimate7 for θ is ob-
tained as follows. We compute the probability that (a1, . . . , an) appear if θ = 1

P((a1, . . . , an) | θ = 1) =
∏

i:ai=1

(1− ϵi)
∏

i:ai=0

ϵi

and the same probability if θ = 0

P((a1, . . . , an) | θ = 0) =
∏

i:ai=1

ϵi
∏

i:ai=0

(1− ϵi).

Then the maximum likelihood estimate θ̂ corresponds to the highest of these two probabilities.

Defining the weight of worker i by wi = ln
(

1−ϵ
ϵi

)
, we obtain that

θ̂ =

{
1, if

∑
i: ai=1wi ≥

∑
i: ai=0wi

0, if
∑

i: ai=1wi ≤
∑

i: ai=0wi

In other words, the maximum likelihood estimator can be seen as the outcome of the weighted
majority rule,8 where the weight of a voter is equal to

ln

(
1

probability of mistake
− 1

)
.

In practice, the probability of a mistake can be computed using historical data. One approach
is to include the so-called “golden” questions where the dataset designer knows the answer.
Alternatively, one can try to compute ϵi on a large dataset as a fixed point of the following
process: initialize ϵi all equal; compute the maximum likelihood estimate; for each worker
update ϵi to be the fraction of questions where she disagrees with the estimate; repeat until
the process stabilizes.

Now consider a less elementary example of ranking aggregation. Again≻ is the underlying
true ranking, and each voter’s preference ≻i is a random perturbation of ≻. The commonly
used model for random perturbation of a given ranking is the Mallows model:

P(≻i|≻) = C · λdK(≻i,≻),

where λ ∈ (0, 1) is a fixed parameter, dK is the Kendall tau distance, and C is a constant
chosen so that the sum of probabilities is equal to 1.

Assuming that the perturbations are independent across agents, the probability of ob-
serving a profile (≻1, . . . ,≻n) is equal to

P ((≻1, . . . ,≻n) |≻) = Cn · λ
∑n

i=1 dK(≻i,≻).

The maximum likelihood estimate for ≻ is the ordering ≻̂ that minimizes
∑n

i=1 dK(≻i, ≻̂).
We obtain another justification for using the Kemeny-Young rule.

7Recall that for a data-generating process depending on an unknown parameter θ ∈ Θ, the maximum
likelihood estimate for θ is the value θ̂ ∈ Θ that maximizes the probability P(observed data | θ = θ̂).

8We assume that the set of alternatives is A = {0, 1} and the answer ai of worker i is represented via the
preference ai ≻i 1− ai.



Chapter 7

Quasilinear domain, introduction to
auctions

In this lecture, we start discussing auctions, one of the first practical successes of the theory
of economic design. In our course, the treatment of this topic is close to that in lectures
13—16 of Incentives in Computer Science by Tim Roughgarden. The order and terminology
are different, though.

From a more general perspective, we will be talking about making collective decisions
(e.g., deciding who gets the item) in the presence of monetary transfers. This is captured by
arguably the most important domain restriction: the quasilinear domain of preferences. In
this lecture, we will focus on the problem of allocating one good to n agents and will now
describe the quasilinear domain in this case.

7.1 How to model selling 1 item to n agents?

We have an item — a good g — to allocate to one of n agents. Agents may have different
valuations for the good. We denote by vi(g) the valuation of agent i, i.e., her maximal
willingness to pay for this good. If i receives g and pays pi, her utility is vi(g) − pi. Such
utilities are called quasilinear as they are linear in money.

Let us put this into the familiar context of alternatives and preferences. An allocation is
a function µ : {1, . . . , n} → {g, ∅} such that |{i : µi = g}| ≤ 1. The interpretation: µi = g
means that agent i receives the good, µi = ∅ means that i receives nothing, and there is at
most one agent who gets the good. The set of alternatives is the set of all possible allocations
accompanied by the vector of payments:

A = {(µ, p1, . . . , pn)}.

The preferences are defined using utility functions. The utility of agent i is equal to

ui(µ, p1, . . . , pn) = vi(µi)− pi.

30
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We assume the normalization vi(∅) = 0. Agent i prefers one alternative to another if it gives
her higher utility, i.e.,

(µ, p1, . . . , pn) ≻i (µ
′, p′1, . . . , p

′
n)

if and only if

ui(µ, p1, . . . , pn) > ui(µ
′, p′1, . . . , p

′
n).

As we see, an agent cares only about her allocation (whether she receives a good or not) and
her payment. Compare this construction to the house-allocation domain: it is similar, but
the new element is the presence of payments.

Note that the preference of i is captured by vi. So we will identify a profile of preferences
π = (≻1, . . . ,≻n) and (v1, . . . , vn). A rule or a mechanism (the latter term is used more often
in the context of resource allocation) is a map π → (µ(π), p1(π), . . . , pn(π)). The standard
definition of strategy-proofness rewrites as follows: there is no profile (v1, . . . , vn), agent i,
and “misreport” v′i such that

vi(µi(v1, . . . , vi−1, v
′
i, vi+1, . . . , vn))− pi(v1, . . . , vi−1, v

′
i, vi+1, . . . , vn) >

> vi(µi(v1, . . . , vi−1, vi, vi+1, . . . , vn))− pi(v1, . . . , vi−1, vi, vi+1, . . . , vn).

The case of n = 1 agent. How should we sell a good to one agent? Consider the following
mechanism:

(µ1, p1) = (g, v1).

The interpretation is that we ask an agent how much she values the good, give her the good,
and charge her the amount she told us. This mechanism is clearly not strategy-proof: for
example, if true v1(g) = 1, why not pretend that v1(g) = 0 and get the good for free?

Consider the so-called posted price mechanism with price p:

(µ1, p1) =

{
(g, p), v1(g) > p
(∅, 0), otherwise

This mechanism is omnipresent in practice: if the agent’s value exceeds the posted price p,
the agent gets the item and pays the posted price. Otherwise, she gets nothing and pays
nothing.

Proposition 5. The posted price mechanism is strategy-proof.

Proof. Assume the true value v1(g) > p. Then the truthful agent gets the utility u1 =
v1(g)−p > 0. Imagine she pretends that her value is v1(g)

′. The only way this can affect the
outcome of the mechanism is if v′1(g) ≤ p. Then she does not get the good and pays nothing
so that her utility u′ = 0− 0 = 0. Thus a manipulation either changes nothing or decreases
the agent’s utility. The case v1(g) ≤ p can be analyzed similarly.
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Several agents. The posted price mechanism extends to n ≥ 1 in a straightforward way.
For example, we can look at all the agents whose values are above the posted price and
allocate the good to the one with the lowest number:

(µi, pi) =

{
(g, p), i = min{j : vj(g) > p}
(∅, 0), otherwise

Alternatively, we could select a winner among {j : vj(g) > p} at random or break the tie
in any other way independent of the values reported by {j : vj > p}. Mimicking the proof
above, we see that this mechanism is also strategy-proof.

This mechanism has another good feature. No truthful agent gets negative utility1; this
property is called individual rationality and means that no agent will regret participating in
the mechanism. The posted price mechanism is also easy to implement. All these reasons
make it a default choice to sell goods in practice.

Why do people need any other mechanisms, such as auctions? There are several reasons:

• We may not know what price p to set. What if we sell something unique such as an art
piece or a bandwidth of 5G spectrum? These objects do not have a well-defined market
price p as there is no free market where they are traded, e.g., they are of interest to just
a few potential buyers. For this reason, we need a mechanism eliciting buyers’ values.

• In some cases, the market is so volatile and the number of goods to price is so big
that we cannot price them all (or if we do, this results in under/overpricing). This is
the case for search engines such as Google, selling advertisement slots for each possible
search query.

• When a government sells resources to a private sector (e.g., 5G spectrum or fishing
quotas), the revenue may be of secondary importance or at least not the only objective.
The government may aim to allocate resources efficiently: to those who value them the
most. In our setting, this goal corresponds to allocating the good to an agent with the
highest vi(g). The posted price mechanism may fail to do so: it may misallocate the
resource to an arbitrary agent who values it above the posted price or fail to allocate
the resource at all if the posted price is too high.

7.2 Auctions for 1 item and n bidders

Auctions are price-discovery mechanisms that help with all the above concerns.
When discussing auctions, we will refer to the profile of values (v1, . . . , vn) submitted by

agents as “bids”. The first-price auction allocates the item to the highest bidder and charges
her bid:

(µi, pi) =

{
(g, vi(g)), vi(g) > vj(g) ∀j ̸= i
(∅, 0), otherwise

1Check!
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The interpretation is that each agent privately submits their bid to the auctioneer, and the
auctioneer decides who gets the good and how much agents pay. Such auctions are referred
to as “sealed-bid” auctions.

The first-price auction generalizes the one-agent mechanism with which we’ve started the
lecture. So it is not surprising that the first-price auction is not strategy-proof. Indeed, the
winner i, whose true value is vi is better off pretending that her value is only slightly above
the second bid maxj ̸=i vj(g), i.e., submitting v′i(g) = maxj ̸=i vj(g) + ϵ, where ϵ is a small
positive number.

Bidding below your true value is known as bid-shading. The optimal degree of shading
depends on the information that the bidder has about the values and rationality of others.
This makes bidding in the first-price auction a complex strategic decision, making the out-
come sensitive to bidders’ beliefs about their competitors and thus unpredictable. We will
come back to bidding in the first-price auction in subsequent lectures.

Consider the all-pay auction, where each agent pays her bid:

(µi, pi) =

{
(g, vi(g)), vi(g) > vj(g) ∀j ̸= i
(∅, vi(g)), otherwise

It is very unsafe to participate as an agent may end up paying money while getting nothing in
return: a truthful agent may get negative utility, and so the all-pay auction is not individually
rational. As a result, all-pay auctions are even more prone to shading than first-price ones.
This auction format is not used in practice but is extremely important in theory, where it
is used to model contests (e.g., competition between athletes or between teams in crowd-
sourcing competitions such as the Netflix prize): the bid vi(g) is interpreted as the amount
of effort that i decides to exert, the agent with the highest effort gets rewarded while others
waste their effort.

The second-price auction. The most important auction format is the second price auc-
tion:

(µi, pi) =

{
(g,maxj ̸=i vj(g)), vi(g) > vj(g) ∀j ̸= i

(∅, 0), otherwise

As in the first-price auction, the good goes to the highest bidder, but she pays the second-
highest bid. It was first studied by William Vikrey (Nobel Prize in Economics 1996) and
is often called the Vikrey auction. The second-price auction was used in practice before,
e.g., the famous German writer Johann Wolfgang Goethe set up a second-price auction to
determine how much publishers valued his manuscripts.2

2The second price auction is equivalent to another format that looks quite different. This is the so-called
English auction, the format that first comes to mind when we hear the word “auction”: bidders are all in one
room shouting to increase their bids to overbid the current highest bidder. In other words, this is a dynamic
process where the bidders all observe the current maximal bid and have the option to increase it. When
nobody wants to increase, the highest bidder is awarded the good and pays her bid. To win this auction,
the highest-value agent i does not need to raise her bid to her value vi(g) but just to overbid the second
highest-value bidder by a bit. As a result, the good goes to the highest bidder for the price close of the
second-highest value. A similar auction was the main selling format on early eBay.

https://www.econ2.uni-bonn.de/pdf/goethes_second.pdf
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Theorem 9 (Vikrey). The second-price auction is strategy-proof.

The intuition is that bidding slightly above the second-highest bid is the optimal bid-
shading in the first-price auction. The price in the second-price auction already incorporates
this optimal shading.

Strategy-proofness of the Vikrey auction makes it easy to participate. The bidders do
not need to reason about the values of others: no matter what others do, posting the true
value is the best for an agent.

Proof. Consider an agent i with the true value vi(g) who considers reporting v′i(g) instead.
If vi(g) > vj(g) for all j ̸= i, then being truthful gives her strictly positive utility ui =

vi(g)−maxj ̸=i vj(g) > 0. The only way the misreport v′i(g) can affect the outcome is that i
does not get the good anymore, and so her utility is u′i = 0− 0 = 0. Thus this manipulation
is not profitable.

If vi(g) ≤ maxj ̸=i vj(g), then truthful i does not get the good and ui = 0 − 0 = 0. The
manipulation can change the outcome only if v′i(g) > maxj ̸=i vj(g). Then i gets the good and
pays maxj ̸=i vj(g) and so her new utility is u′i = vi(g)−maxj ̸=i vj(g) ≤ 0.

To summarize: a manipulation either does not affect the agent’s utility or decreases it,
i.e., the mechanism is strategy-proof.

In addition to strategy-proofness, the Vikrey auction is individually rational. Indeed, the
winner’s utility is ui = vi(g)−maxj ̸=i vj(g) > 0, and the loser’s utility is uj = 0− 0 = 0, so
no truthful agent gets negative utility.

Let us stress how surprising is what we’ve seen:

• We’ve described a mechanism that extracts information about their true values from
strategic agents.

• It is efficient: always allocates the good to an agent who values it the most.

• Knowing nothing about agents’ values, the revenue received by the auctioneer is close
to the highest bidder’s value.3

3We will see later that a revenue-seeking auctioneer having some statistical information about the bidders
can slightly improve upon the second price auction but not by much.



Chapter 8

Auctions: sponsored search and VCG

In the previous lecture, we considered selling 1 good item to n agents with quasi-linear
preferences and discussed the second-price auction that achieves a surprising combination
of properties: incentivizes truth-telling, is efficient (allocates the good to an agent with the
highest value), and is easy to implement.

In this lecture, we start discussing multi-item auctions. Such auctions play a central role
in the Internet economy, where they are used to sell advertisement slots on web pages.

8.1 Sponsored search and GSP auction

The canonical example is sponsored search: When you type the search query “health insur-
ance” in Google, the page you see combines the organic search results with paid advertise-
ments. A major part of Google’s revenue comes from selling these slots.

How to price these slots? The difficulty is that we are selling as many goods as there are
word combinations, some of them are highly demanded, and some are not; moreover, this
demand may frequently change as new firms enter the market. Originally, the posted price
mechanism was used, which led to over/under-pricing and an overall congested market. In
2002, Google replaced the posted price mechanism that failed to aggregate rapidly-changing
information with the second-price auction that is run every time you google something.
Soon, instead of one advertisement slot for each query, Google started selling several slots
and needed to generalize the second price option. They came up with the generalized second
price auction or GSP that we are going to discuss.

Consider the following toy model of sponsored search (we follow the analysis of Varian
(2007); Hal Varian is the chief economist at Google). For a given query, there are k adver-
tisement slots G = {g1, . . . , gk} ordered according to their appearance on the web page from
top to bottom. The probability that a user clicks on a slot l equals αl ∈ [0, 1]. Users are
likelier to click on top slots, so α1 > α2 > . . . > αk.

There are n advertisers. Advertiser i attributes value βi for being clicked. Hence, her
value for a slot gl is equal to

vi(gl) = αl · βi.

35
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Hence, the profile of preferences can be identified with the vector π = (β1, . . . , βn)
An allocation µ is a function {1, . . . , n} → {g1, . . . , gk, ∅} such that |{i : µi = gl}| ≤ 1 for

all l. A mechanism maps a profile of preferences π to (µ(π), p1(π), . . . , pn(π)). The utility of
agent i is

ui = vi(µi)− pi

and, as usual, we assume that vi(∅) = 0.

Generalized second-price auction (GSP). In 2002, Google started using the following
natural1 generalization of the 1-item second-price auction in their advertisement product
Google Adwords (later renamed as Google Ads):

• Ask agents to submit their “bids” β1, . . . , βn.

• Agents are ordered by their bids. Without loss of generality β1 > . . . > βn.

• Each agent i is allocated the slot gi and charged βi+1 if clicked (i.e., pi = αiβi+1 on
average).2

Formally,
(µi, pi) = (gi, αiβi+1).

If there is just one slot with α1 = 1, this auction coincides with the Vikrey auction. For
k > 1 slots, GSP is equivalent to running k sequential Vikrey auctions, starting with those
with the highest click rates. Unfortunately, GSP turned out to be a wrong generalization of
the Vikrey auction to several slots: it is not strategy-proof and prone to bid-shading. Indeed,
consider two slots

α1 = 0.5, α2 = 0.25

and three advertisers with values

β1 = 9, β2 = 7, β3 = 1.

If all are sincere, agent 1 gets the best slot and pays 7 with a probability of 0.5. So her utility
is

u1 = α1β1 − α1β2 = 1.

Now imagine that she bids β′
1 = 6 instead of her true value. Then she gets the second slot

and pays β3 = 1 for a click. So her utility is

u′1 = α2β1 − α2β3 = 2.

Hence bid-shading allows our agent to get a lower click rate for such a low price that this
manipulation becomes profitable.

1Natural but flawed.
2Here and below we assume that there are enough slots and bidders so that all formulas make sense. If

necessary, we add dummy bidders with βj = 0 or slots with αm = 0.
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Does a strategy-proof mechanism exist, the right generalization of the Vikrey auction?
The answer to this question is positive and is given by the VCG mechanism discussed below.
The use of VCG for advertisement was pioneered by Facebook.

Has Google replaced GSP with VCG? No, and the reason is the trap of manipulable
mechanisms. When agents are used to shading their bids, some of them will continue doing
that by inertia, even if a mechanism is replaced by a strategy-proof one. As a result, the
revenue in the short run will drop. The way Google resolved this issue is by launching a
new product, Google Adsense, with a new interface, extended functionality (advertising on
partners’ websites in addition to sponsored search), and based on VCG. Sometimes it is easier
to build a new product than to repair the old one.

8.2 VCG

VCG stands for the Vikrey-Clarke-Groves mechanism. This mechanism extends Vikrey’s
construction of the second-price auction to the general quasi-linear domain. In the next
section, we will discuss the general construction and adapt it to sponsored search.

Let Ω be the set of outcomes (e.g., different ways to allocate goods to agents). Agent i
has value vi(ω) for ω ∈ Ω. The set of alternatives is

A = {(ω, p1, . . . , pn)}.

A mechanism maps a profile π = (v1, . . . , vn) to (ω(π), p1(π), . . . , pn(π)). Agent i’s utility is

ui = vi(ω)− pi.

For example, in the case of an auction, an outcome ω is an allocation µ and vi(ω) = vi(µi).
Let us generalize the single-item Vikrey auction to this domain. The Vikrey auction is

strategy-proof. Is there a strategy-proof mechanism in the general quasi-linear? Of course,
for example, the one selecting the same outcome no matter what the preferences are. Perhaps,
this is not what we are looking for. What are other attractive properties of the Vikrey auction
that we want to keep? It is efficient; namely, it allocates the good to a bidder with the highest
value. The way to extend this efficiency requirement to the general domain is to require that
the outcome ω = ω∗(v1, . . . , vn) chosen by a mechanism to maximize the sum of values

ω∗ :
n∑

i=1

vi(ω) → max .

The sum of agents’ values is called the social welfare.3

Are there strategy-proof welfare-maximizing mechanisms? This question is non-trivial.
Let’s try to construct one. The choice of ω = ω∗ determines4 the outcome as a function of

3The social welfare objective does not include payments as the idea is to generate as much value as possible
by giving the resources to those who value them the most. Then this value can be redistributed via payments.
In homework, you will explore the connection between welfare maximization and Pareto optimality.

4As usual, in the interest of time, we do not discuss ties.
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agents’ preferences (v1, . . . , vn). So, to define the mechanism, it remains to come up with
payments (p1, . . . , pn) so that the resulting mechanism is strategy-proof.

We want to come up with a payment rule generalizing the second-price payment of the
Vikrey auction. But it is unclear what the second price in the general quasilinear domain is
and who should pay it. To find the right generalization, we need a concept of an externality.

An externality of an agent i is the cost that the presence of this agent imposes on other
agents:

(optimal welfare of agents j ̸= i if i was absent)− (welfare of j ̸= i if i is present).

Formally, i’s externality is equal to

max
ω

∑
j ̸=i

vj(ω)−
∑
j ̸=i

vj(ω
∗).

For example, consider the Vikrey auction and compute the externality of an agent i. If i
is not the winner, then the presence of i does not affect the allocation of the good; hence, the
two sums cancel out, and the externality is zero. If i is the winner, i.e., the highest bidder,
then, without i, the good is allocated to the second-highest bidder, and so

max
ω

∑
j ̸=i

vj(g) = max
j ̸=i

vj(g)

while ∑
j ̸=i

vj(ω
∗) = 0

as none of the agents j ̸= i get the good when i is present. So the externality of the winner
i equals the second bid maxj ̸=i vj(g). We see that in the Vikrey auction, every agent pays
her externality. This perspective allows us to extend the auction to the general quasilinear
domain.

VCG mechanism operates as follows:

• Agents submit their “bids”5 (v1, . . . , vn)

• The outcome ω = ω∗ with maximal welfare

n∑
i=1

vi(ω)

is chosen.

• Each agent i pays her externality

pi = max
ω

∑
j ̸=i

vj(ω)−
∑
j ̸=i

vj(ω
∗).

5These bids are not numbers but functions specifying the value for each possible outcome ω ∈ Ω.
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Theorem 10. VCG is strategy-proof.

Proof. If agent i is truthful, her utility is

ui = vi(ω
∗)− pi = vi(ω

∗) +
∑
j ̸=i

vj(ω
∗)−max

ω

∑
j ̸=i

vj(ω) =

=
n∑

j=1

vj(ω
∗)−max

ω

∑
j ̸=i

vj(ω).

If agent i reports v′i instead of vi, this may change the outcome of a mechanism to some ω′.
As a result, i’s utility becomes

u′i =
n∑

j=1

vj(ω
′)−max

ω

∑
j ̸=i

vj(ω).

The second sum remains unchanged, and the first sum can only decrease as ω = ω∗ maximizes
welfare

∑n
j=1 vj(ω) over all ω. We conclude that no manipulation can increase i’s utility.

Charging an agent her externality aligns individual incentives with social ones, i.e., with
maximizing welfare. This was noted by an English economist Arthur Cecil Pigou in the early
XX century, much before the birth of VCG.6

In addition to strategy-proofness, VCG is individually rational, i.e., no outcome has a
negative value (e.g., if we auction good items and not bad ones such as tasks or other
liabilities).

Proposition 6. Provided that vi(ω) ≥ 0 for all ω, no truthful agent gets negative utility in
VCG.

Proof. We already know that

ui =
n∑

j=1

vj(ω
∗)−max

ω

∑
j ̸=i

vj(ω).

Let ω′ be the outcome maximizing the second sum. Then by the choice of ω∗, the first sum
can only decrease if we replace ω∗ by ω′. Therefore,

ui ≥
n∑

j=1

vj(ω
′)−

∑
j ̸=i

vj(ω
′) = vi(ω

′) ≥ 0.

Thus i gets a non-negative utility.
6His idea now known as “Pigovian taxes” was that charging each citizen consuming a public good her

externality incentivizes the socially-optimal level of consumption and gives a universal recipe to cope with
socially-suboptimal over-consumption of public resources (the phenomenon called the tragedy of commons).
For example, each driver taking a congested road imposes an extra delay on other drivers (this is her

externality), which is monotone with the overall congestion. Toll roads with a toll depending on current
congestion reflect Pigou’s idea.
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8.3 Back to sponsored search

Let us see how VCG adapts to sponsored search.
For this purpose, we need to determine what the welfare-maximizing way to allocate slots

to agents is: We order slots by the click rates α1 > α2 > . . . and agents according to their
bids β1 > β2 > . . . and allocate slot gi to agent i, i.e., µ∗

i = gi.
7 As before, we add dummy

zero slots or dummy zero agents if needed.
VCG for sponsored search is as follows:

• Ask agents to submit their “bids” β1, . . . , βn.

• Agents are ordered by their bids. Without loss of generality β1 > . . . > βn.

• Each agent i is allocated the slot µ∗
i = gi and is charged

1

αi

· (externality of i)

if clicked.8

Let us compute the externality of i explicitly:

max
µ

∑
j ̸=i

vj(µj)−
∑
j ̸=i

vj(µ
∗
j) =

= (v1(g1) + . . .+ vi−1(gi−1) + vi+1(gi) + . . .+ vn(gn−1))−
− (v1(g1) + . . .+ vi−1(gi−1) + vi+1(gi+1) + . . .+ vn(gn)) =

= (α1β1 + . . .+ αi−1βi−1 + αi+1βi + . . .+ αn−1βn)−
− (α1β1 + . . .+ αi−1βi−1 + αi+1βi+1 + . . .+ αnβn) =

=
n∑

j=i+1

(αj−1 − αj)βj.

Thus agent i pays the price
1

αi

n∑
j=i+1

(αj−1 − αj)βj

per click.
From the general properties of VCG, this mechanism is strategy-proof and individually

rational. Another advantage of VCG over GSP is the flexibility and universality of this
approach. It can be easily adapted to the case with different types of ads, different layouts,
and advertisers bidding for different types of events (clicks, scrolling, watching an embedded
video, and so on).

However, as we will discuss next time, using VCG in practice is not as straightforward as
it may now seem.

7Exercise: show that this allocation indeed maximizes the welfare
∑n

i=1 vi(µi).
8An agent is charged with probability αi so that the expected payment equals the externality.



Chapter 9

Combinatorial auctions

In the previous lecture, we considered sponsored search auction, which gives an example
of an auction where several good items (advertisement slots) are auctioned simultaneously.
Although there were multiple goods, agent’s preferences over them were simple: captured
by just one number = the advertiser’s value for receiving a click. This lecture will discuss
auctions where agents have complex preferences over multiple goods. Such auctions are called
combinatorial.

The model is a natural extension of the one discussed before. There are k goods G =
{g1, . . . , gk} for sale and n bidders. A subset of goods is called a bundle. Agent i attributes
value vi(B) to each bundle B ⊂ G, where

vi : 2
G → R+.

An allocation µ is a function {1, . . . , n} → 2G such that µi∩µj = ∅ for all i ̸= j. A mechanism
maps a profile of preferences π = (v1, . . . , vn) to (µ(π), p1(π), . . . , pn(π)). The utility of agent
i is

ui = vi(µi)− pi.

The simplest case is when the agent’s value for a good does not depend on the presence
of other goods in the bundle, i.e.,

vi(C ∪ {g}) = vi(C) + vi({g})

for all C and g. Consequently,

vi(B) =
∑
g∈B

vi({g}).

Such preferences are called additive. In real-life problems, additivity is often violated. We
say that two goods g and g′ are complements for i if

vi({g, g′}) > vi({g}) + vi({g′})

and substitutes if
vi({g, g′}) ≤ vi({g}) + vi({g′}).
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Combinatorial auctions are those auctions where preferences exhibit complicated patterns
of strong complementarity or substitutability. These definitions straightforwardly extend to
two disjoint bundles B and B′.

The first historical example of a combinatorial auction is the auction for takeoff and
landing slots at various airports.1 Agents are airlines. Takeoff and landing slots are strong
complements, as getting one without another is useless. On the other hand, the two close
takeoff slots at the same airport are substitutes as a scheduled flight can use one or another
but does not require both. Similar phenomena arise in auctions for railway routes.

The second and most important example is spectrum auctions. In the nineties, many
countries auctioned GSM spectrum among telecom companies; similar auctions have been
run for 1G, 2G, 3G, 4G, 5G, ... spectra. The goods are the rights to use a particular bandwidth
over a particular region. Roughly, these rights over different regions are complements and
over the same region are substitutes.

9.1 Why not VCG?

VCG mechanism discussed in the previous lecture is immediately applicable to combinatorial
auctions and is strategy-proof, efficient, and individually-rational. It may seem to be a
universal, off-the-shelf recipe. However, until recently, it has not been used in practice
because of the following complexity impediments:

• Preferences elicitation complexity: Imagine we are selling k = 20 items.2 Assum-
ing that agents’ value function vi is generic, to run VCG, each agent has to report an
impossible number 2|G| = 220 of values.

Hence, to use VCG, we need to restrict preferences that agents can report to those
having a particular structure, both flexible enough to capture the variety of real agents’
preferences and simple enough to make reporting possible. This boils down to designing
a bidding interface or a “bidding language”, a tricky practical design problem having
no universal answers and requiring a deep understanding of a particular market and
agents’ goals.3 For this reason, VCG is by no means an off-the-shelf solution.

• Winner determination complexity: To use VCG, we must be able to compute an
allocation µ = µ∗ maximizing welfare

µ∗ :
n∑

i=1

vi(µi) → max .

This problem is referred to as winner determination.

1Caltech researchers Grether et al. (1979) contributed to developing these first auctions. Their proposal
was along the lines of the VCG mechanism.

2There are hundreds of items in a typical spectrum auction.
3Bidding interface for advertisers on Facebook and Google Adsense are examples of how this problem can

be resolved.
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Surprisingly, winner determination is computationally hard for seemingly innocent
classes of value functions vi (see an example below). As a result, in large or frequently
run auctions such as those in advertising, one is forced to rely on heuristic algorithms
that do not guarantee finding the exact solution but an approximation. This not only
creates an extra algorithmic complication but also has a side effect: the approximate
VCG may fail not only the requirement of efficiency, but also strategy-proofness and,
most importantly, individual rationality.

To illustrate computational complexity, consider the so-called single-minded agents. An
agent i is single-minded if she has a desired bundle Bi ⊂ G such that vi(B) = γi > 0 whenever
B contains Bi and is zero, otherwise. So each agent’s preferences are captured by the pair
(Bi, γi).

Proposition 7. Winner determination for single-minded agents is NP-hard.

Proof. To prove hardness, it is enough to show that if we had a fast algorithm for winner
determination, we would also get a fast algorithm for another problem that is known to be
hard. As this benchmark problem, we use the NP-hard problem “weighted independent set”:
given a graph (V,E) and vertex weights (αv)v∈V , find an independent set4 with the maximal
total weight.

Given (V,E) and (αv)v∈V , we consider the following winner-determination problem with
single-minded agents. We enumerate vertices V so that {1, . . . , n} ≃ V , goods are edges
G ≃ E, agent i’s desired bundle Bi consists of all the edges incident to i, the intensity
γi = αi. The winner-determination problem, for this instance, is equivalent to finding a
weighted independent set of the maximal weight. Hence, winner determination is at least as
hard as “weighted independent set.”

9.2 What if not VCG? Simultaneous ascending auc-

tions.

If you need to sell k goods, you may try selling them separately, say, by running k sequen-
tial second-price auctions. This is, however, a notoriously bad idea if agents’ preferences
exhibit strong complementarity/substitutability.5 Indeed, this sequential format is prone to
the so-called exposure problem: an agent may end up with a useless bundle (e.g., a single-
minded agent fails to get her desired set of goods) but pay for it. For this reason, selling
goods separately makes participation extremely risky, and an agent may regret participating

4A set of vertices is independent if there are no edges between any two of them.
5Exercise: Check that if agents’ preferences are additive, then the VCG mechanism is, in fact, equivalent

to k independent second-price auctions for each of the goods.
Note also that additive preferences are relatively easy for agents to report as they just need to come up

with k (not 2k) numbers. In particular, none of the two complexity barriers of VCG are present for additive
preferences.
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(individual rationality is violated), resulting in inefficient allocation and unpredictable out-
comes. Excessive risk makes agents cautious and leads to excessive bid-shading and overall
low revenue.

In practice, the standard recipe of selling several goods to agents with complex preferences
is by running simultaneous ascending auctions : all the goods are sold simultaneously over a
period of time, agents observe the current bid for each of the items, can increase it, and the
highest bidder gets the good.

Throughout this dynamic process, bidders learn some information about their competi-
tors’ preferences by observing their previous bidding behavior, may reassess their chances to
get the desired bundle and adapt the bidding strategy accordingly. Arguably, this procedure
leads to a more efficient allocation of resources and partially eliminates the exposure problem.

Again a simultaneous ascending auction cannot be seen as an off-the-shelf solution, as the
way it performs depends dramatically on the nuances of its implementation. For example,
each bidder has an incentive to learn about other bidders’ preferences before bidding herself.
To facilitate bidding, one needs to impose activity rules that do not allow a bidder to wait
until the very last moment.6 Another pitfall is that observability of bids facilitates tacit
collusion: agent’s first bids may signal which goods she is interested in and which she is
ready to leave to competitors. Particularly, when the number of competitors is small, and
the market can be partitioned into bundles-substitutes, one per competitor, there is a high
chance that the competitors will get their bundles for a minimal price.

All these nuances make practical auction design both science and art. Spectrum auctions
run in different countries indicate how important these nuances are for the success or failure
of the auction. For stark historical examples, see lecture 8 of Algorithmic Game Theory
by Tim Roughgarden. The insights on how to deal with pitfalls of simultaneous ascending
auctions are discussed in this concise survey by Peter Cramton. The first successful spectrum
auctions were designed in the 1990ies by Preston McAfee7 and Nobel laureates Paul Milgrom
and Robert Wilson. I recommend the insightful and easy-to-read book Discovering Prices by
Paul Milgrom.

6When everybody has the incentive to wait until the very last moment, the outcome becomes unpre-
dictable; many markets with a strict deadline suffer from such failure. A well-known example is sniping on
eBay (Roth and Ockenfels, 2002).

7Preston McAfee was a professor at Caltech! Now he works at Google.

http://timroughgarden.org/notes.html#:~:text=CS269I%2C%20fall%202016)-,Algorithmic%20Game%20Theory%20(CS364A%2C%20fall%202013),-The%20book%20Twenty
https://www.cramton.umd.edu/papers2000-2004/cramton-simultaneous-ascending-auction.pdf
https://cup.columbia.edu/book/discovering-prices/9780231175982


Chapter 10

Revenue maximization with one good
to sell

In our previous discussion of auctions, the central role was played by efficiency (the resources
must be allocated to those who value them the most), non-manipulability (no need to strate-
gize and predict the behavior of others ⇒ easy to participate), and individual rationality
(nobody regrets participation ⇒ safe to participate). These concerns are central if we think
of a government allocating resources, but not for a seller whose main concern is revenue. In
this lecture, we will discuss revenue maximization when selling one good item g to n agents.
We will still impose individual rationality to ensure participation but will care less about
strategy-proofness.

Recall the model. There are n agents and one good g. If i receives g and pays pi, her
utility is vi(g) − pi, where vi(g) ≥ 0. If i doesn’t get the good, her utility is vi(∅) − pi with
vi(∅) = 0. An allocation is a function µ : {1, . . . , n} → {g, ∅} such that |{i : µi = g}| ≤ 1. A
mechanism is a map π = (v1, . . . , vn) → (µ(π), p1(π), . . . , pn(π)).

10.1 Optimal posted-price mechanism

Consider the case of n = 1 agent and the posted-price mechanism with price p:

(µ1, p1) =

{
(g, p), v1(g) > p
(∅, 0), otherwise

Seller’s revenue is p if v1(g) > p and 0, otherwise. What p should the seller choose? The
answer depends on the information she has. If she happens to know the exact buyer’s value
(which is very unrealistic), then she can post p = v1(g)− ϵ with some small ϵ > 0 and extract
the whole surplus. Another extreme is when the seller has no idea about how valuable the
item is. Then it is unclear what p to select, and it is better to run an auction to extract some
information about agents’ values.

The middle ground is a situation where the seller knows the cumulative distribution
function F = F (x) = P[v1(g) ≤ x] of the value v1(g) over the population of agents. We
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will assume that F has a density f and use the uniform distribution U([0, 1]) as a running
example.

The goal is to find p maximizing the expected revenue r

r = E[p1] = p · P[v1(g) > p] = p (1− F (p)) .

The trade-off is between selling at a higher price and selling with a higher probability. The
first order conditions for the optimal price p = p∗ give1

p∗ =
1− F (p∗)

f(p∗)
.

A distribution F is called regular if x− 1−F (x)
f(x)

is strictly increasing in x. For regular distri-
butions, the optimal price is unique.

For example, consider the uniform distribution U([0, 1]). Then F (x) = x, f(x) = 1, and
we obtain p∗ = 1− p∗. So the optimal price p∗ = 1

2
and the optimal revenue is 1

4
.

It turns out that one cannot improve upon the outcome of the posted price mechanism
in the case of 1 bidder.

Theorem 11 (Myerson (1981)). Posted-price mechanism with p∗ : p(1 − F (p)) → max
achieves the highest revenue among strategy-proof individually-rational mechanisms.2

Let us stress an interesting phenomenon. If a seller were interested in efficient allocation
of resources, she would always give the good to the buyer by setting p = 0 and deriving
zero revenue. To improve revenue, the seller needs to sacrifice efficiency. We will see this
phenomenon in auctions as well.

10.2 Revenue for the standard auction formats

Now there are n ≥ 2 bidders, and we assume that the bidder’s values vi(g) are independent
identically distributed random variables with some distribution F having density f . The
interpretation is that each bidder knows the realization of her own value and believes that
the values of all others are distributed according to the distribution F (also known to the
auctioneer).3 The auctioneer’s goal is to maximize the expected revenue

r = E[p1 + . . .+ pn] → max

by choosing a format for the auction.

1The quantity H(x) = f(x)
1−F (x) is called the hazard rate of a distribution F and is omnipresent in risk

analysis. If F represents the distribution of time until the first failure of a machine, then H(x) is a failure
intensity at time x provided that the machine has not yet failed. We see that the optimal price equals the
inverse hazard rate.

2Myerson proves a more general result allowing for randomization and lack of strategy-proofness (in this
case, the agent is assumed to choose her optimal manipulation). In particular, Myerson’s result captures a
sequential process of offers and counteroffers.

3The assumption that the values are independent represents the case where values are determined by
bidders’ individual tastes and not by the objective item’s characteristics, in which case the values would be
correlated.



10.2. REVENUE FOR THE STANDARD AUCTION FORMATS 47

10.2.1 The second price auction

We know that the second-price auction

(µi, pi) =

{
(g,maxj ̸=i vj(g)), vi(g) > vj(g) ∀j ̸= i

(∅, 0), otherwise

is strategy-proof, and so each agent bids her true value.
Let us compute the revenue assuming that there are n = 2 bidders with vi(g) ∼ U([0, 1]).

The payment to the auctioneer is equal to

r = E[min{v1(g), v2(g)}].

To compute it, recall how to compute the expected minimum and maximum of i.i.d. ran-
dom variables ξ1, . . . , ξn with distribution F . For this purpose, let us compute the distribution
functions Fmax of max{ξ1, . . . , ξn} and Fmin of min{ξ1, . . . , ξn}:

Fmax(x) = P[max{ξ1, . . . , ξn} ≤ x] = P[ξi ≤ x ∀i] =
∏
i

P[ξi ≤ x] = (F (x))n .

Fmin(x) = P[min{ξ1, . . . , ξn} ≤ x] = 1− P[min{ξ1, . . . , ξn} > x] =

= 1−
∏
i

P[ξi > x] = 1− (1− F (x))n .

By taking the derivatives, we get densities fmax and fmin. Now we can compute the expecta-
tions:

E[max{ξ1, . . . , ξn}] =
∫
R
x · fmax(x)dx = n ·

∫
R
x · f(x) (F (x))n−1 dx

E[min{ξ1, . . . , ξn}] =
∫
R
x · fmin(x)dx = n ·

∫
R
x · f(x) (1− F (x))n−1 dx

Coming back to the revenue of the second-price auction with two uniform bidders, we
obtain

r = E[min{v1(g), v2(g)}] = 2

∫ 1

0

x(1− x)dx =
1

3
.

We see that running the second price auction with two bidders is more profitable than using
the one-bidder posted price mechanism with the optimal price.

10.2.2 The first-price auction

Consider the first-price auction:

(µi, pi) =

{
(g, vi(g)), vi(g) > vj(g) ∀j ̸= i
(∅, 0), otherwise

How to predict its revenue assuming that there are n ≥ 2 bidders with i.i.d. values vi(g)
distributed according to F?
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Since the first-price auction is not strategy-proof, to answer this question, we need to
learn how to predict bidders’ behavior. We expect that bidders are going to shade their
values and agent i with value vi(g) will report some v′i = β(vi(g)); we will refer to v′i as i’s
bid and to β, as a bid-function.

How can we predict what β will be used? One seemingly mild requirement is that this
prediction must not be self-contradictory: if agent i learns our prediction that her competitors
j ̸= i are going to use a bid function β (or comes up with this prediction herself), it is still
in her best interest to bid v′i = β(vi(g)). It turns out that this lack of self-contradiction often
pins down unique β.

Definition 2. We call β an equilibrium bid function4 if for any agent i and any realization
of her value vi(g) = x, her expected utility is maximized if she bids v′i = β(x) assuming that
all other agents j bid v′j = β(vj(g)).

Formally, the expected utility of agent i with vi(g) = x posting a bid b and assuming that
others post v′j = β(vj(g)) is equal to

E [ui | vi(g) = x] =

= x · P
[
µi(v

′
1, . . . , v

′
i−1, b, v

′
i+1, . . . , v

′
n) = g

]
− E

[
pi(v

′
1, . . . , v

′
i−1, b, v

′
i+1, . . . , v

′
n)
]

and must be maximized by b = β(x) for any x ≥ 0.

Let’s find equilibrium β for the first-price auction. Expected utility of an agent i with
value x and bid b is equal to

x · P [b > β(vj) ∀j ̸= i]− b · P [b > β(vj) ∀j ̸= i] . (10.1)

This expression must be maximized by b = β(x). In particular, choosing b = β(y) for some
y ̸= x can only lower the expected utility. Hence,

x · P [β(y) > β(vj) ∀j ̸= i]− β(y) · P [β(y) > β(vj) ∀j ̸= i]

must be maximized over y at y = x.
Let us guess β imposing some extra natural assumptions: β is strictly increasing (the

higher the value, the higher the bid), smooth, and β(0) = 0. By monotonicity,

P [β(y) > β(vj) ∀j ̸= i] = P [y > vj ∀j ̸= i] = (F (y))n−1 .

Thus the maximum of
x · (F (y))n−1 − β(y) (F (y))n−1

over y must be attained at y = x. Hence, the derivative with respect to y

x · f ′(y)(n− 1) (F (y))n−2 −
(
β(y) (F (y))n−1)′

y

4Readers familiar with game theory will recognize that this is just a definition of a symmetric Bayes-Nash
equilibrium.
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must be zero at y = x. Therefore,(
β(x) (F (x))n−1)′

x
= x · f ′(x)(n− 1) (F (x))n−2 .

Integrating from 0 to x we get

β(x) (F (x))n−1 =

∫ x

0

t · f ′(t)(n− 1) (F (t))n−2 dt

and thus5

β(x) =
n− 1

(F (x))n−1

∫ x

0

t · f ′(t) (F (t))n−2 dt.

Consider the case of the uniform distribution U([0, 1]). We get

β(x) =
n− 1

xn−1

∫ x

0

tn−1dt =
n− 1

n
· x.

We see that in the first-price auction with two bidders, each should post half of her true
value! We also see that agents shade their bids less when the competition gets tougher, and
shading disappears in the limit n→ ∞. Let us compute the revenue

r = E[p1 + . . .+ pn] = E [max {v′1, . . . , v′n}] =
n− 1

n
E [max {v1, . . . , vn}] =

=
n− 1

n

(
n

∫ 1

0

t · tn−1dt

)
=
n− 1

n+ 1
.

Surprisingly, for two bidders, we obtain the same revenue of 1
3
as in the case of the second-

price auction.

10.3 The all-pay auction

Let us derive an equilibrium bid function for the all-pay auction with n bidders:

(µi, pi) =

{
(g, vi(g)), vi(g) > vj(g) ∀j ̸= i
(∅, vi(g)), otherwise

The expected utility of an agent i with value x and bid b is equal to

x · P [b > β(vj) ∀j ̸= i]− b.

Substituting b = β(y) and using monotonicity of β, we obtain that

x · (F (y))n−1 − β(y)

5Now, when the explicit expression for β is derived, we should have come back to (10.1) and check that
placing b = β(x) is indeed the best choice for i (this must be checked as the first order conditions that we
used are only necessary for the optimum but may not be sufficient), but we will not do that...
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attains its maximum over y at y = x. Hence,

x · f(y)(n− 1) (F (y))n−2 − β′(y)

must be zero at y = x. We get

β′(x) = x · f(x)(n− 1) (F (x))n−2

and

β(x) = (n− 1)

∫ x

0

t · f(t) (F (t))n−2 dt.

Consider the uniform distribution U([0, 1]). Then

β(x) = (n− 1)

∫ x

0

t · tn−2 dt =
n− 1

n
xn.

In contrast to the first-price auction, the tougher the competition, the more substantial the
shading. What is the revenue? It is easy to compute as every agent pays her bid:

r = E[p1+ . . .+pn] = E
[
n− 1

n
(v1(g))

n + . . .+
n− 1

n
(vn(g))

n

]
= n ·

∫ 1

0

n− 1

n
xndx =

n− 1

n+ 1
.

We get the same answer as for the revenue of the first-price auction (and the second-price
auction for n = 2). Is it a coincidence?

10.4 Revenue-equivalence theorem

Previously we defined efficiency only for strategy-proof mechanisms. For example, the second
price auction is efficient in the sense that the item gets allocated to the agent with the highest
value. We can extend this notion to non-strategy-proof auctions as follows. A mechanism is
efficient if there exists an equilibrium bid function β such that the item gets allocated to the
highest-value agent provided that all agents bid v′i = β(vi).

For example, both the first-price and the all-pay auctions are efficient as β is strictly
increasing, and the good is awarded to the highest bidder.

Theorem 12 (Myerson (1981)). Consider n bidders with independent values vi(g) ∼ Fi.
Then all efficient mechanisms such that the expected payment of an agent with vi(g) = 0 is
zero6 have the same revenue.

As a corollary of the revenue-equivalence theorem, we conclude that the second-price
auction has revenue n−1

n+1
for any number of bidders n and the uniform distribution U([0, 1]).

Is this good or bad revenue? A natural benchmark is provided by a seller who knows each

6This condition rules out mechanisms charging each bidder $1000000 no matter what her value is.
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bidder’s value and so can allocate the good to the highest-value bidder and charge her exactly
her value. Such full surplus extraction gives

r = E[max{v1, . . . , vn}] = n

∫ 1

0

t · tn−1dt =
n

n+ 1
.

Hence, the seller, not knowing the agents’ values, loses only

n

n+ 1
− n− 1

n+ 1
=

1

n+ 1
,

i.e., O( 1
n
) fraction of the revenue of the omniscient seller.

We see that auctions with many competitors do a good job of surplus extraction. Can a
seller do better?

10.5 Revenue-maximizing auctions

As the revenue-equivalence theorem suggests, sacrificing efficiency is the only way to improve
revenue. This should not be surprising as we already saw this phenomenon in the case of the
posted-price mechanism.

Consider the second price auction with a reserve price of p, which can be seen as a hybrid
of the posted price mechanism and the second price auction:

(µi, pi) =


(g,maxj ̸=i vj(g)), vi(g) > maxj ̸=i vj(g) > p

(g, p), vi(g) > p > maxj ̸=i vj(g)
(∅, 0), otherwise

So the auctioneer retains the good if all the bids are below p. This mechanism is strategy-
proof and individually rational as it can be thought of as the standard second-price auction
with an auxiliary bidder i = 0 who always bids p (and never pays).

Let us compute its revenue for n = 2 agents and vi(g) ∼ U([0, 1]):

r = E
[
min{v1, v2}1min{v1,v2}>p

]
+ E [p · 1v1>p>v2 + p · 1v2>p>v1 ] .

Recall that min{v1, v2} is distributed with the density f(x) = 2(1− x). Thus

r =

∫ 1

p

x · 2(1− x)dx+ 2p(p(1− p)) =
1

3
+ p2 − 4

3
p3.

By taking maximum over p we obtain p∗ = 1
2
(the familiar optimal posted price!) and revenue

r =
5

12
,

which exceeds 1
3
= 4

12
obtained without a reserve price.
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Theorem 13 (Myerson (1981)). Consider n bidders with independent identically distributed
values vi(g) ∼ F with a regular7 distribution F . The optimal revenue over individually-
rational strategy-proof mechanisms8 is achieved by the second-price auction with the reserve
price p = p∗ equal to the optimal price in the posted-price mechanism.

10.6 Prior-free guarantees

Note that p∗ in the revenue-maximizing auction does not depend on the number of agents but
does depend on the distribution F . How much revenue does the seller lose if she is unaware
of F and runs the standard second-price auction (with zero reserve)? These type of questions
is a subject of prior-free auction design literature. Here is a canonical result.

Theorem 14 (Bulow and Klemperer (1994)). Consider bidders with independent identically
distributed values vi(g) ∼ F for a regular distribution F . The optimal revenue for n bidders
does not exceed the revenue of the second-price auction (with zero reserve) for n+1 bidders.

In other words, attracting one more bidder is more important than tailoring the optimal
reserve price. The intuition behind the theorem is that the second-price auction with reserve
p∗ for n bidders can be considered an (n + 1)-bidder auction with an auxiliary bidder who
bids p∗ and never pays if she wins. It turns out that replacing this auxiliary bidder with a
real bidder can only benefit the auctioneer.

7See the discussion of regularity for posted-price mechanisms.
8The conclusion remains the same if we drop the condition of strategy-proofness and individual rationality

and assume instead that each agent uses an equilibrium bid function β and no agent i with vi(g) = x gets a
negative expected utility no matter what x is.



Chapter 11

Revenue maximization with multiple
goods

In contrast to the case of one item considered in the previous lecture, revenue maximization
with multiple items is a much less tractable problem. We will focus on the benchmark case
of one buyer, often called the “monopolist’s problem.” Even for k = 2 items, no explicit
answers are known except for particular examples. This lecture is inspired by the survey
Daskalakis (2015).

The model is as follows. There is a set G = {g1, . . . , gk} of k goods and n = 1 buyer.
An allocation is captured by a bundle of goods µ ⊂ G allocated to the buyer. The set of
alternatives consists of bundle-payment pairs A = {(µ, p)}, where p ∈ R.

The buyer’s value for a bundle µ is additive in goods entering the bundle1

v(µ) =
∑
g∈µ

v(g)

and the utility is quasilinear in the payment

u((µ, p)) = v(µ)− p.

A mechanism maps the preferences captured by the vector v = (v(g1), . . . , v(gk)) ∈ RG
+ to an

“alternative” (µ(v), p(v)).

11.1 Menu mechanisms

A menu is a list of bundle-payment pairs offered to the buyer so that she selects the most
preferred option from the menu. Formally, a menu M is a subset of 2G × R.

Definition 3. A mechanism (µ(v), p(v)) is a menu mechanism if there exists a menu M
such that for any v the mechanism’s outcome (µ(v), p(v)) maximizes the utility v(µ)− p over
(µ, p) ∈ M.

1We focus on this benchmark case, where agent’s preferences exhibit neither complementarity nor substi-
tutability.
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Proposition 8. A mechanism (µ(v), p(v)) is strategy-proof ⇐⇒ (µ(v), p(v)) is a menu mech-
anism.

Proof. Assume that (µ(v), p(v)) is a menu mechanism with menu M and show that it is
strategy-proof. In other words, we need to show that

v(µ(v))− p(v) ≥ v(µ(v′))− p(v′)

for any true values v and misreport v′. This inequality holds since the pair (µ(v′), p(v′))
belongs to the menu M and the pair (µ(v), p(v)) maximizes the utility v(µ) − p over all
(µ, p) ∈ M.

For the opposite direction, we start from a strategy-proof mechanism (µ(v), p(v)) and
show that it is induced by some menu. Define M as follows

M = {(µ(v), p(v)) : v ∈ RG
+}.

By strategy-proofness,

v(µ(v))− p(v) ≥ v(µ(v′))− p(v′)

for any v′. Hence,

v(µ(v))− p(v) ≥ v(µ)− p

for any (µ, p) ∈ M, i.e., (µ(v), p(v)) maximizes the utility over the menu.

Proposition 9. A menu mechanism (µ(v), p(v)) is individually rational if and only if it can
be represented2 via a menu M that contains (∅, 0).

Proof. Assume that (∅, 0) ∈ M and show individual rationality. As (µ(v), p(v)) is a menu
mechanism, the pair (µ(v), p(v)) must give the utility at least as high as any other element
of M. Hence,

v(µ(v))− p(v) ≥ v(∅)− 0 = 0,

i.e., the mechanism is individually rational.

Let us now show that if (µ(v), p(v)) is individually rational with menu M, then it can be
also represented by M′ = M∪ {(∅, 0)}. By individual rationality,

v(µ(v))− p(v) ≥ 0 = v(∅)− 0.

Since (µ(v), p(v)) maximized the utility over the menu M, we conclude that it maximizes it
over M′ as well, i.e., both M and M′ represent (µ(v), p(v)).

2Different menus may represent the same mechanism as some menu items may be redundant and never
selected.
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11.2 Revenue maximization

Assume that the vectors of values v = (v(g1), . . . , v(gk)) are distributed over the population
of potential buyers according to some distribution F on RG

+ known to the seller. What mech-
anism maximizes the seller’s expected revenue r = E[p(v)] over strategy-proof individually-
rational mechanisms?

We know that any such mechanism can be represented via a menu M containing (∅, 0).
Hence, revenue maximization boils down to designing an optimal menu.

Let us simplify the problem further and assume that the components of the vector v are
independent, i.e., the distribution function F (x1, . . . , xk) = F1(x1) · . . . · Fk(xk). In other
words, the buyer’s value for one good says nothing about her value for another. Intuitively,
in this case, it must be optimal to sell the goods separately using the optimal posted price
mechanism for each of them. Surprisingly, sometimes the seller can do better.

Example 5. Assume there are k = 2 goods, the buyer’s values v(g1), v(g2) are independent
and are equal 1 or 2 equally likely. If the goods are sold separately, the optimal price for
each is p∗ = 1 (p∗ = 2 is also optimal), and the total revenue is 2. The corresponding menu
is as follows:

M =


({g1}, p∗),
({g2}, p∗),

({g1, g2}, 2p∗),
(∅, 0)

 .

What if instead we bundle the goods together and sell this grand bundle g = {g1, g2} using
the optimal posted price mechanism for this auxiliary good g? The value v(g) equals 2, 3, 4
with probabilities 1

4
, 1
2
, 1
4
. Hence, the optimal price is q∗ = 3 and the revenue is 3 · 3

4
= 9

4
> 2.

The menu is

M =

{
({g1, g2}, q∗),

(∅, 0)

}
.

We conclude that bundling increases revenue in this example.

Is bundling always optimal?

Example 6. Consider a minor modification of the previous example so that v(g1), v(g2) are
equal 0 or 1 equally likely (instead of 1 and 2). Then the optimal price for selling separately
is p∗ = 1, and the total revenue is 1.

The value for the grand bundle g = {g1, g2} is equal 0, 1, 2 with probabilities 1
4
, 1
2
, 1
4
. Hence,

the optimal price for the bundle is q∗ = 1, which gives revenue of 3
4
. Selling separately is

more profitable than bundling.

Are either selling separately or bundling always optimal? The next example shows that
sometimes the revenue can be improved by offering the two goods separately and the grand
bundle for a discounted price.

Example 7. We are again selling two goods, v(g1) and v(g2) are independent, but now they
can take three different values: 0, 1, and 3 equally likely. One can check that selling separately
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and selling the grand bundle result in the same revenue of 4
3
. The menu mechanism with the

menu

M =


({g1}, 2),
({g2}, 2),

({g1, g2}, 3),
(∅, 0)


improves the revenue to 13

9
.

What about continuous distributions?

Example 8. Consider two goods and independent v(g1), v(g2) uniformly distributed on [0, 1].
The optimal menu was found by Manelli and Vincent (2006):

M =


({g1}, 23),
({g2}, 23),

({g1, g2}, 4−
√
2

3
),

(∅, 0)

 .

These examples convince us that, to sell two goods with independent values, we need to
price each good separately and, perhaps, offer the bundle for a discounted price. So revenue
maximization seems to reduce to a 3-dimensional optimization problem which looks quite
tractable. This is true if we focus on deterministic mechanisms, but surprisingly, one can
increase revenue by pricing lotteries.3 We will discuss this phenomenon in the next section.

11.3 Randomized mechanisms

Let us extend the model by allowing fractional bundles µ ∈ [0, 1]G and interpreting µ(g) as
the probability to receive the good4 g. The buyer’s utility is

ui((µ, p)) =
∑
g∈G

µ(g)v(g)− p.

A randomized mechanism maps the vector of values v to (µ(v), p(v)) ∈ [0, 1]G × R.
The deterministic model considered above corresponds to µ ∈ {0, 1}G. Defining a (ran-

domized) menu as a subset M ⊂ [0, 1]G × R, one can extend Propositions 8 and 9 to ran-
domized mechanisms in a straightforward way.

The next example shows that randomization may improve revenue.

Example 9. There are two goods and the values v(g1), v(g2) are independent but not iden-
tically distributed: v(g1) equals 1 or 2 equally likely and v(g2) equals 1 or 3 equally likely.

3The result of Manelli and Vincent (2006) claims optimality of the mechanism from Example 7 even if
lotteries are allowed. This is a highly non-trivial result.

4Alternatively if g is divisible, one can think of µ(g) as the amount of g allocated.
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The optimal deterministic mechanism is selling the two goods separately. The optimal price
for the first good is 1 and 3 for the second so that the revenue equals 5

2
.

Consider the following randomized menu:

M =


((1, 1), 4− 2ϵ),

((1, 0.5), 2.5− ϵ),
((0, 0), 0)

 ,

where ϵ is a negligibly small positive number. What option will the buyer select depending
on her values v? If v = (1, 1), she chooses the last option; if v = (2, 1), she picks the
lottery, where the second good is allocated with probability 0.5 (the second option); in the
two remaining cases, she buys both goods (the first option). The resulting revenue of 21

8

exceeds that of the optimal deterministic mechanism.

How dramatic is the revenue loss if we stick to deterministic mechanisms? Counter-
intuitively, this gap can be large.

Theorem 15 (S.Hart and N.Nisan (2013)). For any number N , there exists a distribution
F (x1, x2) = H(x1)H(x2) of values for two goods such that the optimal revenue of a randomized
mechanism is at least N times higher than that of the optimal deterministic.

Another phenomenon showing that intuition is of little help in multi-item auctions is a
failure of natural monotonicity: a population with higher values for goods may bring lower
revenue!

A distribution H on R first-order stochastically dominates G (denoted by H ≻1 G) if
there exist two random variables ξ ∼ H and η ∼ G defined on the same probability space
such that ξ ≥ η with probability one. A more handy equivalent condition is that

H(x) ≤ G(x) ∀x ∈ R,

i.e., the distribution H is obtained by shifting the mass in G to the right.

Theorem 16 (S.Hart and N.Nisan (2012)). There exists a pair of distributions H ≻1 G
on R such that the optimal revenue for a pair of goods whose values are independent and
distributed according to H is lower than the optimal revenue if both values have distribution
G.

Monotonicity fails because the strategy-proofness constraint for H may be harder to
satisfy than for G, pushing the revenue down.
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The complexity of multi-good revenue
maximization

We continue discussing mechanisms for selling k good items to one buyer. At the end of the
last lecture, we observed that selling lotteries over goods instead of goods themselves may
substantially improve revenue.

Recall the model: There is a set G = {g1, . . . , gk} of k goods and n = 1 buyer. An
allocation is captured by a fractional bundle µ ∈ [0, 1]G where µ(g) is the probability to
receive the good g. The buyer’s utility is

ui((µ, p)) =
∑
g∈G

µ(g)v(g)− p.

A randomized mechanism maps the vector of values v = (v(g1), . . . , v(gk)) ∈ RG
+ to (µ(v), p(v)) ∈

[0, 1]G × R.

12.1 Menu-size complexity

We know that each strategy-proof individually-rational mechanism can be represented by a
menu M ⊂ [0, 1]G×R of bundle-payment pairs such that an agent with value vector v selects
the most preferred option from this menu.

When we considered deterministic mechanisms, the size of the menu was bounded by 2k,
the number of possible bundles of at most k goods (still a large number if k is big). When
lotteries are allowed, we can potentially have a continuum of options. On the other hand,
for practical purposes, we would like to have small finite menus. Are finite menus enough for
revenue maximization? For some continuous distributions, the answer is negative.

Example 10. There are two goods, the values v(g1) and v(g2) are independent and have
the beta distribution:1 v1(g1) ∼ Beta(3, 3) and v2(g2) ∼ Beta(3, 4). Daskalakis et al. (2013)
show that the revenue-maximizing mechanism for this example requires a continual menu.

1The beta distribution Beta(a, b) is the distribution on [0, 1] with density Ca,bx
a−1(1− x)b−1, where Ca,b

is a constant.
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This example motivates the literature on menu-size complexity which studies how well the
optimal revenue can be approximated within the class of “simple” mechanisms, e.g., those
that have a bounded number of entries in the menu.

It turns out, that mechanisms with large finite menus can approximate the optimal rev-
enue arbitrarily well, moreover, the bound on the menu size can be chosen to be independent
of the distribution.

Theorem 17 (Babaioff et al. (2021)). For any number of goods k and ϵ > 0, there exists
a constant Ck,ϵ such that for any problem with k goods and independent values, there exists
a mechanism with a menu of size at most Ck,ϵ and revenue at least (1 − ϵ) fraction of the
optimal.

This constant admits the following bound:

Ck,ϵ =

(
log k

ϵ

)O(k)

.

Still, to get the revenue close to the optimal one, one needs large menus. What can be
guaranteed if we insist on elementary mechanisms?

Theorem 18 (Babaioff et al. (2020)). For k goods with independent values, one of the two
mechanisms “selling separately” or “selling as a grand bundle” guarantees at least 1

6
of the

optimal revenue.

12.2 Automated mechanism design

In practice, we may not be satisfied with getting just 1
6
of the optimal revenue. How should

we design a reasonable finite menu?
Assume that there is just a finite number of possible vectors of values v = vm ∈ RG

+, m =

1, . . . ,M appearing with probabilities qm such that
∑M

m=1 q
m = 1. If the actual distribution

of values is continuous, there is a way to show that the optimal mechanism for fine enough
discretization will approximate the optimal revenue for the original distribution.2

Then finding the optimal mechanism boils down to finding the bundle µm and payment
pm for an agent with the vector of values vm, i.e., we need to determine a finite number
of parameters. These parameters must be such that the resulting mechanism satisfies the
requirements of strategy-proofness and individual rationality. Revenue maximization boils
down to solving the following linear optimization problem:

M∑
m=1

qmpm → max

over menus (µm, pm)Mm=1 ⊂ [0, 1]G × R such that

2The construction of such a discretization follows from (Babaioff et al., 2020).



60CHAPTER 12. THE COMPLEXITY OF MULTI-GOOD REVENUE MAXIMIZATION∑
g∈G

µm(g)vm(g)− pm ≥
∑
g∈G

µl(g)vm(g)− pl, ∀m, l = 1, . . . n

∑
g∈G

µm(g)vm(g)− pm ≥ 0, ∀m = 1, . . . n.

This linear program can be fed to your favorite LP solver to determine a revenue-
maximizing menu. This approach is known as automated mechanism design and is now
gaining popularity. It is applicable to mechanism-design problems very broadly: e.g., not
only to menu design for one buyer but also to multi-bidder multi-item auctions.

The main obstacle is that the dimension of this linear program explodes fast. Indeed, if
the value for each of k goods can take at least D possible values, the number of variables in
the linear program is of the order of Dk, and the number of strategy-proofness constraints is
of the order of Dk ·Dk. While modern LP-solvers can handle linear programs with millions
of variables, we need just 100 points and just four goods to make these solvers useless. If
there are several agents n, the dimension is of the order of Dkn that makes even the problem
with two bidders and two goods with D = 100 out of reach.

A recent idea is to use deep neural networks to solve the optimization problem approxi-
mately (Dütting et al., 2019). As indicated by Kolesnikov et al. (2022), this approach does
not completely avoid the curse of dimensionality, and the outcomes for several bidders are
not free of smoothing artifacts. An alternative approach that may help with multi-agent
automated mechanism design is the multi-to-single-agent reduction developed by Hartline
et al. (2012). Combining the two approaches seem to be a fruitful unexplored direction.

12.3 Geometry of revenue maximization and complex-

ity of extreme points

In this part of the lecture, we will outline the convex-geometry approach to optimal menu
design. A version of this approach lies at the heart of most of the modern analytic results.

Recall the geometric interpretation of a linear program (e.g., the one considered above).
The constraints define a set X of feasible solutions which is a polytope in a finite-dimensional
Euclidean space. Maximizing a linear objective over such a polytope, we obtain a point where
the hyperplane defined by the objective (its level set) touches the polytope. You cannot touch
a polytope by a hyperplane without touching its vertex. Thus there is always a vertex solution
to the linear program. The standard simplex algorithm always finds such a vertex solution.

These geometric observations extend to general convex sets (instead of polytopes), infinite-
dimensional spaces, and convex objectives (instead of just linear). Recall that a subset X of
a vector space is convex if, with each of two points, it contains a segment connecting them.
A point x ∈ X is an extreme point if it cannot be represented as a convex combination of two
distinct points from X. Extreme points are a generalization of vertices to general convex sets.
An objective function f = f(x) is convex if, for any pair of points, the value at their convex
combination is at most the convex combination of values. In particular, linear objectives are
convex.
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Theorem 19 (Bauer’s principle3). A continuous4 convex function over a compact convex
subset of a vector space5 attains its maximum at an extreme point of this set.

The takeaway is that to understand the structure of solutions to a convex optimization
problem, one needs to understand extreme points of the feasible set.6

Now let us apply these insights to the menu-design problem. Consider a menu M con-
taining (0, 0).7 With each such menu, we can associate a function UM = UM(x) that is equal
to the expected utility of the buyer with a vector of values v = x:

UM(x) = sup
(µ,p)∈M

(⟨µ, x⟩ − p) ,

where the scalar product is defined in the standard way ⟨µ, x⟩ =
∑

g∈G µ(g)xg.
The function U = UM has the following properties:

1. U is convex: Indeed, it is a pointwise maximum of functions linear in x.

2. U is non-decreasing: This follows from the fact that each of the linear functions are
non-decreasing (coefficients µ(g) are non-negative) and the fact that the property of
being non-decreasing is preserved under pointwise maximum.

3. U is non-negative: This is a corollary of the presence of (0, 0) in the menu.

4. U is 1-Lipshitz, namely, |U(x)−U(y)| ≤
∑

g∈G |xg − yg| for any x, y: Since |µ(g)| ≤ 1,
each linear function has this 1-Lipshitz property and this property is again preserved
under pointwise maximum.

Let U be the set of all functions U satisfying properties 1-4. We assigned an element of U to
each menu. It turns out that each element of U can be obtained this way.

Theorem 20 (Rochet and Choné (1998)). For any U ∈ U there exists a menu M ∋ {(0, 0)}
such that U = UM.

This theorem is constructive, and a strategy-proof individually-rational mechanism (µ(v), p(v)),
corresponding to U ∈ U , can be recovered as follows. Imagine for a moment that U is just

linear: U(x) =
(∑

g∈G µ(g)xg − p
)
. How can we recover µ and p if we just know U? The

answer is easy to obtain:

µ(x) =

(
∂

∂x1
U(x), . . . ,

∂

∂xg
U(x)

)
= ∇U(x) (12.1)

p(x) = ⟨x,∇U(x)⟩ − U(x). (12.2)

3See Theorem 7.69 in (Charalambos and Aliprantis, 2013).
4Upper semicontinuity is enough.
5One needs to make a technical assumption that the space is a Hausdorff locally convex topological vector

space.
6To learn more about these functional-analytic/geometric tools, the keywords are “Krein-Milman theorem”

covered by Charalambos and Aliprantis (2013) and a (more advanced) “Choquet theory.”
7As we showed in the previous lecture, such menus represent all strategy-proof individually-rational mech-

anisms.
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It turns out that the same formulas8 remain true for any U ∈ U .9
We conclude that the problem of revenue maximization for a given distribution F of

values v with density f boils down to the following optimization problem:∫
RG
+

(⟨x,∇U(x)⟩ − U(x)) f(x)dx→ max

over u ∈ U .

Without loss of generality, one can focus on those functions U that are zero at zero as
replacing U(x) by U ′(x) = U(x) − U(0) again gives a function from U and improves the
objective. Denote the set of functions U ∈ U such that U(0) = 0 by U0.

Revenue is a linear functional, and U0 is a convex set. Hence, by Bauer’s principle, the
maximum is attained at an extreme point.

Thus, to understand the optimal mechanisms, one needs to understand extreme points
of the set U0 of non-decreasing convex 1-Lipshitz functions on RG

+ that are equal 0 at 0. For
k = 1 good, the extreme points are the following functions10 indexed by a threshold p ∈ R+:

U(x) =

{
x− p x ≥ p
0 x ≤ p

.

These threshold functions lead to the following mechanisms:

(µ(v), p(v)) =

{
(1, p) v > p
(0, 0) v ≤ p

.

We obtain that posted-price mechanisms correspond to extreme points when we sell one
good to one buyer. This observation implies the Myerson theorem about the optimality of
the posted-price mechanism for this setting. The modern proof of his theorem about multi-
bidder auctions also relies on a similar extreme-point argument: there, the extreme points
correspond to second-price auctions with reserve and “ironing” (Kleiner et al., 2021).

The situation is totally different in the multi-item case. Even for k = 2 goods, finding
a tractable characterization of the extreme points of U is an open problem in math. Most
likely, there is no such characterization. This mathematical difficulty provides another —
now geometric — explanation for the hardness of multi-item revenue maximization.

8We did not assume differentiability of U , so the gradient may not be well-defined for some x. However,
it is known that any convex function is (twice!) differentiable for all x except for a zero-measure set (the
Alexandrov theorem). Alternatively, one can refer to the Rademacher theorem: any Lipshitz function is
differentiable for all x except for zero-measure set.

9This result requires a useful tool known as the “envelope theorem.” It gives a general formula for
differentiating an optimum with respect to a parameter.

10To show this, consider the set U ′
0 containing derivatives of functions from U0. The set U ′

0 is the set of
non-decreasing functions with values in [0, 1]. Demonstrate that the extreme points of U ′

0 are step functions.
Then integrate.



Chapter 13

Introduction to fair division

Auctions considered in the last few lectures offer a simple and efficient way to distribute
resources. However, auctions are not feasible in some situations as monetary payments are
ruled out. For example, they may be ruled out for ethical reasons; think of government
programs (e.g., education or social housing), charity, allocation of seats at over-demanded
courses to students, or allocation of organ transplants. Selling these items would create a
bias towards the rich, broadly considered unacceptable. Payments may be ruled out for
institutional reasons, e.g., if it is unclear who could play the role of a seller. Think of
division of common property (e.g., partners dissolving their partnership or siblings dividing
inheritance), allocation of tasks or resources within a firm, or of computational resources in
a cloud among users.

Fair division studies mechanisms for allocation of resources when fairness and efficiency
are the main concerns, as in the above examples. This field originated in works of Polish
mathematicians on “cake-cutting”, then developed as a part of welfare economics intersecting
with political philosophy, and currently has become a hot topic at the interface of economics,
CS, and AI; see the survey by Moulin (2019).

Fairness questions have been central to philosophy since ancient times:

Equals should be treated equally, and unequals unequally, in proportion to relevant
similarities and differences. (Aristotle, Ethics.)

What are these relevant similarities and differences? Agents may differ in their

• Rights for the resources: For example, one partner has contributed to a project more
than others and hence deserves a bigger share of the surplus.

• Tastes (preferences): For example, siblings may differ in their emotional attachment to
particular items in the inheritance.

Fair division literature has mainly focused on the extreme case of equal rights but differ-
ent tastes, while another extreme of unequal rights but identical tastes is the subject of
cooperative game theory.
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We will discuss the case of equal rights but different tastes where even the basic questions
of what fairness is and how it can be taken into account are non-trivial. The fairness concepts
we will see are universal and applicable more generally than just to the model we use to
illustrate them.

13.1 Fair division of divisible goods under additive util-

ities

We deal with the following benchmark model. There is a set of goods G = {g1, . . . , gk} that
are to be allocated to n agents. The bundle of goods received by agent i is µi ∈ [0, 1]G,
where µi(g) is the amount of g in this bundle.1 An allocation µ = (µ1, . . . , µn) is a collection
of bundles such that all the goods are distributed,2 i.e.,

∑
i µi = (1, 1, . . . , 1). The set

of alternatives coincides with the set of all allocations {µ} (in contrast to the quasilinear
domain, there are no payments!). We assume that the agent’s utilities are additive

ui(µ) = ui(µi) =
∑
g∈G

µi(g)vi(g).

Agent i’s preferences are captured by the vector of values vi = (vi(g1), . . . , vi(gk)) ∈ RG
+. A

mechanism (or a fair division rule) maps the profile of values v = (v1, . . . , vn) to an allocation
µ = (µ1, . . . , µn).

Note that vi = (vi(g1), . . . , vi(gk)) and v′i = αvi with α > 0 lead to exactly the same
preferences over bundles: ui(µi) > ui(νi) if and only if u′i(µi) > u′i(νi). This allows us to fix
a particular normalization: ui((1, . . . , 1)) = const, i.e., the sum of the agent’s values is equal
to a constant independent of i (e.g.,

∑
g vi(g) = 1 or 100 for all i). Additive utilities are easy

to report3, but they rule out complementarity between the goods.
To understand the roles of efficiency and fairness, consider the following toy example

CS books Econ books
vAlice : 70 30
vBob : 10 90

What can we say about the equal division?

µAlice : 0.5 0.5
µBob : 0.5 0.5

1We assume that the goods are divisible. If they are not, they can be made divisible by allowing lotteries
or time-sharing: then µi(g) is interpreted as the probability that i gets the good g or as the right to use the
good µi(g) fraction of time.

2This is a convenient technical assumption made for the sake of simplicity. It can easily be relaxed to∑
i µi ≤ (1, 1, . . . , 1).
3We can give an agent 100 of points to distribute among the goods as it is done on http://www.spliddit.

org/.

http://www.spliddit.org/
http://www.spliddit.org/
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It is ultimately fair but inefficient. The difference in preferences could be exploited to make
both agents better off, i.e., this allocation is not Pareto optimal. Recall the definition of
Pareto optimality in application to the fair division setting.

Definition 4. An allocation µ is Pareto optimal if there are no allocations µ′ such that
ui(µi) ≤ ui(µ

′
i) and for some agents, the inequality is strict.

Inefficiency allows trading: both agents are happy to exchange less wanted items (a deep
idea to be discussed at the end of the lecture, where free trade will be formally related to
Pareto optimality).

Now consider an allocation, where everything is given to Alice

µAlice : 1 1
µBob : 0 0

It is clearly efficient (Pareto optimal) but, intuitively, unfair. How can we make this intuition
formal? There are two notions of fairness dominant in the literature.

Definition 5 (Fair Share Guaranteed (FSG) also known as Equal Split Lower Bound or
Proportionality). Every agent prefers her bundle to the equal division:

ui(µi) ≥ ui

((
1

n
, . . . ,

1

n

))
.

Definition 6 (Envy-Freeness (E-F)). Every agent prefers her bundle to the bundle of any
other agent:

ui(µi) ≥ ui(µj)

for all i, j ∈ N .

Note that both definitions apply to agents with arbitrary preferences, not necessarily
represented by additive utilities.

Proposition 10. For additive utilities:

• E-F ⇒ FSG.

• If n = 2, E-F ⇔ FSG.

Proof.

• By E-F, ui(µi) ≥ ui(µj). Let us sum up these inequalities over j. We get

n · ui(µi) ≥
∑
j

ui(µj) = u1((1, . . . , 1)),

where we used additivity. Dividing by n, we get

ui(µi) ≥
1

n
u1((1, . . . , 1)) = ui

((
1

n
, . . . ,

1

n

))
and conclude that E-F implies FSG.
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• By FSG,

ui(µi) ≥ ui

((
1

2
, . . . ,

1

2

))
=

1

2
ui((1, . . . , 1)) =

1

2
(ui(µi) + ui(µ3−i)) .

Thus,
ui(µi) ≥ ui(µ3−i),

i.e., the allocation is envy-free.

The above example convinces us that both fairness and efficiency are important. Can we
always combine envy-freeness with Pareto optimality? Let us look at some examples of fair
division rules.

13.2 Social Welfare maximizers: Utilitarian, Egalitar-

ian, and the Nash rules

To achieve Pareto optimality, the standard idea is to maximize social welfare. Let G =
G(x1, . . . , xn) be a continuous function strictly increasing in each coordinate. Define the
social welfare of an allocation µ by

SWG(µ) = G (u1(µ1), . . . , un(µn)) .

We are interested in those rules that pick an allocation

µ∗ : SWG(µ) → max .

Proposition 11. µ∗ is Pareto optimal.

Proof. Indeed, if µ∗ was not Pareto optimal, we could find µ′ such that ui(µ
∗
i ) ≤ ui(µ

′
i) and

for some agent the inequality is strict. Hence, SWG(µ
′) > SWG(µ

∗). This would contradict
the definition of µ∗.

In your second homework, you proved that in the quasi-linear domain, Pareto optimality is
equivalent to maximization of the so-called utilitarian social welfare corresponding to G(x) =
x1 + . . . + xn. As we see, when payments are not allowed, the Pareto frontier has a richer
structure.

13.2.1 The Utilitarian rule

The utilitarian rule corresponds to G(x) = x1 + . . . + xn, i.e., we aim to maximize the sum
of agents’ utilities. Note that this objective is sensitive to normalization and recall that we
assume that the sum of all values is the same across agents.

The utilitarian rule is in line with the political philosophy ideas of Jeremy Bentham (1748
— 1832), who argued that
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“The goal of a society must be the greatest happiness of the greatest number of its
members.”

In particular, the utilitarian rule may sacrifice the happiness of a minority for the happiness
of the majority. It can be very unfair, as we can see in the following example.

book flower bicycle laptop armchair
uAlice : 1 11 21 31 36
uBob : 5 10 20 30 35

The outcome of the utilitarian rule is easy to compute: we allocate each good to an agent with
the highest value. As a result, Bob gets the first good only, which is, from his perspective,
worth 5% of the total value of 100. FSG requires that each agent get at least 50%, and so
the utilitarian rule drastically violates both FSG and E-F. In the third homework, you will
also see that the utilitarian rule favors single-minded agents at the expense of flexible ones.
In particular, for n ≥ 3, a flexible agent (e.g., the one assigning the same value to all the
goods) may get nothing.

To summarize, the utilitarian is not to be used if fairness is a concern unless monetary
payments are allowed and can be used to compensate unlucky agents.

Note that the utilitarian rule is also easy to manipulate. In the example above, Bob could
increase his value for the last good by 2 and decrease that for the next to the last one by 2
and get a more preferable allocation.

13.2.2 The Egalitarian rule

The egalitarian rule introduced by Pazner and Schmeidler (1978) corresponds to G(x) =
min{x1, . . . , xn}. In other words, it outputs an allocation maximizing the minimal of agents’
utilities. It reflects the philosophical views of John Rawls (1921 – 2002):

“The goal of a society must be the greatest happiness of the least happy members”.

Let us analyze the properties of the Egalitarian rule under the assumption that all values
vi(g) > 0:

• µ∗ is equitable, namely ui(µ
∗
i ) = uj(µ

∗
j)

Proof. If it was not the case, we could transfer a small amount of some good from the
agent with the highest utility to others thus increasing the minimal utility (here we use
that there are no zero values and so the utility of each of the agents who gets an extra
good strictly improves).

• µ∗ is Pareto optimal. This is to be proved as G is not strictly increasing, and we cannot
apply Proposition 11. The proof mimics that for the previous item.
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Proof. If µ∗ was not Pareto optimal, we could find an allocation µ′, where all agents are
at least as happy as before, and one agent j is strictly happier. By transferring a small
amount of some good from j to others, we could increase welfare. Contradiction.

• µ∗ is FSG

Proof. For µ∗, the minimal utility is at least as high as the minimal utility for any other
allocation, particularly for equal division. Hence,

ui(µ
∗
i ) ≥ min

j
uj(µ

∗
j) ≥ min

j
uj

((
1

n
, . . . ,

1

n

))
= ui

((
1

n
, . . . ,

1

n

))
,

where in the last equality, we used the normalization.

Although the Egalitarian rule may seem to be the fairest, µ∗ may not be envy-free for n ≥ 3
agents. You will see such an example in the third homework.

The Egalitarian rule is manipulable: an agent may pretend that her values for the goods
that she does not get are higher than it actually is, and the rule will compensate her regret
by improving her allocation.

13.2.3 The Nash rule

The Nash rule is a compromise between the utilitarian and the egalitarian objectives. It was
introduced by a Nobel and Abel laureate and one of the founding fathers of game theory,

Nash Jr (1950).4 The Nash rule corresponds to the “Nash product”G(x) = (x1 · x2 · . . . · xm)
1
n ,

i.e., we aim to maximize the product of utilities (or, equivalently, their geometric mean). The
outcome µ∗ of the Nash rule has the following properties:

• µ∗ is Pareto optimal by Proposition 11.

• µ∗ satisfies FSG, which follows from the next item.

• µ∗ is envy-free.

Proof. Consider a pair of agents i and j and transfer an ϵ-fraction of j’s bundle to i for
some ϵ > 0. This cannot increase the product and so

ui(µ
∗
i )uj(µ

∗
j) ≥

(
ui(µ

∗
i ) + ϵui(µ

∗
j)
) (

(1− ϵ)uj(µ
∗
j)
)

for any ϵ > 0. Canceling uj(µ
∗
j) on both sides and opening the brackets, we get:

ui(µ
∗
i ) ≥ ui(µ

∗
i ) + ϵui(µ

∗
j)− ϵui(µ

∗
i )− ϵ2ui(µ

∗
j).

4He considered a different but related bargaining problem.
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Cancelling ui(µ
∗
i ) and dividing both sides by ϵ leads to

ui(µ
∗
i ) ≥ ui(µ

∗
j)− ϵui(µ

∗
j).

Since ϵ > 0 was arbitrary, we conclude that

ui(µ
∗
i ) ≥ ui(µ

∗
j)

and so the allocation is envy-free.

Corollary 2. For agents with additive utilities, there always exists an envy-free Pareto op-
timal allocation.

The maximization of the Nash product is a convex optimization problem, and so the out-
come can be approximately computed using standard algorithms such as constrained gradient
descent. Surprisingly,5 there are exact polynomial algorithms that rely on the connection be-
tween the Nash rule and exchange economies, which we discuss below; see Chapters 5 and 6
of Handbook of Algorithmic Game Theory.

The Nash rule is manipulable but this is unavoidable as, for agents with additive utilities,
any fair division rule satisfying FSG and Pareto optimality is known to be manipulable (Cho
and Thomson, 2013). On the other hand, there are various justifications that the Nash
rule is “not so manipulable.” In particular, in contrast to the egalitarian rule, it cannot
be manipulated by lying about goods that an agent doesn’t get (Bogomolnaia et al., 2016).
Intuitively, envy-freeness itself limits manipulability since the fact that an agent prefers her
bundle to bundles of others means that, in particular, she has no incentive to pretend that
her preferences are similar to the preferences of others.6

There are many confirmations that the Nash rule is the best rule to divide goods under
additive utilities. Why is the Nash product so specific? A possible answer is its connection to
a fundamental concept, the competitive equilibrium of exchange economies, which we discuss
next.

13.3 Envy-freeness as equal choice opportunities. CEEI.

The following example offers an alternative perspective on envy-freeness. Alice and Bob each
of whom has $100. Each goes to a supermarket and spends money on the most preferred
goods. Will they envy each other? No, because both select the best bundle of goods from
the same choice set (their budget set).

5Usually, non-linear optimization problems have irrational solutions even if the input consists of rational
numbers. Consequently, there is no hope for a polynomial algorithm (unless a certain short representation
for the resulting irrationals is fixed). The surprising property of the Nash rule is that maximization always
leads to rational numbers on a rational input.

6A formal equivalence between envy-freeness and strategy-proofness can be obtained in the “large market
limit” where there are agents with any possible vector of values (Azevedo and Budish, 2019).

https://www.cs.cmu.edu/~sandholm/cs15-892F13/algorithmic-game-theory.pdf
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This example shows that offering agents the same choice opportunities (a menu of bundles
to select from) leads to envy-freeness. Varian (1973) combined this observation with the
theory of general equilibrium of exchange economies and defined the Competitive Equilibrium
with Equal Incomes (CEEI) also known as the Competitive or the Pseudo-Market mechanism;
in CS literature it is known as the Fisher market equilibrium. The informal description is as
follows:

• give every agent a unit amount of “virtual” money;

• select prices such that the market clears, when everybody buys the best bundle she can
afford.

From a market equilibrium perspective, the resulting allocation represents what happens
if we first divide the goods equally among agents (this equal division is captured by equal
budgets) and then allow free trade.

The formal definition of CEEI is as follows.

Definition 7. An allocation µ is a CEEI if there exists a vector of prices p ∈ RG
+ such that

for any agent i

x = µi maximizes ui(x) over the budget set B(p) =

{
x ∈ RG

+ :
∑
g∈G

pgxg ≤ 1

}
.

Note that each agent selects the best bundle from the budget set B(p) as if there were no
other agents; magically, these choices do not conflict with each other which requires tailoring
the price p.

From the definition, it is unclear whether a CEEI exists. It turns out that it does very
generally even beyond additive utilities.

Theorem 21 (Arrow-Debreu). If utility functions ui are concave, strictly increasing, and
continuous, then a CEEI exists.

This proof is non-constructive;7 see Chapter 15 in (Intriligator and Arrow, 1987).

Proposition 12. Any CEEI µ is envy-free.8

Proof. The utility ui(µi) is at least as high as ui(x) for any x from the budget set B(p).
Picking, x = µj, we obtain that i does not envy j.

The next proposition is known as the first fundamental theorem of welfare economics or
the “invisible hand” of Adam Smith.

7The idea is to define an improvement map that takes an allocation-price pair and returns a “more-
equilibrium” pair by identifying over-demanded goods and increasing prices for them and decreasing for
under-demanded ones. CEEI are fixed points of this map and their existence can be proved using topological
arguments such as the Brouwer fixed-point theorem.

8No assumptions on utilities are needed except for the existence of CEEI.
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Proposition 13. Assuming that each ui is strictly increasing, any CEEI µ is Pareto optimal.

To prove this proposition, we need the following auxiliary result.

Lemma 1. Assume ui is strictly increasing. If µ is a CEEI with a price vector p, then for
any y ∈ RG

+ such that ui(y) ≥ ui(µi), the price of y is at least 1, i.e.,
∑

g ygpg ≥ 1. Similarly,
if ui(y) > ui(µi), then

∑
g ygpg > 1.

Proof. If the price of y was below 1, then µ′
i = y + ϵ(1, . . . , 1) would belong to B(p) for

positive ϵ small enough and ui(µ
′
i) > ui(µ

′
i) by strict monotonicity. Contradiction with the

fact that µi maximizes ui over B(p).
Similarly, if ui(y) > ui(µi), then

∑
g ygpg > 1 as otherwise y would belong to B(p)

contradicting the choice of µi.

Proof of the the first fundamental theorem of welfare economics. Towards a contradiction, sup-
pose there is µ′ such that ui(µ

′
i) ≥ ui(µi) and this inequality is strict for some j. Let p be

the vector of prices corresponding to p. By the lemma, each µ′
i must have a price of at least

1, and µj must have a price strictly higher than 1. Hence,∑
i

∑
g

pgµ
′
i(g) > n.

On the other hand,∑
i

∑
g

pgµ
′
i(g) =

∑
g

pg
∑
i

µ′
i(g) =

∑
g

pg =
∑
g

pg
∑
i

µi(g) =
∑
i

∑
g

pgµi(g) ≤ n

since each bundle µi has a price of at most 1. This contradiction completes the proof.

Combining the Arrow-Debreu theorem with the two propositions, we obtain the following
general corollary.

Corollary 3. Assume all ui are concave, strictly increasing, and continuous. Then there
exists an envy-free Pareto optimal allocation.9

It turns out that there is a connection between the Nash rule and the CEEI.

Theorem 22 (Eisenberg-Gale). Assume all ui are concave, continuous, and 1-homogeneous
(ui(αx) = αui(x) for α > 0). Then the set of CEEI coincides with the outcome of the Nash
rule.

The proof can be found in (Eisenberg, 1961).

9An interesting open question is to find a simple direct proof for this result without a detour through the
theory of general equilibrium.



Chapter 14

Fair division of computational
resources

In the previous lecture, we considered the problem of fair division of private goods under ad-
ditive utilities. This captures the case of no complementarity between the goods. This lecture
considers the opposite extreme of the strongest complementarity, where one good becomes
useless if not combined with a proper combination of others. Such extreme complementarity
arises if the goods are resources needed to solve a certain task (the so-called intermediate
goods), e.g., materials needed to build a house or computational resources (CPU, RAM, hard
drive, bandwidth, etc.) needed for a program to run.

We will describe a solution for division of computational resources known as dominant
resource fairness (DRF) and introduced by Ghodsi et al. (2011). We will consider a simple
static model, which may seem unrealistic. However, DRF can be made practical, and a
version of it1 is used by Microsoft Azure (a cloud-computing service).

The model is as follows. There is a set of goods interpreted as computational resources
in a cloud G = {g1, . . . , gk} = {CPU, RAM, . . .}. We normalize the total availability of each
of the resources to be 1. There are n agents. Each agent comes with a series of identical
computational tasks demanding a combination of computational resources. We denote the
per-task demand of agent i by di = (di(g1), . . . , di(gk)) ∈ RG

+ and assume that each coordinate
is strictly positive. If an agent i is allocated a bundle µi ∈ [0, 1]G of resources, her utility is
assumed to be equal to the total number of tasks that she can perform using this amount of
resources:

ui(µi) = maximal α ∈ R+ such that α · di ≤ µi.

As we see, the tasks are assumed to be divisible, e.g., an agent prefers being able to run 1.5
tasks to running just one. We can equivalently write

ui(µi) = min
g∈G

µi(g)

di(g)
= min

g∈G
vi(g)µi(g),

1Developed by Adam Wierman (Caltech) and his student (name?).
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where the values vi(g) are defined as 1
di(g)

. This representation demonstrates that the “
∑

”
that we had for additive utilities is replaced with “min”; such utilities are called Leontief
utilities. An allocation µ is a collection of bundles (µ1, . . . , µn) such that

n∑
i=1

µi ≤ (1, 1, . . . , 1).

In contrast to the setting from the last lecture, we do not insist on distributing all the
resources.2

Let us call g a dominant resource for i if di(g) = maxg′∈G di(g
′). The DRF rule operates

as follows:

• Agents submit their demand vectors di normalized so that the demand for the dominant
resource is 1, i.e., maxg∈G di(g) = 1 for all i. Equivalently, agents submit vectors of
values vi normalized so that ui((1, . . . , 1)) = 1.3

• Find maximal α ≥ 0 such that

α ·
n∑

i=1

di ≤ (1, 1, . . . , 1).

• allocate the bundle
µi = α · di

to agent i.4

The DRF is a version of the Egalitarian rule rediscovered in the context of Leontief
preferences.

Proposition 14. The DRF allocation µ maximizes the Egalitarian welfare

min
i
ui(µ

′
i) → max

over all allocations µ′.

Proof. Towards a contradiction, assume there is some µ′ with strictly higher welfare. For each
i, define µ′′

i = αi ·di with the maximal αi such that αi ·di ≤ µ′
i. Then the welfare of µ′ and µ′′

is the same and is higher than that of µ. Thus αi > α for each i, where α is from the definition
of DRF. Taking α′ = mini αi, we conclude that α′ > α and α′ ·

∑n
i=1 di ≤ (1, 1, . . . , 1). This

contradicts the fact that α is the maximal number with this property.

2This is a reasonable assumption from a practical perspective as the leftover may be assigned to newly
arriving agents (of course, this concern is, formally, beyond our model).

3This normalization is familiar from the last lecture.
4For any bundle µi there is a bundle proportional to the demand αidi ≤ µi that gives agent i the same

utility ui(µi) = ui(α · di). For this reason, restricting attention to bundles proportional to i’s demand is
natural.
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Repeating the proof for the Egalitarian rule from the previous lecture, we can show that
DRF is efficient, i.e., its outcome is Pareto optimal. A surprising feature of DRF is that it is
also non-manipulable.

Proposition 15. DRF is strategy-proof.

Proof. Suppose that agent i reports d′i instead of di. As a result, the factor α becomes α′.
To show that this manipulation is not profitable, we need to demonstrate that

ui(α · di) ≥ ui(α
′ · d′i).

Since we assume that the demand vectors have no zeros, this inequality is equivalent to the
existence of a good g such that

α · di(g) ≥ α′ · d′i(g).

Consider the two cases:

• If α′ ≤ α′, let g be a dominant resource with respect to di. We get

α′ · d′i(g) ≤ α′ · 1 ≤ α · 1 = α · di(g).

• If α′ > α′, consider a good g that is fully allocated under the true preferences:5

α
∑

i di(g) = 1. We obtain

α · di(g) = 1− α
∑
j ̸=i

dj(g) > 1− α′
∑
j ̸=i

dj(g) ≥ α′ · d′i(g),

where the last inequality follows from the fact that
∑

j µ
′
j(g) ≤ 1.

We conclude that manipulation is never profitable.

Proposition 16. DRF is envy-free.

Proof. We need to show that ui(α · di) ≥ ui(α · dj). It is enough to find a good g such that
α · di(g) ≥ α · dj(g). Taking g to be i’s dominant resource completes the proof.

The only feature of DRF that makes it different from a straightforward extension of the
Egalitarian rule to Leontief preferences is that DRF does not insist on allocating all the
goods.6 This feature is crucial: as demonstrated by Nicoló (2004), no rule allocating all
the goods to agents with Leontief preferences can be simultaneously efficient, envy-free, and
strategy-proof. Allowing for “wasteful” rules, which may not allocate some of the goods, helps
combine fairness, strategy-proofness, and some efficiency guarantees for additive utilities too
(Cole et al., 2013; Abebe et al., 2020).

5Such a good exists as, otherwise, we could increase α by some ϵ > 0 and still (α + ϵ)
∑

i di ≤ (1, . . . , 1)
contradicting the definition of α.

6If these goods cannot improve agents’ utilities anyway.
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Fair division of indivisible goods

We are back to the setting of fair division of private goods under additive utilities considered
in Lecture 12. The main example is the case of former partners dividing common assets
consisting of unrelated non-complementary goods. The new twist is that now these goods
are assumed to be indivisible and so each of them must be entirely allocated to one of the
agents.

There are n agents and a set of indivisible goods G = {g1, . . . , gk}. The bundle of
indivisible goods received by agent i is a vector µi from the k-dimensional binary cube
{0, 1}G, where µi(g) is the amount of g in this bundle that is equal to either 0 or 1. Abusing
the notation, we will sometimes identify a bundle µi with the set of goods {g ∈ G : µi(g) = 1}.
An allocation of indivisible goods µ = (µ1, . . . , µn) is a collection of bundles such that all the
goods are distributed, i.e.,

∑
i µi = (1, 1, . . . , 1) or, equivalently, µi ∩ µj = ∅ and ∪iµi = G.

Agent’s utilities are additive

ui(µ) = ui(µi) =
∑
g∈G

µi(g)vi(g) =
∑
g∈µi

vi(g).

Agent i’s preferences are captured by the vector of values vi = (vi(g1), . . . , vi(gk)) ∈ RG
+ and

a fair division rule maps the profile of values v = (v1, . . . , vn) to an allocation of indivisible
goods µ = (µ1, . . . , µn).

Note that this model can be seen as a particular case of the one with divisible goods
where we additionally enforce that each bundle must be integral. So the notions of fairness
(FSG and E-F) extend in a straightforward way to the model with indivisible goods. The
immediate bad news is that a fair allocation may fail to exist, e.g., think of a problem with
two agents dividing two indivisible goods and each agent preferring the same good to the
other:

Econ book CS book
vAlice : 80 20
vBob : 60 40

Clearly, an agent who does not get the desired good will be envious to the one who does.
FSG cannot be satisfied too as it is equivalent to E-F for two additive agents.
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There is a pair of ideas of how to circumvent such non-existence, both ideas come from
the CS community:

1. If there are no mechanisms with desired worst-case behavior, let’s switch to the average
case. In our setting, the question becomes: do fair allocations of indivisible goods
typically exist?

2. If there is no mechanism that satisfies the desired properties exactly, let’s try to satisfy
them approximately. In our case, the question becomes: can we find a reasonable
relaxation of fairness axioms that is compatible with existence?

We will explore both routes.

15.1 Typical existence of fair allocations

Theorem 23 (Dickerson et al. (2014)). If a preference profile consists of independent iden-
tically distributed1 random variables vi(g) having a continuous distribution F with bounded
variance

P (E-F allocation exists) → 1

as the number of goods k becomes large.

In other words, for problems with a large number of goods with similar statistical prop-
erties, the existence is not an issue.

Proof. Instead of proving the abstract “existence”, show that the utilitarian allocation (the
one that gives each good to an agent with the highest utility) is envy-free with high prob-
ability.23 Since the goods are statistically identical, each agent gets, on average, the same
number k

n
of her most preferred goods. For the expected utilities, we get

E [ui(µi)] =
k

n
E
[
vi(g1)1{vi(g1)=maxl vl(g1)}

]
,

E [ui(µj)] =
k

n
E
[
vi(g1)1{vi(g1) ̸=maxl vl(g1)}

]
for j ̸= i.

For continuous distributions, the expected values of higher order statistics are strictly above
lower ones and, hence, there is no envy in expectation:

E [ui(µi)] > E [ui(µj)] .

1The original result is more general and allows for correlation across agents.
2We know that the Utilitarian rule can be very unfair and the fact that it behaves well for a large number

of goods with similar statistical properties should not be considered as a justification for its practical use.
3In fact, we get a stronger statement: P (E-F Pareto optimal allocation exists) → 1.
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To show that there is no envy with high probability, it remains to apply the law of large
numbers, which gives us that

P
[∣∣∣∣1kui(µl)−

1

k
E[ui(µl)]

∣∣∣∣ < ϵ

]
→ 1

for any ϵ > 0 as k → ∞. Choosing ϵ to be less than half of the difference between the two
expectations implies that

P [ui(µi) > ui(µj)] → 1

and completes the proof.

It is important to know that hard instances are rare but still, the results on typical
behavior are of limited practical value. Indeed, the fact that a rule behaves well on average
does not eliminate dissatisfaction if it has behaved poorly in a particular instance of interest.
Robust non-probabilistic guarantees applicable to each instance are more practical.

15.2 Approximating FSG

The following approximate variant of FSG has been proposed by Budish (2011). For a given
profile v, define the maximin share of agent i by

MMSi = max
µ

min
j
ui(µj).

One can think of it as the outcome of the following procedure: an agent divides all the goods
into n piles and then picks the worst pile from her perspective. MMSi is the utility that i
gets for the best division for her.

Definition 8. An allocation µ is an MMS-allocation if

ui(µi) ≥MMSi ∀i.

Note that if, in the definition ofMMSi, we allowed for divisible allocations µ, it would be
optimal for i to divide the available goods into n identical bundles µj =

(
1
n
, . . . , 1

n

)
. Hence,

for divisible goods, a natural analog of MMS allocations, are those satisfying

ui(µi) ≥ ui

((
1

n
, . . . ,

1

n

))
,

i.e., FSG allocations. For indivisible goods, we conclude that

MMSi ≤ ui

((
1

n
, . . . ,

1

n

))
.

Do MMS allocations exist? In the third homework, you will check that they always do for
n = 2 agents; the argument relies on the cut-and-choose procedure, where one agent divides
the available resources into two piles and the other agent selects her best pile.

For a couple of years, it had been conjectured that MMS allocations exist for any number
of agents. This conjecture was supported by numerous simulations and real-life data.
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Theorem 24 (Procaccia and Wang (2014)).

• For n ≥ 3 agents, an MMS allocation may fail to exist.

• One can relax the MMS notion in a multiplicative way to guarantee existence. Namely,
for any number of agents and any profile of preferences, there exists µ such that

ui(µi) ≥
2

3
MMSi.

All known counterexamples to the existence of MMS allocations are knife-edge (the one by
Procaccia and Wang (2014) requires 12 goods and cleverly tailored values with a multi-scale
structure); in particular, there is almost no chance of discovering such a counterexample by
taking a random instance. Moreover, from a practical perspective, one can safely assume
that MMS always exists. This teaches a lesson about economic design: if a mechanism has
a certain property on all random or real-life inputs, it does not necessarily mean that it has
it in the worst case.

15.3 Approximating envy-freeness

Another idea of how to adapt a fairness notion to indivisible goods belongs to Lipton et al.
(2004) who suggested the following relaxation of envy-freeness.

Definition 9. An allocation µ is envy-free up to one good or EF-1 if for any pair of agents
i and j there is g ∈ µj such that

ui(µi) ≥ ui(µj \ {g}).

In other words, i can envy j, but this envy can be eliminated after deleting some good
from j’s bundle. It is easy to show that the round-robin procedure always outputs an EF-1
allocation, in particular, an EF-1 allocation always exists.4

EF-1 can also be combined with Pareto optimality using the familiar Nash social welfare.

Definition 10. An allocation µ of indivisible goods is Pareto optimal if there is no other
allocation of indivisible goods5 µ′ such that ui(µ

′
i) ≥ ui(µi) for all agents i and the inequality

is strict for some i.

Theorem 25 (Caragiannis et al. (2019)). An allocation µ∗ of indivisible goods that maximizes
the Nash social welfare

µ = µ∗ :
n∏

i=1

ui(µi) → max

is EF-1 and Pareto optimal.
4Lipton et al. (2004) demonstrate the existence much more generally.
5For indivisible goods, the set of alternatives is the set of indivisible allocations. The Pareto optimality is

defined with respect to this set, and so the counterfactual allocation µ′ in the definition of Pareto optimality
is also indivisible. If we allowed for fractional µ′ we would get a non-equivalent definition of “fractional
Pareto optimality” which is, however, also compatible with EF-1 (Barman et al., 2018).
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Proof. The proof resembles the one for the analogous result that we saw in the divisible case.
Since µ = µ∗ maximizes the product, transferring any good g ∈ µj from agent j to agent

i, cannot increase the product. Thus

ui(µi)uj(µj) ≥ (ui(µi) + vi(g)) (uj(µj)− vj(g)) .

Dividing both sides by ui(µi)uj(µj), opening the brackets, and simplifying, we get:

vj(g)

uj(µj)
+

vj(g)

uj(µj)

vi(g)

ui(µi)
≥ vi(g)

ui(µi)
. (15.1)

Now, let’s select a particular good g = g∗ ∈ µj. The idea is that we need the good that is
relatively more preferred by i than by j:

g = g∗ that minimizes
vj(g)

vi(g)
over g ∈ µj.

We obtain

vj(µj) =
∑
g∈µj

vj(g) =
∑
g∈µj

vj(g)

vi(g)
· vi(g) ≥

vj(g
∗)

vi(g∗)
·
∑
g∈µj

vi(g) =
vj(g

∗)

vi(g∗)
· ui(µj).

Dividing both sides by
ui(µj)

vi(g∗)
gives

vi(g
∗)

ui(µj)
≥ vj(g

∗)

uj(µj)
.

Combining this inequality with (15.1) results in

vi(g
∗)

ui(µj)
+
vi(g

∗)

ui(µj)

vi(g
∗)

ui(µi)
≥ vi(g

∗)

ui(µi)
.

Multiplying both sides by
ui(µi)ui(µj)

vi(g∗)
gives

ui(µi) ≥ ui(µj)− vi(g
∗)

and thus i does not envy j after eliminating g∗ from j’s bundle. As i ̸= j are arbitrary, the
allocation is EF-1.

15.4 Open problem: EFX

A natural strengthening of EF-1 is the concept where possible envy between i and j must
disappear after eliminating any good from j’s bundle.

Definition 11. An allocation µ is envy-free up to any good or EFX if for any pair of agents
i and j and any good g ∈ µj, we have

ui(µi) ≥ ui(µj \ {g}).
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For n = 2 agents, it is easy to see that an allocation µ maximizing the minimal utility
(the outcome of the Egalitarian rule) satisfies EFX (Plaut and Roughgarden, 2020). Thus
EFX allocations always exist for n = 2. The existence of EFX allocations for n ≥ 3 and
its compatibility with Pareto optimality remain the main open problems in fair division of
indivisible goods. A breakthrough paper by Chaudhury et al. (2020) shows the existence for
n = 3.

15.5 Open problem: EF-1 for bads

One can consider a version of the same model where agents divide bads instead of goods,
e.g., some tiring tasks or liabilities. Formally, we need to assume that vi(g) ≤ 0 for all items.
The notions of envy-freeness, FSG, and Pareto optimality for divisible bads repeat those for
goods. The extension of indivisible notions is also straightforward.

Definition 12. An allocation µ of indivisible bads is EF-1 if for any pair of agents i and j
there is g ∈ µi such that

ui(µi \ {g}) ≥ ui(µj).

As we see, now a possibly envious agent i needs to eliminate an item from her own bundle
to stop envying agent j. Indeed, eliminating a bad from j’s bundle would only increase envy.

One can show that an EF-1 allocation exists via round robin, as in the case of goods.
Interestingly, the existence of EF-1 Pareto optimal allocations of bads is an open problem.
We cannot mimic the proof of Theorem 25, e.g., minimizing the product of absolute values
of the utilities leads to an unfair allocation where one agent is allocated no bads, while
maximizing the product pushes agents’ utilities in the wrong direction and so violates Pareto
optimality.

Presumably, a combination of the following approaches may help to resolve the conjecture:
Barman et al. (2018) describes how to perturb equal budgets in a CEEI for divisible goods to
get an EF-1 allocation of indivisible ones, and Bogomolnaia et al. (2017) extend the notion
of CEEI to bads.



Chapter 16

Envy-free pricing and matching
markets with money

In this lecture, we consider a hybrid setting, where indivisible goods are to be allocated in
the presence of one divisible good: money. While the setting is similar to that of multi-item
auctions, the central role will be played by fairness instead of revenue maximization. At the
end of the lecture, we will relate the model to two-sided matching markets. A more detailed
discussion can be found in (Karlin and Peres, 2017, Chapter 17).

16.1 Competitive equilibrium and envy-free pricing

The model is as follows. There are n agents and n indivisible goods G = {g1, . . . , gn}; each
agent needs only one good.1 Hence, an allocation µ is a bijection {1, . . . , n} → G. The set
of alternatives consists of allocation-price pairs (µ, p), where p : G → R+ defines a price for
each good g. The utility of agent i is quasilinear in money:

ui = vi(µi)− p(µi).

Given prices p, define the demand of agent i by

Di(p) = {g ∈ G : vi(g)− p(g) ≥ vi(g
′)− p(g′) ∀g′ ∈ G and vi(g)− p(g) ≥ 0} .

So the demand consists of those goods that bring the highest utility provided that this utility
is non-negative. The non-negativity captures individual rationality: an agent would prefer
to receive no good if all the goods are too pricey.

Definition 13. A pair (µ, p) is a competitive equilibrium (CE) if

µi ∈ Di(p)

for any agent i.

1We assume that the numbers of goods and agents are equal for the sake of simplicity. One can easily
reduce the problem with unequal numbers to this benchmark setting by adding zero goods or dummy agents
with zero values for all the goods.
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The prices p are referred to as envy-free prices. Indeed, if (µ, p) is a CE we have

vi(µi)− p(µi) ≥ vi(µj)− p(µj)

for any pair of agents i and j, i.e., i does not envy j. One can think of a CE as a menu of
item-price pairs such that all agents, when offered this menu, select different options, and so
the market clears. An analogy with the definition of CEEI for markets without money must
be clear.2

Example 11 (Rent division). Consider the following problem: n students are renting a house
with n non-identical rooms G = {g1, . . . , gn}. How should they divide the total rent of R?
On the Internet, you can find various rent-division calculators. Some propose equal division
p(g) = R

n
. Others go further and determine the prices as a function of various amenities

such as room area, windows, private bathroom, and so on. Such an approach is flawed as
no matter how many parameters are introduced to the calculator, it fails to capture that
different tenants may have different attitudes to these amenities.

Instead of measuring the objective parameters of the rooms, an economic design approach
would be to take into account agents’ subjective preferences. This is how the rent-division
calculator on http://www.spliddit.org/ works. Each tenant i reports her values vi(g) for
the rooms with the condition that

∑
g∈G vi(g) = R, i.e., she proposes a way to split the rent

among the rooms in a way that reflects the attractiveness of each of the rooms from her
perspective. Then the calculator determines who gets what and how much they pay.

Formally, a pair (µ, q) is an envy-free rent division if∑
g∈G

q(g) = R

and

vi(µi)− q(µi) ≥ vi(µj)− q(µj).

Below we will show that a CE exists. Let us check that this implies the existence of an
envy-free rent division. If (µ, p) is a CE. Define

q(g) = p(g) +
R−

∑
g′ p(g

′)

n
.

Thus (µ, q) is an envy-free rent division as adding a constant to all the prices does not ruin
the property of envy-freeness. Note that envy-free rent division may not be unique, and
selecting “the best one” is a separate non-trivial problem (Gal et al., 2017).

2The crucial difference between the two models is that, in CEEI, agents have no value for money, but
there is a budget constraint instead: equivalently, the contribution of money to utility is 0 if an agent is
within her budget, and −∞, otherwise. The value for money exhibits threshold behavior, not quasilinear.

http://www.spliddit.org/
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16.2 Properties of competitive equilibria

The following result is an analog of the first fundamental theorem of welfare economics
familiar by our discussion of CEEI.

Theorem 26. If (µ, p) is a CE, then µ maximizes the utilitarian social welfare

n∑
i=1

vi(µi).

In the second homework, you proved that for agents with quasi-linear preferences, an
alternative is Pareto optimal if and only if it maximizes the sum of utilities. Thus the
theorem can be equivalently stated as follows: a CE is Pareto optimal.

Proof. Consider some other allocation µ′ and show that its welfare is bounded by that of µ.
We have

n∑
i=1

vi(µ
′
i) =

n∑
i=1

(vi(µ
′
i)− p(µ′

i)) + p(µ′
i) ≤

n∑
i=1

(vi(µi)− p(µi)) + p(µ′
i),

by envy-freeness of CE. Since

n∑
i=1

(vi(µi)− p(µi)) + p(µ′
i) =

n∑
i=1

vi(µi)−
∑
g∈G

p(g) +
∑
g∈G

p(g) =
n∑

i=1

vi(µi),

we obtain that
n∑

i=1

vi(µ
′
i) ≤

n∑
i=1

vi(µi),

which concludes the proof.

This theorem suggests a recipe for finding a CE.We first compute µmaximizing
∑n

i=1 vi(µi).
This problem is equivalent to finding the maximal-weight matching in the complete bipartite
graph with parts {1, . . . , n} and G and an edge (i, g) having a weight of vi(g); this can be
done, e.g., using Edmonds’ algorithm. Once this matching is computed, the prices can be
determined as a solution to the following linear system:

vi(µi)− p(µi) ≥ vi(µj)− p(µj) ∀i ̸= j

vi(µi)− p(µi) ≥ 0 ∀i
p ∈ RG

+.

However, we still do not know if this system always has a solution. We will see that it always
does by considering an alternative way to find a CE relating it to simultaneous ascending
auctions. As a byproduct, we will obtain an auction-based algorithm for computing the
maximal-weight matching in a bipartite graph.
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16.2.1 Computing a CE via simultaneous ascending auctions

The following algorithm is by Demange et al. (1986) and is close to earlier ideas of Bertsekas
that, however, were published later (Bertsekas, 1988):

• The input is an n × n matrix vi(g) of non-negative integer numbers3 and an approxi-
mation parameter 0 < δ < 1

n
playing a role of a bid increment

• Initialize µi = ∅ for all i and p(g) = 0 for all g

• While there exists an agent i with µi = ∅

– Pick g ∈ Di(p)

– If there is j such that µj = g, update µj = ∅.
– Allocate g to i, i.e., define µi = g.

– Update p(g) = p(g) + δ

• End.

Theorem 27. The algorithm terminates. The resulting pair (µ∗, p∗) is such that µ∗ is the
maximal-weight matching and p∗ satisfies

vi(µi)− p∗(µi) ≥ vi(µj)− p∗(µj)− δ ∀i ̸= j

vi(µi)− p∗(µi) ≥ −δ ∀i
p∗ ∈ RG

+.

Corollary 4. By letting δ → +0, we obtain that a CE exists. Indeed, we know that, for

any δ, the vector of prices p∗ = p∗δ belongs to the cube
[
0, maxi,g vi(g) +

1
n

]G
. Thus the

sequence p∗δ has a limit point. Any such limit point corresponds to a CE by the continuity of
envy-freeness constraints.

Proof. First, let us demonstrate correctness, namely that the demand set Di(p) in the while-
cycle is never empty, and so we can always pick a good from Di(p). Note that once a good
g is allocated to an agent, it will always be allocated to some agent at all future iterations
of the cycle. As the numbers of agents and goods are the same, whenever there is an agent
with µi = ∅, there is a good g that has never been allocated. Such a good has zero price;
thus, Di(p) cannot be empty.

If a good g ∈ Di(p) is selected, it must be that the current price p(g) ≤ vi(g). As only
the prices of selected goods increase, we see that the price of any good must satisfy

p(g) ≤ max
i,g

vi(g) + δ

throughout the execution of the algorithm. Since each iteration of the while-cycle increases
the price of one good by δ, we conclude that the algorithm terminates after a finite number
of iterations.

3If vi(g) are rationals, multiply all the values by the common denominator.
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At the iteration when i is finally allocated g = µ∗
i , this good g was contained in Di(p)

before its price was increased by δ. Thus

vi(g)− p(g) ≥ vi(g
′)− p(g′)− δ

for all g′ and
vi(g)− p(g) ≥ −δ.

Since that iteration, the price of g hasn’t changed, while the prices of other goods have only
increased. Thus the same inequalities hold if we replace p by p∗.

It remains to demonstrate that µ∗ is the maximal-weight matching. The argument is
similar to the proof of Theorem 26 up to the nuance that now envy-freeness holds with a
slack δ. For any µ′,

n∑
i=1

vi(µ
′
i) =

n∑
i=1

(vi(µ
′
i)− p∗(µ′

i)) + p∗(µ′
i) ≤

≤
n∑

i=1

(vi(µ
∗
i )− p∗(µ∗

i ) + δ) + p∗(µ′
i) = nδ +

n∑
i=1

vi(µ
∗
i ).

Since values are integral and nδ ∈ (0, 1), this inequality holds if and only if

n∑
i=1

vi(µ
′
i) ≤

n∑
i=1

vi(µ
∗
i )

and thus µ∗ is the maximal-weight matching.

In (Karlin and Peres, 2017, Section 17.2.1), you can read about another exciting and
unexpected connection between CE and auctions. It turns out that the allocation and prices
of the VCG mechanism are envy-free. In particular, a CE can be found in a strategy-proof
way.

16.3 Matching markets with money

The model that we’ve just considered was introduced by Shapley and Shubik (1971) and
is sometimes referred to as the Shapley-Shubik assignment game. It has an important al-
ternative interpretation of a two-sided market with money. By “two-sided”, we mean that
“resources” also have preferences over whom they are allocated. Examples of two-sided mar-
kets with money include labor markets matching workers with firms, gig-economy platforms
matching users with service providers (Taskrabbit, Uber, etc), or platforms matching buyers
and sellers (Amazon). Such markets are also called matching markets.

Imagine that the set {1, . . . , n} are firms each with one vacancy and {g1, . . . , gn} are
workers. If worker g works for firm i, she generates vi(g) units of value which are to be split
between i and g into i’s revenue ui ≥ 0 and g’s wage p(g) ≥ 0 so that vi(g) = ui + p(g).
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Definition 14. A matching with money is a triplet (µ, u, p), where µ : {1, . . . , n} → G is a
bijection, u ∈ Rn

+ is a vector of revenues, p ∈ RG
+ is a vector of wages such that

vi(µi) = ui + p(µi)

for any firm i.

Definition 15. Given (µ, u, p), a pair (i, g) such that µi ̸= g is a blocking pair if

vi(g) > ui + p(g).

A blocking pair (i, g) makes the matching unstable as both prefer to be matched with
each other compared to what they get in (µ, u, p): indeed, i and g can agree to divide
vi(g) = u′i + p′(g) in a way that u′i > ui and p

′(g) > p(g).4

Definition 16. (µ, u, p) is stable if there are no blocking pairs.

An unstable matching will evolve over time, agents will rematch, and/or wages adjust
until it reaches the steady state of a stable matching. Does this steady state always exist?
It turns out that this question is almost equivalent to the existence of a CE.

Theorem 28. A stable matching with money (µ, u, p) exists.

Proof. By the definition of a blocking pair, (µ, u, p) is stable if and only if

ui + p(g) ≥ vi(g) (16.1)

for any i and g.
Let’s imagine for a moment that firms are agents and workers are goods with values vi(g)

and consider a CE (µ, p). Pricing in a CE is envy-free and so

vi(µi)− p(µi) ≥ vi(µj)− p(µj)

for all i and j or, equivalently,

vi(µi)− p(µi) ≥ vi(g)− p(g)

for all i and g. Defining ui = vi(µi)− p(µi) we obtain

ui ≥ vi(g)− p(g)

for all i and g. Comparing this inequality to (16.1), we see that (µ, u, p) is stable.

4This lack of stability is similar to the way in which violation of Pareto optimality creates opportunities
to trade.
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Matching markets without money

In the previous lecture, we considered stability in two-sided markets with money, e.g., labor
markets. The match and prices/wages may be determined in a centralized way, as in the
case of ride-sharing services such as Uber. Alternatively, the match and the prices can be
discovered in a decentralized way as it happens on Taskrabbit: each worker can announce her
skills and expected wage, and the other side of the market may contact the preferred worker
given this information. Overdemanded workers will increase their wage expectations, and
underdemanded ones will decrease, pushing the market toward a competitive equilibrium.
These market forces work especially well because the match is governed by prices which ag-
gregate the information about market participants’ preferences in a simple finite-dimensional
way.

Market forces are less effective in matching markets without money, and such markets
usually fail to operate well without centralized clearinghouses. Markets without money are
omnipresent: assigning students to public schools,1 college admission,2 women-men marriage
market,3 assigning engineers to teams within a firm,4 or interns to internships.5 Roth (2015)
is an insightful and engaging popular book about challenges and successes matching-market
design in practice.

The model is as follows. There is a set S = {s1, . . . , sn} of students and C = {c1, . . . , cn}
of colleges, each having one seat.6 Each student s has strict preference ≻s over C, and

1Schools have “preferences” over students captured by priorities, e.g., students having siblings in the
school or living close by get higher priority. These preferences usually have huge indifference classes, and
choosing the right tie-breaking rule is a separate hotly debated topic.

2In countries having a nation-wide exam, colleges’ “preferences” over students may be quite fine. Note that
different programs may be interested in different aspects of student’s performance, so the college preferences
are aligned but not identical.

3This is a standard metaphor for a two-sided market. Arguably, this market does not require a centralized
clearinghouse (dating app developers may disagree, though), but the stability issues which we will discuss
make perfect sense.

4Engineers have preferences over teams and so do team leads over engineers.
5National Resident Matching Program (NRMP) assigning medical graduates to internships was the first

matching market redesigned by economists.
6One can choose any other metaphor for the two sides of the market. Extension to non-unit capacities
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each college c has strict preference ≻c over S.
7 A matching µ determines which college each

student is assigned to. The formal definition may look confusing at first glance as we want
to be able to write µ(s) for the college where s is assigned and µ(c) for the student assigned
to c. Formally, a matching µ is a bijection S ∪C → S ∪C such that µ(S) = C and µ(s) = c
implies µ(c) = s. A matching mechanism maps a profile of preferences

(
(≻s)s∈S, (≻c)c∈C

)
to

a matching µ.

Example 12 (Serial dictatorship). Consider a special case of this model, where preferences
on one side of the market, say, colleges, are all the same (e.g., students are ranked by the
number of points earned in a nationwide exam). Assume that each college ranks the students
as s1, s2, s3, . . .. In this case, a reasonable mechanism to use is the familiar Serial Dictatorship:
let s1 choose her best college, then let s2 choose one among those with vacant seats, and so
on. For example, this mechanism is strategy-proof and Pareto optimal for students.

What should we do if preferences are distinct on both sides of the market?

17.1 Immediate Acceptance aka Boston mechanism

A version of the following mechanism was used in Boston to assign students to public schools
until 2005. This mechanism called Immediate Acceptance (IA), is very intuitive and, as a
result, is ubiquitous. It operates as follows:8

• Initialization: empty matching µ

• While (there are unmatched students and colleges)

– Each unmatched s applies to s’s best c among those that have not yet been filled

– Each c accepts the best applicant, rejects others

• End.

This procedure can be implemented as a black box (students submit their preferences, and
the algorithm determines the matching) or as a dynamic procedure with several application
“waves” where unmatched students literally apply to unfilled colleges. No matter what
implementation is used, IA is deeply flawed.

and unequal numbers of seats and students is also straightforward (e.g., add auxiliary colleges ∅i where all
unmatched students go). We stick to the most basic model for the sake of simplicity.

7Non-strict preferences on one side of the market, say, colleges are also easy to accommodate.
8A version of IA described here is known as IA with skips. In IA without skips, unassigned students apply

sequentially to the next school on their list even if it has already been filled. Both versions of IA suffer from
the same manipulability and stability issues.
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Example 13. Consider three students and three colleges with the following preferences:

≻s1 ≻s2 ≻s3

c1 c1 c2
c2 c2 c3
c3 c3 c1

≻c1 ≻c2 ≻c3

s1 s2 s3
s2 s1 s1
s3 s3 s2

At the first wave of IA, both s1 and s2 apply to their most preferred college c1, and s3 applies
to c2. The student s1 gets admitted to c1, the student s3 is admitted to c2, and the student
s2 gets rejected. At the second wave, s2 is forced to apply to c3 (the only remaining college
with an empty seat) and gets admitted. We obtain the following match:

s1 − c1, s2 − c3, s3 − c2.

In this example, it is easy to see that IA is manipulable: By top-ranking c2 instead of
c1, the second student would get into her second-best college instead of her third-best.

Manipulability is a consequence of the fact that IA penalizes those students who fail to
get admitted at the first wave: the only option remaining for them is unpopular colleges that
still have empty seats. This opens a possibility for manipulation: a student needs to top-rank
a school that she likes and where she has a high chance of being accepted.9 The outcome of
the Boston school-choice mechanism was unpredictable, depended on the strategic abilities
of participants, and suffered from poor match quality.

IA has another crucial flaw: lack of stability. The definition of a blocking pair that we
saw for markets with money naturally adapts to the present setting.

Definition 17. Unmatched (s, c) form a blocking pair in µ if

c ≻s µ(s) and s ≻c µ(c),

i.e., both would prefer to be matched together to their matches in µ.

Definition 18. A matching µ is stable if there are no blocking pairs.

In our example, (s2, c2) is a blocking pair, so IA does not guarantee stability. Lack of
stability leads to market unraveling as participants can find better matches “outside of the
mechanism.”

Because of these flaws, the Boston mechanism was replaced in 2005 (Abdulkadiroglu et al.,
2006). Now we will discuss the replacement.

17.2 Deferred Acceptance aka Gale-Shapley algorithm

The Deferred Acceptance algorithm was introduced by Gale and Shapley (1962). Alvin Roth
was the first to realize the practical value of this theoretical result, which has led to improving

9Boston school district even issued recommendations on how to strategize.
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many real markets and, in fact, led to the creation of the very field of market design. Roth
and Shapley received the 2012 Nobel Prize.10

DA is identical to IA up to a seemingly minor detail: all the acceptances throughout the
execution of the algorithm become tentative so that a college may reject a student that has
been accepted at first stages in favor of a more preferred student that applies at later stages.
DA runs as follows:

• Initialization: empty matching µ

• While (there are unmatched students and colleges)

– Each unmatched s applies to s’s best c among those that have not yet rejected
s

– Each c tentatively accepts the best s who has ever applied, rejects other
applicants

• Tentative acceptances are finalized.

Example 14. Consider the preference profile from Example 13. At the first wave, both s1
and s2 apply to c1, and s3 applies to c2. The students s1 and s3 get tentatively accepted,
and s2 is rejected. At the second wave, s2 applies to her second-best college c2. Now c2
must select between tentatively accepted s3 and newly applied s2. The college rejects s3 and
tentatively accepts s3. At the third wave, s3 applies to g3 and gets tentatively accepted. As
a result, the algorithm terminates with the following matching:

s1 − c1, s2 − c2, s3 − c3.

One can check that this matching is stable, which is not a coincidence.

Theorem 29 (Gale and Shapley (1962)). DA terminates with a stable matching µ.

Proof. First, let’s see that the algorithm terminates with a matching. Indeed, imagine that
a student s remains unmatched. As students go down the list of their preferences, it means
that s has been rejected by all the colleges. Since colleges reject a student only in favor of
another student, s can get rejected by all the colleges only if |S| > |C| but the two sets are
assumed to be of equal size. Similarly, no college can remain unmatched as this unavoidably
creates an unmatched student, and we just showed that there are no such students. We
conclude that DA terminates with a matching µ.

Let us check that µ is stable. Consider a pair (s, c) such that µ(s) ̸= c. Throughout
the algorithm, students apply to less and less preferred colleges (if they have been rejected
by more preferred ones), and colleges tentatively accept more and more preferred students.
Hence, either s has not applied to c in which case µ(s) ≻s c, or s has got rejected by c in
which case µ(c) ≻c s. Thus (s, c) is not a blocking pair, and so µ is stable.

Corollary 5. A stable matching exists and can be found in polynomial time.

10David Gale passed away in 2008, and the Nobel Prize is not awarded posthumously.
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Note that DA treats students and colleges asymmetrically. The version of the algorithm
we considered is usually referred to as student-proposing DA: students go down the list of
their preferences applying to less and less preferred colleges while colleges receive better and
better applications. One can reverse the roles of students and colleges and get the college-
proposing DA, where colleges go down the list of their preferences and students tentatively
accept more and more attractive offers. The notion of stability is symmetric with respect to
the two sides of the market, so college-proposing DA also returns a stable matching. Is it the
same matching as in the case of student-proposing DA?

Example 15. Consider the following two-student two-college profile:

≻s1 ≻s2

c1 c2
c2 c1

≻c1 ≻c2

s2 s1
s1 s2

Student-proposing DA results in
s1 − c1, s2 − c2

while college-proposing gives
s1 − c2, s2 − c1.

Based on this example, we conclude that a stable matching may not be unique. We also
see that students are better off in the student-proposing DA while colleges are better off in
college-proposing DA. We will see that this is a general phenomenon.

Denote by µ∗(s) the most preferred college of s among those colleges c that there exists
a stable matching µ′ where µ′(s) = c.

Theorem 30 (student-optimality of student-proposing DA). Student-proposing DA matches
each s with µ∗(s).

Proof. Towards a contradiction, assume that some s is rejected by µ∗(s) throughout the
execution of DA. Consider the first such rejection: a student s is rejected by c = µ∗(s) in
favor of some s′. Hence,

s′ ≻c s.

Since s′ has not yet been rejected by µ∗(s′) and students go down their preference list, we
conclude that

c ≻s′ µ
∗(s′).

Now consider a stable matching µ′ where s is matched to c. Hence, µ′(s′) = c′ ̸= c. By the
definition of µ∗(s′),

µ∗(s′) ⪰s′ c
′

and so
c ≻s′ c

′.

Therefore, c ≻s′ c
′ = µ′(s′) and s′ ≻c s = µ′(c). Thus (s′, c) is a blocking pair in µ′ which

contradicts its stability. This contradiction completes the proof.
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Remark 1. An analogous argument shows that student-proposing DA matches each college
with the worst student it can get in a stable matching. Similarly, the college-proposing DA
gives the best stable outcome for colleges and the worst for students. This optimality concern,
however, is almost irrelevant in practice as, in large markets, both in theory and practice, a
stable matching is likely to be unique (Ashlagi et al., 2017).

Student-optimality of DA can be seen as restricted Pareto optimality.

Definition 19. Consider a profile of preferences of a set N of agents over a set A of alterna-
tives. Given N ′ ⊂ N and A′ ⊂ A, an alternative a ∈ A is (N ′, A′)-restricted Pareto optimal
if there is no a′ ∈ A′ such that a′ ⪰i a for all i ∈ N ′ and a′ ≻j a for some j ∈ N ′.

Hence, Theorem 30 can be reformulated as follows: student-proposing DA is (student,
stable)-restricted Pareto optimal. The following example demonstrates that one cannot drop
the restriction to stable counterfactual matchings as there may be unstable matchings that
are preferred by the students.

Example 16 (Pathak (2011)). Consider the following preference profile:

≻s1 ≻s2 ≻s3

c2 c1 c1
c1 c2 c2
c3 c3 c3

≻c1 ≻c2 ≻c3

s1 s2 s3
s3 s1 s1
s2 s3 s2

In the student-proposing DA, all the students get rejected by their top-choice colleges:

s1 − c1, s2 − c2 s3 − c3.

The following matching
s1 − c2, s2 − c1 s3 − c3

is strictly preferred to the DA outcome by s1 and s2 while s3 is indifferent. Note, however,
that this improvement is unstable with a blocking pair (s3, c1).

In addition to stability, students do not need to strategize.

Theorem 31. The student-proposing DA is strategy-proof for students.11

Given Theorem 30, strategy-proofness seems rather intuitive. Indeed, if each student
already gets her best match, there is no way she can improve it by misreporting. There is,
however, a nuance: the manipulation may change the set of stable matchings. Because of
this subtlety, the formal proof is rather complicated. An elegant version of it can be found
in (Karlin and Peres, 2017, Chapter 10).

11Colleges can manipulate, though. Try to find an example with n = 3.



Chapter 18

Information design

Information design is a sub-field of economic design that deals with the questions of how
information available to agents affects their behavior and, most importantly, how to induce
the desired behavior by optimally choosing the availability.

To approach these questions, we must discuss how to model the agent’s (lack of) infor-
mation. We already saw the basic idea in the context of revenue-maximizing auctions. We
assumed that agent i’s value vi(g) for good is a random variable with some distribution F .
Agent i is informed of her own value: this is captured by the assumption that she observes
the realization of vi(g). Other agents, including the seller, do not know the value, so they do
not observe the realization of vi(g). However, they are not totally agnostic and have some
guesses about what this value could be: this is captured by the assumption that all agents
know F .

In the auction context, we dealt with extreme cases where some agents have full informa-
tion (i knows her value) or have no information. How can we model agents that are partially
informed?

18.1 Signals, beliefs, and the splitting lemma

Let θ ∈ Θ be a state of interest. For simplicity, we will focus on the case of a binary state
Θ = {0, 1}; for example, it may indicate a quality of a product (low or high) or whether the
exchange rate USD/JPY will go down or up tomorrow. The state is uncertain: θ = 1 with
probability p ∈ [0, 1]. Imagine that we know p and, additionally, observe a noisy signal m
about θ.

A signal is a random variablem with values in some set of messagesM , possibly, correlated
with θ. We will give all the definitions assuming that M is a finite set, even though this
assumption can be easily relaxed. Denote by π0 the distribution of m conditional on θ = 0
and, by π1, the distribution of m conditional on θ = 1:

π0(x) = P(m = x | θ = 0), π1(x) = P(m = x | θ = 1)

for all x ∈M .
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Definition 20. A triplet (M,π0, π1) is called an information structure.

Before observing a signal m, our best guess about the probability of θ = 1 is p, usually
referred to as prior belief or just prior. If m is not independent of θ (equivalently, π0 ̸= π1),
then observing the realization of m carries some information about the realization of θ.
Imagine we get a signal m equal to some x ∈ M . Our new best guess about θ is called a
posterior belief (or posterior for short) and is given by the Bayes formula:1

p′(x) = P(θ = 1 | m = x) =
π1(x) · p

π1(x) · p+ π0(x) · (1− p)
.

Since the signal m is a random variable, the posterior belief p′ = p′(m) is also a random
variable with values in [0, 1].

Example 17. Let the prior be p = 1
2
. Consider a binary signal m ∈ M = Θ = {0, 1} that

matches the state with probability 1
2
+ ϵ, i.e.,

P(m = 1 | θ = 1) = P(m = 0 | θ = 0) =
1

2
+ ϵ

or, equivalently,

π1(1) = π0(0) =
1

2
+ ϵ.

We obtain

p′(1) =

(
1
2
+ ϵ

)
1
2(

1
2
+ ϵ

)
1
2
+
(
1
2
− ϵ

)
1
2

=
1

2
+ ϵ

and

p′(0) =

(
1
2
− ϵ

)
1
2(

1
2
− ϵ

)
1
2
+
(
1
2
+ ϵ

)
1
2

=
1

2
− ϵ.

Since P(m = 1) = P(m = 0) = 1
2
, the posterior p′(m) takes the values 1

2
± ϵ equally likely.

For ϵ = 0, m is independent of θ and so totally uninformative. For uninformative signals,
the posterior equals the prior. If m = θ or m = −θ, the signal is fully informative: knowing
the realization ofm, one can recover the realization of θ. Fully informative signals correspond
to ϵ = ±1

2
and the induced posteriors are either 0 or 1, i.e., we either think that θ = 1 with

probability 0 or with probability 1 depending on the observed signal. As |ϵ| increases, m
becomes more and more (anti-)correlated with θ and, hence, more informative, and the
distribution of posteriors becomes more and more spread.

The following example shows how one can heuristically handle continuous signals even
though the conditional probabilities may not be well-defined when the conditioning is on a
zero-probability event.

1P(A | B) = P(B|A)P(A)

P(B|A)P(A)+P(B|A)P(A)
, where A is the complementary event to A.
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Example 18. The prior is 1
2
again but the set of messages M is continuous: M = [0, 1].

If θ = 1, the signal’s distribution π1 has density 2t on [0, 1] and, if θ = 0, the signal’s
distribution π0 has density 2(1− t).

The conditional probability P(θ = 1 | m = x) is not well-defined as m = x has probability
zero. One can still compute this conditional probability by replacing {m = x} by the event
{m ∈ [x− δ, x+ δ]} and then letting δ go to +0.2 We get

p′(m = x) = lim
δ→+0

P(θ = 1 | m ∈ [x− δ, x+ δ]) =

= lim
δ→+0

∫ x+δ

x−δ
2t dt · 1

2∫ x+δ

x−δ
2t dt · 1

2
+
∫ x+δ

x−δ
2(1− t) dt · 1

2

=
2x

2x+ 2(1− x)
= x,

where we got rid of the integrals by applying L’Hospital’s rule.
We conclude that p′(m) = m; in other words, the induced posterior coincides with the

signal. What is the distribution of the signal? By the formula of total probability,

P(m ∈ [a, b]) =
1

2
P(m ∈ [a, b] | θ = 1) +

1

2
P(m ∈ [a, b] | θ = 0) =

=
1

2

∫ b

a

2t dt+
1

2

∫ b

a

2(1− t) dt =

∫ b

a

1 dt

and so m is uniformly distributed on [0, 1]. Thus the posterior p′(m) is also uniformly
distributed on [0, 1].

In both examples, the average posterior is equal to the prior. This phenomenon is general
and is known as the martingale property.3

Theorem 32. For any prior p and any information structure (M,π0, π1),

E[p′(m)] = p.

The martingale property states that, on average, beliefs do not change when we get
new information. This can be seen as rationality property capturing the time-consistency
of beliefs. Indeed, E[p′(m)] is today’s best prediction for tomorrow’s belief. If today, an
agent expected that her belief would drift in a particular direction tomorrow, that would be
rational to shift today’s belief in this direction.

2This trick works for random variables with continuous densities. An alternative, more general approach
is based on functional analysis and allows one to define “regular conditional probability” that is pinned down
uniquely for almost all x. For continuous densities, the two approaches are equivalent.

3In probability theory, martingales are those random processes where the best prediction of the value at
the next moment of time is the current value. An example of such a process is the simple random walk.
The theory of martingales extends that of random walks and allows for processes whose increments are not
independent. Multistage martingales arise in dynamic learning, where agents observe one signal after another
and update their beliefs sequentially.
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Proof. In the proof, we assume that the set of messages M is finite. The expected belief can
be computed as follows:

E[p′(m)] =
∑
x∈M

p′(x)P(m = x) =
∑
x∈M

P(θ = 1 | m = x)P(m = x) = P(θ = 1),

where the last identity follows from the formula of total probability.4 Thus E[p′(m)] = p.

It turns out that the martingale property is not only necessary but also sufficient for a
distribution F on [0, 1] to be a distribution of posterior beliefs for some information structure.

Theorem 33 (“splitting lemma” (Aumann et al., 1995)). For any distribution F on [0, 1]
such that the mean

∫
t dF (t) is equal to p, there exists an information structure (M,π0, π1)

such that the posterior belief p′(m) is distributed according to F .

As we will see, a byproduct of the proof is that any such distribution F can be generated
via (M,π0, π1) such that p′(m) = m, i.e., the belief and the signal coincide. Example 18 is a
particular case of the below construction for the uniform distribution F .

Proof. We will prove the result for a discrete F , which allows us to focus on the essence of
the argument and avoid technicalities.

Let F place a weight wk > 0 on a point xk ∈ [0, 1], k = 1, . . . , K. Hence,
∑

k wk = 1 as
F is a probability distribution and

∑
k xk · wk = p as the mean equals p by the assumption.

Consider an information structure (M,π0, π1) where M = {x1, . . . , xK} and

π1(xk) =
xk
p
wk

π1(xk) =
1− xk
1− p

wk.

Both π1 and π0 are probability measures as
∑

k xk · wk = p.

Let us compute the unconditional distribution of the message m. By the formula of total
probability,

P(m = xk) = π1(xk) · p+ π0(xk) · (1− p) = wk.

Hence, m has distribution F . Now we find the posterior belief induced by m:

p′(xk) =
π1(x) · p

π1(x) · p+ π0(x) · (1− p)
= xk.

Thus the posterior belief p′(m) coincides with the signal m and so has distribution F .

Now we are prepared to discuss information design.

4P(A) =
∑K

k=1 P(A | Bk)P(Bk) for any disjoint partition Ω = ∪kBk of the probability space.
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18.2 Bayesian persuasion

The model of Bayesian persuasion represents an archetypal situation where two agents have
a conflict of interest, one is informed about a payoff-relevant state and can affect the action
of the uninformed one by revealing some information to her.

The model was introduced by Kamenica and Gentzkow (2011) and builds on earlier in-
sights of Aumann et al. (1995). Bayesian persuasion is the most popular model of information
design and some authors use information design and persuasion as synonyms. The reason for
the popularity is the combination of tractability and the ability to capture a wide range of
real-life phenomena; see (Kamenica, 2019) for a survey of both the theory and applications.

We will describe the simplest version of the model with a binary state. There are two
agents, Sender (S) and Receiver (R), and a random state θ ∈ Θ = {0, 1}. Both agents know
the prior p = P(θ = 1).

• Sender selects an information structure (M,π0, π1), observes the realization of θ and
sends a signal m with distribution πθ to Receiver.

• Receiver knows the information structure chosen by Sender, observes m but not θ, and
selects an action a from her set of actions A.

• The utilities of the agents are uS(a, θ) and uR(a, θ). Both agents aim to maximize their
expected utilities.

We will illustrate the model via the following toy example of a court problem. Other
(more practical but less fun) interpretations are discussed afterward.

Example 19. 75% of defendants are innocent (θ = 0) and 25% are guilty (θ = 1), so p = 1
4
.

A prosecutor P knows the realization of θ and can send a signal about it to a judge J who
knows p only. The judge decides whether to acquit (a = 0) or to convict (a = 1). The
utilities are

uP (a, θ) = a, uJ(a, θ) = 1{θ=a},

i.e., the prosecutor is interested in maximizing the fraction of convicted defendants (no matter
whether guilty or not) and the judge aims to maximize the fraction of fair decisions (acquitted
innocent and convicted guilty defendants).

If the judge believes that θ = 1 with probability p′, then her best action is

a∗(p′) =

{
convict, p′ ≥ 1

2

acquit, otherwise.

Thus the prosecutor’s goal is to choose an information structure maximizing E[a∗(p′)] (the
fraction of convicted) or, equivalently, E

[
1{p′≥ 1

2
}
]
.

What should the prosecutor do? Let’s look at some ideas:

• Reveal no information: Hence, p′ = p = 1
4
and so no defendants are convicted. The

prosecutor’s utility is zero.
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• Reveal full information (m = θ): Therefore, the judge learns θ and convicts whenever
θ = 1, i.e., 1

4
of defendants. Prosecutor’s utility is 1

4
.

• Send a noisy signal: It turns out that the prosecutor can achieve the utility of 1
2
by

sending an optimally-tailored noisy signal.

The optimal information structure will be described once we develop the general method
for solving persuasion problems. Here we describe the intuition. The prosecutor either tells
“innocent” (which means that the defendant is indeed innocent and so will be acquitted by
the judge) or “maybe guilty”. This latter signal pools together all the guilty defendants and
a certain fraction of innocent ones. This fraction is selected so that it is still optimal for the
judge to convict whenever she gets this signal. As a result, all the guilty defendants and a
fraction of innocent ones get convicted.

It may seem surprising that the judge will convict 1
2
of the defendants knowing that only

1
4
of defendants are guilty. To understand why this happens, note that the judge could ignore

the signal sent by the prosecutor if this reduced the fraction of mistakes. But making a
decision on her own, the judge would acquit 1

4
of guilty defendants and so would make 25%

of mistakes anyway. Thus the judge listens to the prosecutor whenever this guarantees no
more than 25% of mistakes. This is exactly what happens in the optimum: the prosecutor
tailors the information so that all the mistakes become in her favor (25% convicted innocent
defendants).

Remark 2. The same problem as in the prosecutor-judge example can be used to argue about
seemingly unrelated phenomena:

• universities and employers: θ is a student’s performance (low/high). University
wants a good placement for any student, while employers want only high-performance
candidates.

It is optimal for the universities to pull the very best students with good ones:

When recruiters call me up and ask me for the three best people, I tell them,
“No! I will give you the names of the six best.

Robert J. Gordon,
Director of Graduate Placement,

Northwestern University, Department of Economics

Bayesian persuasion explains coarse grading (“A,B,C..” instead of a complete ranking)
by schools, universities, and industry (Ostrovsky and Schwarz, 2010).5

• sellers and buyers: θ is the quality of a product (low/high). A seller wants to sell
any product and a buyer wants a high-quality product only.

5Ostrovsky and Schwarz (2010) considered a particular Bayesian persuasion problem before the general
model was introduced by Kamenica and Gentzkow (2011).
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Bayesian persuasion explains why ordering by price (or by rating) of goods on Amazon
is noisy or why you cannot order apartments by their rating or total price on Airbnb.6

• law enforcement, e.g., road police and drivers: θ determines whether a given
neighborhood is patrolled (no/yes). The police want drivers to obey the parking rules
while drivers want to obey only if the neighborhood is patrolled. Bayesian persuasion
suggests that it may be optimal for police to announce a noisy patrolling schedule:
when patrolled, send a signal “maybe patrolled” and also send the same signal in a
fraction of cases when it is not. This fraction is to be determined so that the signal
“maybe patrolled” incentivizes most of the drivers to obey the rules.

18.3 How to solve Bayesian persuasion problems?

We will focus on the case where Sender’s utility uS = uS(a), i.e., it depends on Receiver’s
action only as in the examples discussed above. We will avoid discussing the questions of
whether maxima are attained.7 Below we describe the geometric approach to persuasion
developed by Kamenica and Gentzkow (2011).8

Receiver’s problem. Assume that Sender has already chosen the information structure
(M,π0, π1). What action should the receiver take upon receiving a signal m = x? She selects
an action a = a(m) maximizing her expected utility:

E[uR(a, θ) | m = x] = E
[
uR(a, 1)1{θ=1} + uR(a, 0)1{θ=0} | m = x

]
=

= uR(a, 1)E
[
1{θ=1}

]
+ uR(a, 0)E

[
1{θ=0}

]
=

= uR(a, 1)p
′(x) + uR(a, 0)(1− p′(x)).

We conclude that the optimal action depends on the signal through the induced posterior
only, i.e., a = a∗(p′), where

a∗(p′) = argmax
a∈A

(
uR(a, 1)p

′ + uR(a, 0)(1− p′)
)
.

Sender’s problem. Sender can compute the function a∗ that transforms the induced Re-
ceiver’s beliefs into actions. Thus the Sender’s goal is to maximize

E [uS(a
∗(p′))] → max

6For platforms, there are many reasons to withhold the information: they may want to incentivize users
to explore underexplored options (yet unrated new goods or service providers), avoid herding on current
high-rated options, support small firms, or reduce incentives for rating manipulation (e.g., coarse ordering of
restaurants by their rating on Google maps). These concerns can also be captured in persuasion models.

7Maxima are attained under standard (upper-semi)continuity assumptions. If these assumptions are not
satisfied, maxima are to be replaced by suprema.

8For an alternative “action-recommendation” approach to information design (more general but often less
tractable than the geometric one), see a survey by Bergemann and Morris (2019).
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over all information structures (M,π0, π1). Denote U(t) = uS(a
∗(t)) and let F be the distri-

bution of beliefs p′ induced by (M,π0, π1). Then

max
(M,π0,π1)

E [uS(a
∗(p′))] = max

(M,π0,π1)

∫ 1

0

U(t) dF (t).

By the splitting lemma (Theorem 33), the set of possible distributions F that we can get is
exactly the set of distributions with mean p. Thus

max
(M,π0,π1)

E [uS(a
∗(p′))] = max

F :
∫
t dF (t)=p

∫ 1

0

U(t) dF (t). (18.1)

The latter optimization problem has an elegant geometric solution.

Definition 21. The concavification of a function f on [0, 1] is the pointwise minimal concave
function above f :

cav[f ](x) = min{φ(x) : φ is concave on [0, 1] and f(y) ≤ φ(y) ∀y ∈ [0, 1]}.

Lemma 2 (concavification as martingale optimization).

cav[U ](p) = max
F :

∫
t dF (t)=p

∫ 1

0

U(t) dF (t).

Proof. Denote the right-hand side by ψ(p). Let us check that ψ is concave. For any F1 with
mean p1 and F2 with mean p2, their convex combination F = αF1 + (1 − α)F2 has mean
p = αp1 + (1− α)p2. Hence,

α

∫ 1

0

U(t) dF1(t) + (1− α)

∫ 1

0

U(t) dF2(t) =

∫ 1

0

U(t) dF (t) ≤ ψ(p).

Taking maximum over F1 and F2 with fixed mean, we obtain

αψ(p1) + (1− α)ψ(p2) ≤ ψ(p)

and conclude that ψ is concave. Since the point mass at p is also a feasible F , we get that

U(p) ≤ ψ(p).

Hence, ψ is a concave function above U and thus

cav[U ](p) ≤ ψ(p).

On the other hand, for any F with mean p∫ 1

0

U(t) dF (t) ≤
∫ 1

0

cav[U ](t) dF (t) ≤ cav[U ](p),

where the first inequality holds as we increase the integrand pointwise and the second follows
from the Jensen inequality as the integrand is concave. Taking maximum over F with mean
p gives

ψ(p) ≤ cav[U ](p).

We proved that ψ(p) ≤ cav[U ](p) and ψ(p) ≥ cav[U ](p) and thus ψ(p) = cav[U ](p).
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Combining (18.1) and Lemma 2, we obtain the following theorem characterizing the
optimal utility of Sender.

Theorem 34 (Kamenica and Gentzkow (2011)). The maximal expected utility of Sender is
equal to

cav[U ](p),

i.e., it is given by the concavification of her indirect utility function U(t) = uS(a
∗(t)). The

optimal information structure induces a distribution of posterior beliefs F such that

cav[U ](p) =

∫
U(t) dF (t).

Note that, given the distribution F , the information structure can be constructed ex-
plicitly as we did in the proof of the splitting lemma (Theorem 33). There is one more
observation that further simplifies the solution. We say that cav[U ](p) is supported by a
distribution F if F has mean p and

cav[U ](p) =

∫
U(t) dF (t).

There are just two cases:

• cav[U ](p) = U(p): In this case, cav[U ](p) is supported by the point mass at p which
corresponds to revealing no information to Receiver.

• cav[U ](p) > U(p): In this case, one can find a two-point distribution with mean p
supporting cav[U ](p).9

Corollary 6. Optimal persuasion requires at most two signals.10 Indeed, in the proof of the
splitting lemma, we saw that the number of points in the support of F is the number of signals
needed to induce this distribution.

Example 20. Let us get back to the persuasion problem from Example 19. Sender’s indirect
utility is

U(x) = 1{x≥ 1
2
}

and its concavification is given by

cav[U ](x) =

{
2x x ≤ 1

2

1 x ≥ 1
2

The Sender’s optimal utility for prior p = 1
4
equals 1

2
; it is supported by the two-point

distribution F that places equal weight on 0 and 1. Find the information structure inducing
this distribution via the construction from the splitting lemma.

9Convince yourself that this statement is true by drawing a picture.
A more abstract argument makes use of convex geometry tools which we introduced for multi-item auctions.
A distribution F supporting cav[U ](p) is the outcome of maximization of a linear functional

∫
U(t) dF (t)

over a convex set consisting of those distributions that have mean p. By the Bauer principle, the maximum
is attained at an extreme point. One can show that the extreme points of this convex set are exactly the
distributions with at most two points in the support and mean p.

10More generally, if the state is non-binary, the optimal persuasion requires |Θ| signals.
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A.1 Homework 1

1. (3 points) Find the outcome of the Borda rule for the following 3-voter profile:

≻1 ≻2 ≻3

b b a
a a b
c c c
d d d

Is there a profitable manipulation for the 3rd voter?

2. (5 points) Consider a profile with 7 voters:

3 voters 2 voters 1 voter 1 voter
a b b c
b c a a
c a c b

Does the Condorcet winner exist? Find the outcome of the scoring rule with weights
s1 > s2 > s3. What conclusion can you make?

3. (10 points) Plurality with runoff is a rule omnipresent in political elections. In the
first round, the two alternatives with the highest numbers of first places are selected
and, in the second round, the winner is determined via the majority rule.

Construct an example showing that this rule is manipulable.

4. (10 points) Construct a Condorcet consistent voting rule. No, don’t google it.

5. (15 points) In May’s theorem, we assume that the voting rule f is anonymous, namely,
any permutation of voters does not affect the outcome. One can consider a weaker
symmetry requirement that any two voters play the same role. Formally, a voting rule
f = f(≻1, . . . ,≻n) is said to be equitable if for any pair of voters i ̸= j there is a
permutation σ of {1, . . . , n} such that σ(i) = j and for any preference profile

f(≻1, . . . ,≻n) = f(≻σ(1), . . . ,≻σ(n)).

For |A| = 2 alternatives, construct an example of an equitable strategy-proof voting
rule that does not belong to the family of threshold rules.

Hint: You will need at least 4 voters.

6. (5 points) At the first lecture, we discussed that the typical form of an impossibility
result is that “strategy-proof, efficient, and fair mechanism fails to exist.” However, it
is not immediate that the Gibbard-Satterthwaite theorem has this form. Recall that
G-S states that, if f is strategy-proof and takes at least 3 different values, then f is
dictatorial.

Demonstrate that the G-S theorem implies the following result
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If there are |A| ≥ 3 alternatives, then there is no strategy-proof, Pareto
optimal, non-dictatorial rule f .1

Recall that a ∈ A is Pareto optimal for a profile (≻1, . . . ,≻n) if and only if there is no
other b ∈ A such that b ⪰i a for all agents i and there exists j such that2 b ≻j a. A
rule is Pareto-optimal if it always selects a Pareto-optimal alternative.

7. (10 points) Do the Plurality, Borda, Approval, and Median rules always select a Pareto
optimal outcome? Explain why they do or construct counterexamples.

8. (15 points) Assume that there are n agents that have strict preferences over m ≥ n
houses H. A serial dictatorship with a given order σ = (σ1, . . . , σn) of agents allows us
to allocate each agent exactly one house h ∈ H.

What if our agents are interested in receiving several goods (say, we are allocating
charity to the poor, each with different needs)? For simplicity, m is a multiple of n. A
natural idea is to run the same serial dictatorship with the same order σ repeatedly until
all the goods are allocated. This construction is known as the round-robin procedure.

Show that the round-robin is manipulable unless m = n. Assume that preferences over
collections of goods are defined via the utility functions as follows: each agent i has a
utility ui(h) for a “house” h ∈ H; if an agent receives a collection of houses B ⊂ H,
her utility is3 ui(B) =

∑
h∈B ui(h). Assume that the input of the mechanism is the

collection of utilities (ui(h))i=1,...,n,h∈H and an agent has an incentive to manipulate
the mechanism whenever the manipulation gives her strictly higher utility than being
truthful.

1As in the usual G-S, we assume that f = f(≻1, . . . ,≻n) is defined on the full domain (i.e., for any profile
of strict preferences). The rule is non-dictatorial if it is not a dictatorship; this can be seen as a very mild
fairness requirement (much weaker than, say, anonymity).

2As we assume that preferences are strict, b ⪰i a if and only if b ≻i a or b = a.
3Terminological remark: such utilities are called additive and the collections of goods are called bundles

(hence the notation B).
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A.2 Homework 2

1. (7 points) Assume that there is one item g to allocate and n ≥ 3 agents with quasi-
linear preferences. Consider a third-price auction: the agents submit their values vi(g)
i = 1, . . . , n to the auctioneer, and the auctioneer allocates the good to the agent with
the highest value but charges her the third highest value.

Is this auction strategy-proof? Prove or find a counterexample.

2. (10 points) In social choice, we modeled economic efficiency as Pareto optimality.
Recall that an alternative a ∈ A is Pareto optimal for a profile (≻1, . . . ,≻n) if and only
if there is no other b ∈ A such that b ⪰i a for all agents i and there exists j such that
b ≻j a.

When discussing the quasi-linear domain, we defined efficiency as welfare maximization:

n∑
i=1

vi(ω) → max .

Let’s explore the connection between the two notions of efficiency. Let Ω be the set of
outcomes and vi(ω) be the value of this outcome for an agent i = 1, . . . , n. The set of
alternatives is

A = {(ω, p1, . . . , pn)}.

For agents i = 1, . . . , n preferences are defined as follows

(ω, p1, . . . , pn) ≻i (ω
′, p′1, . . . , p

′
n)

if and only if
vi(ω)− pi > vi(ω

′)− p′i.

Let’s add an auxiliary agent 0 (a “designer” who collects the money) with the following
preferences:

(ω, p1, . . . , pn) ≻0 (ω
′, p′1, . . . , p

′
n)

if and only if
p1 + . . .+ pn > p′1 + . . .+ p′n.

Demonstrate that (ω, p1, . . . , pn) is Pareto optimal with respect to preferences of agents
0, 1, . . . , n if and only if ω maximizes welfare

n∑
i=1

vi(ω) → max .

Hint: Only one direction is hard. To prove the hard direction, show that if ω does not
maximize welfare, there is another alternative with ω′ maximizing welfare such that all
agents 0, 1, . . . , n strictly prefer this new alternative.
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3. (10 points) Consider an auction with two items G = {g1, g2} to allocate and three
agents with the following values:

v1({g1}) = v1({g1, g2}) = 9

v2({g2}) = v2({g1, g2}) = 9

v3({g1, g2}) = 10

and all other values equal zero. I.e., the first agent is interested in the first good only,
the second agent, in the second good only, and the third agent is interested in the two
goods together only.

Compute the outcome of VCG and revenue.

Now consider the case where agent 1 has stuck in a traffic jam and fails to participate.
Compute VCG payments and revenue again.4

4Yes, VCG exhibits a counterintuitive property that higher competition does not necessarily mean higher
revenue.
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A.3 Homework 3

1. (5 points) Consider a problem of fair division with several divisible goods G =
{g1, . . . , gk} and n agents with additive utilities. In the class, we mentioned that the
utilitarian rule favors single-minded agents and penalizes flexible ones.

To confirm this, construct an example (a profile of values) such that one of the agents
gets a zero bundle under the utilitarian rule.5

Hint: you will need at least n = 3 agents.

2. (5 points) Consider a pair of agents with additive utilities dividing three divisible
goods. The values are as follows:

a b c
v1 : 1 20 9
v2 : 15 5 10

Find the outcome of the Egalitarian rule. Show that both agents have a profitable
manipulation.

The following result about the structure of Pareto optimal allocations for n = 2 agents
may be useful.

Assume that all the ratios v1(g)/v2(g) are distinct and rearrange the goods so that
v1(g)/v2(g) is decreasing, i.e., from relatively more preferable for the first agent to
relatively more preferable for the second.

Claim 2. For two agents with additive utilities, an allocation µ = (µ1, µ2) is Pareto
optimal if and only if it has the following form:

µ1 : 1 1 ... 1 x 0 0 ... 0
µ2 : 0 0 ... 0 1− x 1 1 ... 1

for some x ∈ [0, 1]. In other words, there is a good g such that all prefix goods go to
agent 1, all suffix goods are allocated to agent 2, and the good g may be split between
the two agents.67

Thanks to this claim, to compute the outcome of the Egalitarian (or any other Pareto
optimal rule), it is enough to check the family of allocations from the claim.

5Do not forget the normalization:
∑

g∈G vi(g) = 1 or = 100 or, more generally, = const independent of i.
6You are not required to prove this claim, but I encourage you to try. The idea is simple: to show that

any other allocation provides an opportunity for trade that is beneficial to both agents. Indeed, if there are
goods gm and gl with m < l such that µ2(gm) > 0 and µ1(g1) > 0, find such ϵ1 > 0 and ϵ2 > 0 such that
both agents are happy to exchange ϵ1 amount of gl for ϵ2 amount of gm.

7A corollary of this claim is that any Pareto optimal division rule for two agents splits at most one item,
i.e., produces almost-indivisible allocations! This property enables the use of fair-division procedures designed
for divisible goods even in those real-life problems where goods are indivisible.
It can be shown that, for n agents there are at most n− 1 splits.
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3. (5 points) For the profile of values from problem 2, find the outcome of the Nash rule.

4. (5 points) For the profile of values from problem 2, find a CEEI and the corresponding
vector of prices p.

Hint 1: The Eisenberg-Gale theorem may be useful.

Hint 2: To determine prices, the following observation may be useful. If at CEEI, an
agent i consumes a non-zero amount of two goods g and g′, then the value-per-price
ratio8 must be the same vi(g)

pg
= vi(g

′)
pg′

for the two, moreover, this ratio for the consumed

goods is higher or equal than the ratio for non-consumed.910

5. (7 points) Consider the following profile with three agents and two goods:

a b
uAlice : 6 6
uBob : 8 4
uClaire : 9 3

Find the outcome of the Egalitarian rule. Check that Claire envies Bob and, hence,
that the Egalitarian rule is not envy-free.

The following observation, “dual” to that from problem 2, may be useful. Consider
a problem with n agents and two goods a and b. Assume that all the ratios vi(a)

vi(b)
are

distinct and reorder the agents so that the ratios are decreasing with i. In particular,
agent 1 prefers good a to b relatively stronger than agent n.

Claim 3. For n agents with additive utilities over a pair of goods, an allocation µ =
(µ1, µ2, . . . , µn) is Pareto optimal if and only if it has the following form: there is an
agent i such that

• all prefix agents can consume a non-zero portion of good a only;

• all suffix agents can consume a non-zero portion of good b only;

• agent i can possibly consume a non-zero portion of both goods.

6. (3 points) Consider a fair division problem with indivisible goods, additive utilities,
and the profile of values from problem 2. Find the MMS values for both agents and
construct an MMS allocation.

8In the literature it is called bang-per-buck.
9The so-called maximal-bang-per-buck property of CEEI or just MBB.

10MBB identities, the fact that each agent spends exactly one unit of money on her MBB goods and
that all goods are allocated pin down both the allocation and the equilibrium prices (even if we don’t use
Eisenbeg-Gale). These MBB identities lie at the heart of algorithms computing the CEEI and the Nash rule
for additive utilities.
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7. (7 points) Consider a fair division division problem with indivisible goods and n = 2
agents with additive utilities. Show that MMS allocation always exists.

Hint: As an inspiration, use the “cut-and-choose” procedure for division of a cake: The
first person cuts the cake into two pieces that she thinks are equal, and the second
person selects the piece that is the best from her perspective.
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